TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4...

38
1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee Principal Investigators Summary The TransPAC project supports circuits and services for the use of 100G networks between the US and Asia, with a focus on measurement and end user support. Year 4 highlights include the deployment of two additional 10G circuits between Guam and Hong Kong, the subsequent unification of several open exchanges in Hong Kong, signing MOUs with three partners, support for network experiments at the Sapporo Snow Festival and SC18, use of NetSage tools to detect routing and performance anomalies, and significant science engagement. 1. TransPAC Overview The TransPAC project supports circuits and network services between the US West Coast and Asia. The TransPACPacWave 100G Circuit is a 100 Gbps link between Seattle, Washington, and Tokyo, Japan. This circuit has been in production since February 2016 and is the primary project circuit for production traffic for TransPAC4. This link is fully supported by NSF and is managed in cooperation with Pacific Wave and Pacific Northwest GigaPop (PNWGP). We also support two 10G circuits between Guam and Hong Kong, starting in September 2018. These circuits are used to support a wide variety of science applications and demonstrations of advanced networking technologies. In addition, the TransPAC award supports science engagement, experimental network research, measurement deployments, and security activities. 2. Staffing Changes during Year 4 to staff associated with TransPAC were minimal. Midyear, it was decided that Andrew Lee would shift his focus towards a stronger concentration on engineering issues, including investigating routing issues that have been discovered, understanding the causes of traffic fluctuations over the NSF supported links, and helping to develop additional Grafana dashboards to better understand flow data for TransPAC. We will not be hiring an additional analyst at this time as had been mentioned in previous reports.

Transcript of TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4...

Page 1: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

1

TransPAC4 Award #1450904

Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018

Jennifer M. Schopf, Andrew Lee – Principal Investigators

Summary The  TransPAC  project  supports  circuits  and  services  for  the  use  of  100G  networks  between  the  US  and  Asia,  with  a  focus  on  measurement  and  end  user  support.    Year  4  highlights  include  the  deployment  of  two  additional  10G  circuits  between  Guam  and  Hong  Kong,  the  subsequent  unification  of  several  open  exchanges  in  Hong  Kong,  signing  MOUs  with  three  partners,  support  for  network  experiments  at  the  Sapporo  Snow  Festival  and  SC18,  use  of  NetSage  tools  to  detect  routing  and  performance  anomalies,  and  significant  science  engagement.  

1. TransPAC Overview The  TransPAC  project  supports  circuits  and  network  services  between  the  US  West  Coast  and  Asia.  The  TransPAC-­‐PacWave  100G  Circuit  is  a  100  Gbps  link  between  Seattle,  Washington,  and  Tokyo,  Japan.  This  circuit  has  been  in  production  since  February  2016  and  is  the  primary  project  circuit  for  production  traffic  for  TransPAC4.  This  link  is  fully  supported  by  NSF  and  is  managed  in  cooperation  with  Pacific  Wave  and  Pacific  Northwest  GigaPop  (PNWGP).  We  also  support  two  10G  circuits  between  Guam  and  Hong  Kong,  starting  in  September  2018.    These  circuits  are  used  to  support  a  wide  variety  of  science  applications  and  demonstrations  of  advanced  networking  technologies.  In  addition,  the  TransPAC  award  supports  science  engagement,  experimental  network  research,  measurement  deployments,  and  security  activities.  

2. Staffing Changes  during  Year  4  to  staff  associated  with  TransPAC  were  minimal.  Midyear,  it  was  decided  that  Andrew  Lee  would  shift  his  focus  towards  a  stronger  concentration  on  engineering  issues,  including  investigating  routing  issues  that  have  been  discovered,  understanding  the  causes  of  traffic  fluctuations  over  the  NSF-­‐supported  links,  and  helping  to  develop  additional  Grafana  dashboards  to  better  understand  flow  data  for  TransPAC.  We  will  not  be  hiring  an  additional  analyst  at  this  time  as  had  been  mentioned  in  previous  reports.  

Page 2: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

2

On  October  1,  Doug  Southworth  joined  the  team  to  assist  with  perfSONAR  training  and  science  engagement.  Southworth  has  worked  most  of  his  career  in  tech  related  fields,  and  spent  the  last  10  years  as  a  network  administrator  in  K-­‐12  education  and  the  United  States  Courts.    At  the  end  of  Year  4,  project  staff  included:  ● Jennifer  Schopf,  IN@IU  Director  ● Andrew  Lee,  Network  Analysis  ● Hans  Addleman,  Primary  TransPAC  Network  Engineer  ● Edward  Moynihan,  Science  Engagement  Specialist    ● Scott  Chevalier,  perfSONAR  and  Training  ● Doug  Southworth,  perfSONAR  and  Training  ● Heather  Hubbard,  Project  Support  

 We  do  not  expect  additional  staff  changes  to  take  place  in  Year  5  until  a  project  ramp-­‐down  is  needed.  

3. Conference and Workshop Travel TransPAC  staff  participated  in  various  meetings  to  support  their  role  in  collaborations  in  Asia.  Some  of  these  trips  were  funded  by  sources  other  than  TransPAC.  The  travel  for  the  first  3  quarters  of  the  year,  detailed  in  those  project  reports,  included:  ● Addleman  attended  OIN  23  in  New  Orleans,  LA,  on  December  5-­‐6,  

http://www.oinworkshop.com/.  ● Addleman  attended  the  Data  Transfer  Node/Fiona  Workshop  planning  

meeting  in  San  Diego,  CA,  on  December  17-­‐20.  ● Moynihan  attended  the  Winter  Federation  of  Earth  Science  Information  

Partners  (ESIP)  meeting  in  Bethesda,  MD,  on  January  9-­‐11,  http://www.esipfed.org/meetings/upcoming-­‐meetings/esip-­‐winter-­‐meeting-­‐2018.  

● Schopf  and  Lee  attended  the  Trans  Pacific  Research  and  Education  Network  (TPREN)  workshop  in  Honolulu,  HI,  on  January  20.  

● Schopf  and  Lee  attended  PTC’18  in  Honolulu,  HI,  on  January  21-­‐24,  https://www.ptc.org/ptc18/.  

● Schopf  attended  the  CENIC  Spring  Member  Meeting,  March  6-­‐8,  in  Monterey,  CA,  https://cenic.org/conference.  

● Moynihan  attended  the  Large  Hadron  Collider  Open  Network  Environment  (LHCONE)  meeting  in  Abingdon,  United  Kingdom,  on  March  6-­‐7,  https://indico.cern.ch/event/681168/.  

● Lee  and  Brian  Tierney  attended  APAN45  in  Singapore,  on  March  25-­‐29,  https://apan45.singaren.net/.    

● Schopf,  Lee,  and  Moynihan  attended  Internet2  Global  Summit  in  San  Diego,  CA,  on  May  6-­‐9,  https://meetings.internet2.edu/2018-­‐global-­‐summit/.  

Page 3: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

3

● Schopf,  Lee,  and  Moynihan  attended  TNC18,  Trondheim,  Norway,  June  10-­‐14,  https://tnc18.geant.org/.    

● Addleman  and  Lee  attended  APAN46  in  Auckland,  New  Zealand,  August  6-­‐10,  http://apan46.nz/apan46.    

● Jared  Schlemmer  and  Jeff  Terzino,  members  of  the  GlobalNOC  team  who  provide  engineering  services  for  TransPAC,  installed  equipment  in  Hong  Kong  to  support  the  Guam-­‐Hong  Kong  circuits  on  August  5-­‐8.  

● Addleman  attended  the  NSF  Cyber  Security  Summit  in  Alexandria,  VA,  August  21-­‐23,  https://trustedci.org/2018-­‐nsf-­‐cybersecurity-­‐summit/.    

In  Quarter  4,  travel  included:  ● Moynihan  attended  the  2018  Mekong  Research  Symposium  in  Ho  Chi  Minh  

City,  Vietnam,  September  6-­‐7,  https://www.lowermekong.org/events/lower-­‐mekong-­‐research-­‐symposium,  where  he  moderated  and  presented  in  a  session  on  new  technical  solutions  for  data  collaborations.    

● Lee  and  Moynihan  attended  the  NORDUnet  18  meeting  https://events.nordu.net/display/NDN2018  and  the  GLIF  Americas  and  GLIF  Annual  meetings  https://www.glif.is/meetings/2018,  co-­‐located  in  Helsingor,  Denmark,  September  18-­‐22.  During  NORDUnet  18,  they  met  with  our  TransPAC  partner  Pacific  Wave  to  discuss  peering  arrangements,  migration  of  the  PacWave  switch  from  WIDE  to  KDDI  Otemachi,  and  upcoming  maintenances  of  the  TransPAC-­‐PacWave  100G  circuit.  Moynihan  gave  a  lightning  talk  on  Science  Engagement  at  NORDUnet  18.  Lee  presented  on  routing  issues  during  the  GLIF  Americas  meeting.  

● Schopf  attended  the  Internet2  Technical  Exchange,  Orlando,  FL,  October  14-­‐19,  https://meetings.internet2.edu/2018-­‐technology-­‐exchange.  Schopf  met  with  representatives  from  NSF  and  several  IRNC  partners  to  discuss  project  futures.    This  conference  is  one  of  the  key  coordination  points  for  all  of  the  IN@IU  projects.  

● Schopf  visited  NOAA  in  Boulder,  Colorado,  on  October  22-­‐25,  2018,  to  meet  with  the  NOAA  and  EUMetSat  weather  satellite  groups,  who  are  currently  evaluating  additional  network  support  for  work  between  both  groups  and  Japan  and  India.  Additional  meetings  took  place  to  evaluate  an  extended  perfSONAR  mesh  to  specifically  support  the  weather  satellite  teams.  

● Moynihan  attended  the  LHCONE  meeting  at  Fermilab  in  Chicago,  IL,  October  30-­‐31,  https://indico.cern.ch/event/725706/.  Moynihan  met  with  partners  to  get  updates  on  LHCONE  infrastructure  and  to  provide  updates  on  IN@IU  LHCONE  and  science  engagement  activities.  

● Schopf,  Lee,  Addleman,  Chevalier,  and  Southworth  attended  the  SC18  Conference  in  Dallas,  TX,  November  11-­‐18,  2018  https://sc18.supercomputing.org/.  Schopf  and  Lee  met  up  with  researchers  from  organizations  including  NASA,  the  National  Radio  Astronomy  Observatory  (NRAO),  the  KEK  High  Energy  Accelerator  Research  Program  (Japan),  the  Mozambique  Research  and  Education  Network  (MoRENet),  NOAA,  the  European  Bioinformatics  Institute  (EBI),  NIH,  and  others,  about  supporting  their  project  use  of  TransPAC  resources.  Addleman  was  SCinet  

Page 4: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

4

WAN  Team  Deputy  Chair  and  worked  during  staging,  setup,  and  show.  Chevalier  worked  on  the  SCinet  DevOps  team  for  setup  and  show  with  focus  on  pSConfig  communication  in  nodes  and  display  using  MaDDash.    

On  August  17,  International  Networks  at  Indiana  University  (IN@IU)  celebrated  its  Twentieth  Anniversary.  Several  members  of  the  community  joined  the  current  team  in  Bloomington  for  an  afternoon  reception,  including  Inder  Monge  (ESnet),  Cathrin  Stover  (GEANT),  Kazunori  Konishi  (APAN-­‐JP),  and  Kevin  Thompson  (NSF).  Indiana  University  President  McRobbie,  who  started  the  IN@IU  project  in  1999,  gave  a  keynote  address.  Konishi-­‐san  was  awarded  the  Thomas  Hart  Benton  Mural  Medallion  for  his  long-­‐term  collaboration  with  the  team.  A  press  release  for  the  event  is  available  online  at  https://news.iu.edu/stories/2018/08/iu/releases/17-­‐international-­‐networks-­‐celebrates-­‐20-­‐years.html.  

4. Collaborative Activities 4.A Collaborations with IRNC Partners Collaboration  with  the  IRNC  AMIS  awardee,  NetSage,  is  moving  forward  successfully.  NetSage  is  currently  capturing  ongoing  NetFlow,  and  SNMP  data  for  TransPAC.  Live  network  statistics  from  TransPAC  can  be  viewed  on  the  NetSage  portal  at  https://portal.netsage.global/grafana/dashboard/db/bandwidth-­‐dashboard?refresh=1d&orgId=2.  We  provided  feedback  for  the  flow  data  dashboards  that  were  released  in  October.    Moynihan  also  worked  with  the  NetSage  project  to  populate  the  Science  Registry  with  information  to  tag  by  science  domain,  project,  location,  and  educational  institution  endpoints,  focusing  on  the  TransPAC  Top  Ten  Talkers  list.  We  also  worked  with  the  NetSage  project  to  develop  dashboards  to  aid  in  the  creation  of  the  graphs  and  charts  in  this  report,  and  to  provide  time-­‐constrained  views  of  flow  data  to  enable  our  analysis  work,  as  discussed  in  Section  5.C.      In  Year  5,  we  plan  on  continuing  our  collaboration  with  NetSage  on  the  Science  Registry  and  further  developing  these  dashboards  to  provide  additional  visualizations  of  traffic  patterns  and  to  combine  different  data  sources  into  a  single  dashboard  for  easier  identification  of  performance  anomalies.    At  the  IRNC  PI  meeting  in  May  at  the  Internet2  Global  Summit,  Lee  presented  on  TransPAC  and  Moynihan  presented  his  experience  in  adding  TransPAC  data  to  the  Science  Registry.  Schopf  and  Lee  also  attended  the  IRNC  PI  meeting  held  at  SC18  and  provided  updates  on  TransPAC  as  well  as  our  other  projects.    

Page 5: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

5

We  maintained  a  close  collaboration  with  Pacific  Wave,  not  only  through  our  joint  support  of  the  TransPAC-­‐PacWave  100G  circuit  but  through  bi-­‐weekly  calls  to  coordinate  activities  support  ensure  that  our  services  and  resources  are  complimentary.  This  collaboration  in  part  has  also  led  to  additional  engagement  between  our  group  and  the  Pacific  Research  Platform  (PRP)  and  ESNet.  In  addition,  we  are  collaborating  on  their  pilot  deployment  of  the  Automated  GLIF  Open  Light  Path  Exchange  (AutoGOLE)  using  Network  Services  Interface  (NSI),  discussed  in  Section  7.   In  January,  we  participated  in  the  annual  Trans-­‐Pacific  Research  &  Education  Networking  (TPREN)  workshop  hosted  at  the  University  of  Hawaii,  and  we  continue  to  collaborate  with  PIREN  on  work  with  the  Guam  Open  Exchange  (GOREX),  wider  trans-­‐Pacific  network  connectivity,  and  engagement  in  the  Pacific  Islands.  We  rely  on  this  relationship  to  identify  relevant  Pacific  Island-­‐Asia  research  in  need  of  our  science  engagement  support  and  training.  

We  worked  closely  throughout  the  year  with  the  Universities  of  Guam  and  Hawaii  in  planning  and  executing  our  Guam  to  Hong  Kong  expansion.  GOREX  staff  at  the  Universities  of  Guam  and  Hawaii  were  very  helpful  during  the  procurement  process,  working  with  the  local  Guam  telco  during  the  installation  of  our  circuits,  and  the  installation  of  the  IXIA  tester  we  used  to  verify  clean  operation  of  the  circuits.  In  Year  5,  we  will  continue  work  with  the  GOREX  engineers  and  our  peer  networks  in  Hong  Kong  to  adjust  routing  so  that  data  between  Asia  and  GOREX  participants  flows  directly  across  the  Guam-­‐Hong  Kong  links  rather  than  through  the  mainland  US.  

The  IRNC  NOC  provides  Tier  1  support  services  including  monitoring  the  state  of  the  trans-­‐Pacific  circuits  and  the  equipment  installed  in  Seattle  and  Hong  Kong.  TransPAC  contracts  with  the  IU  GlobalNOC  to  supply  Tier  2  and  Tier  3  services.  4.B Collaborations with Asian Partners We  continue  to  build  valuable  collaborations  with  international  partner  organizations  around  the  world.    In  Year  4,  this  included  signing  MOUs,  participating  in  networking  experiments,  and  several  additional  collaborations.

4.B.1 MOUs  In  Year  4,  we  signed  three  MOUs,  each  emphasizing  the  alignment  of  user  engagement  efforts  with  our  partner  organizations.  Our  goal  is  to  better  understand  the  research  need  for  networking  resources  and  to  identify  practical  areas  where  we  can  support  those  research  projects.    The  MOU  with  the  Joint  University  Computer  Centre  (JUCC)  (Hong  Kong)  was  signed  in  March  at  APAN45.  It  enables  closer  collaboration  based  on  mining  flow  data  to  

Page 6: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

6

identify  universities  in  Hong  Kong  that  are  sharing  data  with  US  researchers,  increased  collaboration  as  part  of  our  Guam-­‐Hong  Kong  circuit  deployment,  as  well  as  cooperation  on  routing  and  peering  issue.      Also  at  APAN45,  we  signed  an  MOU  with  the  Singapore  Advanced  Research  and  Education  Network  (SingAREN)  (Singapore).  The  SingAREN  MOU  likewise  enables  closer  collaboration  for  science  engagement  and  acknowledges  the  role  that  the  TransPAC-­‐PacWave  100G  circuit  serves  backing  up  the  Internet2/SingAREN  100G  that  runs  between  Singapore  and  Los  Angeles.      At  TNC18,  we  signed  an  MOU  with  the  China  Education  and  Research  Network  (CERNET)  aimed  at  improving  communications  between  our  networks,  increasing  peering,  additional  science  engagement  activities,  and  promoting  further  collaboration  among  the  exchange  points  in  Hong  Kong.    Following  the  signing  of  the  MOUs,  we  worked  with  JUCC  and  SingAREN  to  set  up  teams  for  ongoing  dialogue,  shared  existing  knowledge  of  research  collaborations,  and  set  goals  for  our  initial  outreach  to  international  research  collaborations.  We  also  began  looking  more  deeply  into  the  available  flow  data  to  help  identify  additional  researchers  for  potential  outreach  and  support  activities,  detailed  in  Section  4.C.4.    In  Year  5,  we  will  continue  our  collaborative  engagement  work  as  outlined  in  the  MOUs.  We  plan  to  expand  on  our  previous  work  by  focusing  on  potential  engagement  opportunities  that  arise  out  of  specific  flow  analysis  cases  or  are  tied  to  specific  science  disciplines.  We  also  are  planning  to  re-­‐engage  CERNET  to  discuss  opportunities  for  supporting  Bioinformatics  and  other  US-­‐China  collaborations,  see  Section  4.C.4.    Additionally,  we  will  have  further  discussions  with  Academica  Sinica  Grid  Computing  Centre  (ASGC)  (Taiwan)  to  potentially  sign  an  MOU  to  codify  our  ongoing  collaborative  work  with  their  team.  

4.B.2 Network Experiments  During  the  annual  Sapporo  Snow  Festival  in  early  February  2018,  we  supported  a  network  demonstration  conducted  by  Japan’s  National  Institute  of  Information  and  Communication  Technology  (NICT)  in  partnership  with  Pacific  Wave  and  SingAREN  involving  8k  uncompressed  videos.  The  Sapporo  Snow  festival  is  one  of  Japan’s  largest  winter  events,  and  attracts  over  2  million  people  from  Japan  and  abroad  every  year.  An  8k  camera  and  monitor  were  set  up  at  the  festival  in  Sapporo,  Japan,  with  a  matching  set  up  in  Singapore.  The  video  was  transmitted  between  the  sites  using  IP  multicast  on  multipath,  where  one  path  went  directly  between  Singapore  and  Japan  directly  and  the  other  path  went  via  the  US.  This  allowed  the  experiment  to  load  balance  the  traffic  between  the  paths,  even  though  one  was  significantly  longer  than  the  other.  In  addition  to  testing  the  video  and  network  technologies,  the  demonstration  made  it  possible  to  share  the  festival  and  reach  a  broader  international  audience.    

Page 7: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

7

In  November,  the  TransPAC-­‐PacWave  100G  circuit  was  used  by  two  separate  demonstrations  for  SC18  that  increased  the  traffic  on  the  link  for  the  week  to  over  80  Gbps,  as  shown  in  Figures  1  and  2.  To  make  space  for  the  experimental  traffic,  production  traffic  was  rerouted  to  the  backup  connection.      

Figure 1: Average utilization on the TransPAC-PacWave 100G circuit during the week of SC18.

Figure 2: Maximum utilization on the TransPAC-PacWave 100G circuit during the week of SC18. The values above the 100G maximum for the circuit are due to statistical anomalies that can be introduced in the polling data due to the delay in the response to a query, causing a polling interval to be slightly longer than expected followed by a slightly shorter interval. For example, if a circuit running at 100Gbps is polled 0.07 seconds later than expected, the first interval will report 107Gbps and the second interval will report 93Gbps.

The  first  experiment  was  a  network  visualization  demonstration  where  production  SC18  traffic,  as  well  as  test  traffic  generated  across  the  TransPAC-PacWave  100G  circuit  using  an  IXIA  test  set,  was  fed  into  an  ALAXALA  router.  Using  proprietary  technology,  the  data  was  visualized  in  real  time.    Traffic  was  transmitted  from  an  IXIA  tester  at  the  SC18  venue  out  to  Seattle,  across  the  TransPAC-­‐PacWave  100G  to  a  loop  in  Tokyo  that  sent  it  back  to  the  venue.  They  also  received  a  10G  feed  from  the  SC18  commodity  internet  connection  that  provided  real  user  data  through  a  tap  provided  by  SCinet.  Using  processors  built  into  the  router,  they  classified  both  the  100G  and  10G  traffic  based  on  the  unsampled  IP  header  information  at  line  rate  for  source  and  destination  country.  The  country  to  country  statistics  were  then  queried  by  a  server  using  Simple  Network  Monitoring  Protocol  (SNMP)  counters  and  the  NIRVANA-­‐Kai  program  developed  by  the  NICT.  The  country-­‐to-­‐country  transfer  data  was  visualized  in  real  time.    

Page 8: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

8

 A  second  experiment  also  used  the  ALAXALA  router  to  dynamically  reprovision  network  and  virtual  machine  resources  around  the  globe  to  control  an  autonomous  vehicle.  The  resources  were  allocated  dynamically  to  reduce  the  latency  between  the  car  and  its  network-­‐based  controller.  This  allowed  the  car  and  controller  to  react  quickly  to  real  time  events.    The  third  experiment  at  SC18  was  by  Professor  Hiraki  of  the  University  of  Tokyo,  where  he  was  testing  a  new  file  transfer  protocol  that  was  designed  to  have  very  high  performance  over  long  distances.  His  goal  is  to  be  able  to  support  sensitive  data  applications,  such  as  medical  research,  with  an  encrypted  high  performance  transfer  tool.  The  experiment  showed  that  it  was  possible  to  transfer  data  that  was  fully  encrypted  at  high  speeds  and  without    high-­‐end  server  hardware.  The  demo  was  able  to  achieve  75  Gbps  encrypted  disk-­‐to-­‐disk  data  transfers.  In  Year  5  they  plan  to  try  to  extend  this  experiment  to  involve  four  100G  connections.    We  fully  expect  to  continue  to  support  demos  similar  to  these  in  Year  5  at  venues  such  as  TNC19  and  SC19.  When  we  get  requirements  from  our  partners  we  will  engage  with  them,  gather  requirements,  and  allocate  resources  as  is  reasonable.  

4.B.3 Additional Collaborative Activities  International  Networks  at  Indiana  University  became  a  sponsor  of  the  Global  Lambda  Integrated  Facility  (GLIF)  (https://www.glif.is/).  We  have  been  participants  in  GLIF  meetings  and  activities  for  many  years,  and  this  sponsorship  shows  our  commitment  to  global  R&E  network  research  and  collaboration.  Similarly,  we  participated  in  the  Global  Network  Architecture  Technical  working  group  (GNA-­‐Tech)  to  develop  documents  regarding  high  level  network  architecture,  exchange  point  operations,  and  measurement  issues.  At  the  GLIF  meeting  in  Denmark  in  September,  a  community  discussion  began  to  evaluate  the  pros  and  cons  of  combining  the  technical  activities  of  the  GNA  and  GLIF.  Our  team  will  continue  to  participate  in  these  discussions  as  they  continue  into  Year  5.    Lee  serves  as  the  co-­‐chair  of  the  APAN  Backbone  Committee  (BBC),  which  provides  a  forum  for  NRENs  in  the  region  to  discuss  upcoming  deployments,  exchange  points,  and  routing  issues.  We  are  also  working  with  the  APAN  board  to  revamp  the  BBC  to  broaden  its  community  appeal  and  better  synchronize  its  activities  with  the  Network  Engineering  Working  group  and  Asi@Connect  (formerly  TEIN)  community.    In  May,  a  proposal  to  Asi@Connect  project  was  funded  to  conduct  a  pair  of  perfSONAR  training  workshops.  These  workshops  will  expand  our  training  efforts  to  include  participants  from  Lower  Middle  Income  Countries  that  have  not  previously  had  access  to  dedicated  perfSONAR  training.  These  workshops  are  important  to  US  researchers  collaborating  in  these  regions,  as  we  will  have  better  information  about  the  state  of  the  networks  and  will  be  able  to  troubleshoot  both  network  and  file  transfer  issues  more  effectively.    The  funding  from  this  program  is  supporting  in-­‐

Page 9: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

9

region  participants  to  travel  to  the  workshop  sites,  local  workshop  expenses,  and  a  small  amount  of  equipment.  This  work  is  detailed  in  Section  6.D.2.    As  part  of  the  deployment  of  the  Guam-­‐Hong  Kong  circuits,  we  worked  with  several  Asian  collaborators  to  not  only  set  up  proper  peering  relationships  but  to  establish  better  linkages  between  the  various  open  exchanges  present  at  iAdvantage’s  MEGA-­‐i  data  facility  in  Hong  Kong.  This  is  detailed  in  Section  5.A.    In  Year  4,  we  also  evaluated  the  status  of  our  outstanding  collaborative  items  as  outlined  in  the  proposal.  This  included  re-­‐evaluating  our  efforts  to  support  US  branch  campuses  in  Asia.  At  the  Internet2  Global  Summit  in  May,  we  met  with  staff  from  several  US  universities  with  campuses  in  Asia,  Internet2  staff,  and  representatives  from  Asian  NRENs  who  were  involved  with  US  branch  campuses  in  Asia  to  continue  discussions  on  the  need  for  support  and  areas  of  collaboration.  We  discussed  the  potential  for  new  perfSONAR  deployments,  for  liaising  with  NRENs  on  behalf  of  US  branch  campuses,  and  for  hosting  workshops.  However,  similar  to  our  previous  attempts,  these  discussions  did  not  yield  useful  results  or  identify  mutually  beneficial  ways  forward.  Because  these  efforts  were  once  again  unsuccessful,  we  have  decided  that  dedicated  support  for  Asian  branch  campuses  is  not  needed  at  this  time.  We  will  continue  to  monitor  the  environment  and  to  support  transnational  education  where  appropriate,  but  continuing  to  pursue  these  efforts  is  not  an  efficient  use  of  project  resources.      In  Quarter  4,  we  learned  about  three  100G  circuit  projects  being  developed  to  support  direct  connectivity    between  Asia  and  Europe.  The  first  is  being  overseen  by  a  collaboration  made  up  of  GEANT  (EU),  SURFnet  (Netherlands),  NORDUnet  (Nordic),  AARNet  (Australia),  SingAREN  (Singapore),  and  TEIN*CC  (Asia).    It  includes  a  15  year  IRU  for  capacity  that  will  connect  Singapore  to  London.  The  second  circuit  will  be  supported  by  NII  (Japan),  and  will  run  between  Tokyo  and  Amsterdam.  A  potential  third  circuit  will  be  supported  by  the  Academia  Sinica  (Taiwan)  and  will  connect  Taipei,  Singapore,  and  Amsterdam  at  100G.  All  of  these  circuits  are  in  the  process  of  being  procured  and  will  likely  be  operational  in  Spring  2019.  As  the  circuits  become  operational  in  Year  5,  we  will  continue  to  work  with  our  partners  to  determine  potential  areas  of  collaboration.   4.C Science Engagement 4.C.1 High Energy Physics In  March,  we  followed  up  on  the  plan  for  better  connectivity  for  LHCONE    with  Academia  Sinica  Grid  Computing  Centre  (ASGC)  (Taiwan),  NICT  (Japan),  and  ESNet  (US).  An  agreement  was  reached  to  extend  the  LHCONE  overlay  network  across  the  TransPAC-­‐PacWave  100G  circuit  and  down  to  Hong  Kong.  The  connectivity  was  implemented  in  Quarter  2.  With  the  new  TransPAC  capacity  between  Guam  and  Hong  Kong,  discussions  have  started  to  extend  the  LHCONE  to  directly  connect  in  Hong  Kong.  We  expect  actions  to  take  place  during  Year  5.    

Page 10: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

10

In  Year  4,  the  WLCG  Management  Board  reacted  positively  to  a  proposal  that  allows  the  Belle-­‐II  experiment  in  Japan  to  use  the  LHCOPN  and  LHCONE  networks  to  transfer  data.  This  will  allow  US  researchers  more  efficient  access  to  data  generated  by  Belle-­‐II.  

4.C.2 Geoscience/Climate We  sustained  our  efforts  throughout  Year  4  to  target  the  US  geoscience  community,  specifically  through  attendance  at  the  Federation  of  Earth  Science  Information  Partners  (ESIP)  winter  meeting,  where  we  worked  to  identify  ways  TransPAC  can  support  geoscience  researchers  with  large  data  transfer  needs.  At  that  meeting,  we  also  met  with  NASA  representatives  to  discuss  current  network  use  and  to  better  understand  future  network  requirements  for  major  international  atmospheric  science  applications  that  utilize  TransPAC  resources,  including  the  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  ,  the  Suomi  National  Polar  Orbiting  satellite  (SNPP,)  and  the  Visible  Infrared  Imaging  Radiometer  Suite  (VIIRS).  In  October,  we  also  met  with  representatives  from  NOAA  and  EUMetSat  to  discuss  connectivity  related  to  weather  data.  We  are  planning  to  attend  AGU  in  December  to  further  extend  out  collaborations  with  this  community.    We  coordinated  with  Dr.  Tho  Nguyen  from  the  University  of  Virginia  (UVA)  to  plan  the  2018  Lower  Mekong  Basin  (LMB)  Research  Symposium  that  took  place  September  6-­‐7  in  Ho  Chi  Minh  City,  Vietnam.  This  workshop  explored  obstacles  to  international  collaboration  and  data  sharing  and  provided  a  venue  for  discussing  future  high-­‐impact  collaborations  among  LMB  researchers,  institutions,  and  global  partners.  Prior  to  the  workshop,  we  shared  results  from  IN@IU’s  2014  Lower  Mekong  workshop  and  worked  with  UVA  to  leverage  the  lessons  learned  and  best  practices.  We  also  identified  US  scientists  with  collaborations  in  the  Lower  Mekong  region.  We  partnered  with  UVA  to  help  fund  participation  for  Dr.  Soe  Myint,  Professor  of  Geological  Science  and  Urban  Planning  at  Arizona  State  University,  and  Dr.  Andrew  Grimshaw,  Professor  of  Computer  Science  at  UVA.  This  funding  allowed  each  participant  to  attend  the  workshop  and  present  on  their  research  and  potential  data  sharing  solutions.      Moynihan  attended  the  workshop,  chaired  a  session  on  data  transfer,  and  presented  on  how  R&E  networking  infrastructure  helps  support  international  science  collaborations.  At  the  workshop,  he  met  with  members  of  PRAGMA,  USGS,  and  the  US  State  Department  to  discuss  sharing  community  resources  and  coordinating  future  projects  in  support  of  US  research  in  the  region.  Moynihan  also  visited  Can  Tho  University  and  met  with  members  of  the  Delta  Research  and  Global  Observation  Network  (DRAGON),  an  institute  working  to  build  a  collaborative  ecosystem  for  scientists  from  Vietnam  and  the  US  to  share  data  on  water  and  water-­‐related  topics.  On  the  request  of  UVA,  following  the  workshop,  we  connected  with  engineers  at  Thoylui  University  in  Hanoi  to  better  understand  the  connectivity  between  UVA  and  the  Vietnamese  Research  and  Education  Network  (VINAREN)  to  see  if  we  could  help  improve  performance.  These  discussions  will  continue  into  Year  5.    

Page 11: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

11

4.C.3 Astronomy  We  concluded  an  engagement  with  the  Hawaii  Pan-­‐STARRS  group  and  the  Space  Telescope  Science  Institute  at  Johns  Hopkins  to  support  large  scale  data  movement,  which  resulted  in  a  nearly  3  times  speed-­‐up  of  their  transfers.  This  work  was  supported  jointly  between  IN@IU  and  the  IRNC  NOC  Performance  Engagement  Team  (PET).  Based  on  our  findings,  the  Pacific  Islands  Research  and  Education  Network  (PIREN)  was  able  to  secure  additional  funding  from  the  NSF  IRNC  program  to  upgrade  parts  of  their  network  and  deploy  additional  measurement  tools.  We  are  staying  engaged  during  the  build  out  and  continue  to  provide  advice  and  assistance.    As  part  of  our  performance  anomaly  detection  work,  we  also  observed  several  large  transfers  over  the  TransPAC-­‐PacWave  100G  circuit  related  to  astronomy  traffic  between  Europe  and  Asia.  There  is  a  VLBI  correlator  located  at  NICT’s  Kashima  Space  Technology  Center  (http://ksrc.nict.go.jp/about_e.html)  in  Kashima,  Japan.  VLBI  correlators  are  servers  responsible  for  getting  data  feeds  from  radio  telescopes  that  are  geographically  distant  and  are  aimed  at  the  same  celestial  object.  The  correlator  combines  the  incoming  data  to  produce  a  result.        From  March  to  June,  the  source  of  the  data  was  primarily  the  Onsala  Space  Observatory,  a  radio  telescope  facility  in  Sweden.  From  June  through  the  end  of  the  year,  large  spikes  were  observed  for  data  coming  from  the  Istituto  di  Radioastronomia  in  Italy,  with  the  distinctive  pattern  of  usage  as  shown  in  Figure  3.  These  data  transfers  were  discussed  with  our  network  partners  at  GEANT  and  NICT  to  ensure  the  performance  was  meeting  expectations.      

Figure 3: Examples of the recurring data transfers that support VLBI astronomy research between Europe and Japan October 5 through November 7.

4.C.4 Other Science Engagement  Jointly  with  ESnet  engagement  staff,  we  began  planning  a  Science  Engagement  Deep  Dive  workshop  at  the  University  of  Guam.  This  workshop  will  offer  hands-­‐on  training  with  current  research  technologies  (Science  DMZ,  DTNs,  perfSONAR)  as  well  as  interactive,  small  group  science  engagement  designed  to  understand  and  improve  researcher  data  movement  and  workflow.  Targeted  attendees  include  water  and  energy  researchers  from  the  University  of  Guam  and  their  collaborators,  

Page 12: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

12

astronomy  researchers  from  the  University  of  Hawaii,  and  researchers  from  nearby  Pacific  Islands  with  data  transfer  needs.  We  had  originally  targeted  this  for    late  August,  however  after  surveying  Guam  EPSCOR  researchers  and  other  potential  attendees  in  the  Pacific  region,  we  determined  that  more  participation  would  be  likely  if  we  moved  the  workshop  to  a  later  date.  We  are  currently  waiting  for  the  University  of  Guam  to  determine  the  best  date  for  this  to  continue.    As  a  result  of  the  MOU  with  JUCC,  we  updated  and  shared  research  project  databases  to  begin  identifying  researchers  working  jointly  between  the  US  and  Hong  Kong.  This  included  work  by  Yi-­‐Kuen  Lee,  Hong  Kong  University  of  Science  and  Technology,  who  has  data-­‐intensive  IOT  collaborations  with  MIT,  and  Dr.  Tommy  Tsan-­‐Yuk  Lam,  The  University  of  Hong  Kong,  who  frequently  downloads  data  from  Argonne  National  Laboratory  and  the  University  of  Chicago.  We  held  initial  discussions  with  each  of  these  collaborations  and  continue  working  with  JUCC  to  try  to  understand  performance  between  these  sites.    At  SC18,  we  reached  out  to  many  of  the  computing  centers  that  transfer  data  using  TransPAC  circuits,  including  NASA,  the  National  Radio  Astronomy  Observatory  (NRAO),  the  KEK  High  Energy  Accelerator  Research  Program  (Japan),  the  Mozambique  Research  and  Education  Network  (MoRENet),  NOAA,  the  European  Bioinformatics  Institute  (EBI),  NIH,  and  others.  We  agreed  to  follow-­‐up  on  these  interactions  with  the  hope  that  continued  dialogue  will  lead  to  a  better  understanding  of  current  and  future  data  transfer  requirements.      Our  researcher  engagement  efforts  in  Year  4  included  sending  outreach  emails  to  15  US-­‐funded  researchers  to  provide  more  information  about  the  TransPAC  project,  assess  if  these  projects  have  international  data  transfer  needs,  and  offer  assistance  where  necessary.  These  efforts  focused  on  reaching  out  to  researchers  in  regions  supported  by  our  new  MOU  partnerships  (Hong  Kong,  Singapore,  and  China)  and  to  NRENs  of  least  developed  countries  in  the  APAN  region  to  help  identify  potential  projects  in  need  of  support.    We  continued  our  participation  in  several  international  science  engagement  and  coordination  projects.  Moynihan  is  on  the  Steering  Committee  of  GÉANT’s  Task  Force  for  Researcher  Engagement  Development  (TF-­‐RED)  and  participates  in  the  Special  Interest  Group  for  Transnational  Education.  We  also  collaborated  and  shared  best  practices  with  the  Pacific  Research  Platform,  PRAGMA,  the  perfSONAR  consortium,  and  the  Joint  Engineering  Team  (JET).    In  addition  to  continuing  our  active  Year  4  engagements,  in  Year  5  we  are  also  planning  to  develop  a  more  targeted  approach  to  our  science  engagement  efforts.  This  approach  will  provide  greater  focus  to  our  outreach  efforts  and  help  us  become  more  integrated  into  the  individual  science  communities  we  support.  This  approach  will  also  help  us  answer  specific  questions  about  how  different  science  communities  use  TransPAC  resources  and  will  provide  greater  insight  into  how  effective  our  outreach  and  engagement  efforts  are  in  enhancing  science  outcomes  

Page 13: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

13

5. Circuit Deployments and Technical Updates

5.A Guam-Hong Kong Circuit Procurement The  Guam  Open  Exchange  (GOREX)  announced  they  were  officially  operational  on  January  18,  2018,  including  a  100G  circuit  connecting  GOREX  to  the  University  of  Hawaii  and  onward  to  Pacific  Wave  in  Los  Angeles.  At  the  January  TPRE  meeting,  the  most  urgent  missing  path  was  identified  as  the  link  between  Guam  and  Hong  Kong,  so  it  was  decided  this  would  be  the  best  path  for  a  second  TransPAC  circuit.  We  selected  iAdvantage’s  MEGA-­‐i  data  facility  in  Hong  Kong  as  the  location  on  the  Asian  end  in  which  to  locate  our  equipment.  This  is  the  same  facility  that  houses  the  Hong  Kong  Internet  eXchange  Research  and  Education  node  (HKIX-­‐RE),  the  Hong  Kong  Open  eXchange  (HKOX),  and  NICT  router  that  terminates  the  100G  Singapore-­‐Hong  Kong-­‐Tokyo  circuit  that  is  part  of  the  Asia  Pacific  Ring,  which  enables  us  to  connect  easily  to  all  of  them.      In  February,  we  published  a  Request  For  Proposals  (RFP)  for  circuits  with  one  end  point  in  either  Guam  or  Hawaii  and  the  other  in  Hong  Kong.  The  process  concluded  in  May  and,  based  on  the  pricing  that  we  received,  we  opted  to  award  two  separate  contracts  each  for  a  10G  circuit.  Telstra  was  contracted  for  a  10G  circuit  using  the  Australia-­‐Japan  Cable  (AJC)  north  to  Japan  and  then  south  to  Hong  Kong  on  the  Flag  telecom  North  Asia  Loop  (FNAL)  system,  which  became  operational  on  August  16.  AT&T  was  contracted  for  a  10G  circuit  using  the  Asia-­‐America  Gateway  (AAG)  system,  which  became  operational  on  September  12.  The  AT&T  circuit  has  a  slightly  shorter  latency,  but  the  Telstra  circuit  historically  has  been  more  resilient.      On  August  9,  our  engineers  completed  the  installation  of  our  equipment  in  Hong  Kong.  They  deployed  an  Arista  7280R  switch,  perfSONAR  server,  file  transfer  server,  and  other  supporting  equipment.  The  Arista  switch  was  chosen  because  it  had  the  most  effective  power  profile  and  the  most  capable  buffering/forwarding  for  a  switch  in  this  class.  Physical  connections  to  the  HKIX-­‐RE,  HKOX,  and  the  NICT  router  were  completed.  In  this  way,  we  will  be  able  to  assist  the  Asian  community  in  making  a  clustered  open  exchange  point,  combining  all  of  these  efforts,  to  enable  better  peering,  routing,  and  higher  speed  traffic  through  the  region.    Once  the  circuits  were  put  into  production,  we  established  peering  relationships  with  networks  in  Asia  and  North  America.  The  University  of  Hawaii/PIREN  extended  connectivity  for  VLANs  put  in  place  for  these  circuits  over  their  100G  circuit  from  Guam  to  Pacific  Wave  in  Los  Angeles  via  Hawaii.  This  enabled  direct  peerings  between  US  R&E  networks  and  our  router  in  Hong  Kong,  to  better  control  the  traffic  levels.  Our  North  American  peerings  established  during  Quarter  4  included  Internet2,  the  Universities  of  Guam  and  Hawaii,  and  ESNet.  Asian  peerings  included  TEIN-­‐HK  and  the  Hong  Kong  Academic  Research  and  Education  Network  (HARNET).  Additional  Asian  peerings  that  we  are  working  toward  establishing  in  the  next  quarter  include  Preginet/ASTI  (Philippines),  Academia  Sinica  (Taiwan),  

Page 14: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

14

HKIX,  KISTI  (Korea),  and  CERNET  (China)  via  a  new  physical  connection  to  the  CERNET  GXP  in  Hong  Kong.  

5.B Technical Updates for the TransPAC-PacWave 100G Circuit A  backup  peering  for  the  TransPAC-­‐PacWave  100G  circuit  was  put  in  place  for  APAN  across  the  SINET  100G  link  during  February.  SINET  did  not  request  a  reciprocal  backup.  In  April,  we  established  a  JGN-­‐ESnet  peering  over  to  better  support  LHCONE  and  the  high  energy  physics  community.  We  also  established  a  new  peering  with  REANNZ,  the  New  Zealand  NREN,  across  Pacific  Wave.    In  Year  4  we  also  worked  with  Pacific  Wave  as  part  of  their  AutoGOLE  deployment  for  self  provisioning  between  the  US  and  Asia.  This  is  detailed  in  Section  7.    The  TransPAC-­‐PacWave  100G  circuit  was  very  stable  during  Project  Year  4.  Please  see  Section  6.E  for  uptime  statistics.  One  of  the  only  times  the  circuit  entered  a  degraded  condition  was  in  August.  The  performance  was  impacted  but  not  to  the  point  of  an  outage,  so  no  alarms  or  alerts  were  triggered.  On  August  5,  the  Medical  Working  Group  at  APAN46  was  setting  up  a  demo,  noticed  poor  performance  over  the  circuit,  and  contacted  the  APAN-­‐JP  NOC.  The  APAN-­‐JP  NOC  worked  directly  with  Addleman  and  Lee  to  resolve  the  issue.  Peering  with  APAN-­‐JP  (AS  7660)  was  turned  off  to  force  traffic  onto  our  preconfigured  backup  path,  and  a  ticket  was  opened  with  Pacific  Northwest  Gigapop  (PNWG)  who  contacted  TATA.  TATA  reset  a  card  in  their  optical  system  and  restored  service.  This  was  tested  and  confirmed  and  the  BGP  peering  was  restored.    In  October,  a  server  was  ordered  that  would  be  deployed  to  serve  as  a  file  transfer  testing  server  and  temporary  archival  storage  to  be  located  in  our  point  of  presence  in  Seattle.  The  hardware  arrived  in  November,  but  due  to  the  proximity  to  the  Supercomputing  conference,  deployment  will  be  delayed  until  next  quarter.  This  equipment  will  enable  temporary  data  storage  on  a  well-­‐connected  and  tuned  host  to  increase  the  efficiency  of  long  distance  file  transfers,  similar  to  the  server  we  deployed  in  Hong  Kong.  In  Year  5,  we  plan  to  use  these  servers  as  part  of  the  “Data  Super  Highway”  supported  by  the  Pacific  Research  Platform  (PRP),  and  as  local  caches  and  archive  nodes  for  large-­‐scale  collaborative  science  project  to  speed  up  their  data  transfers.      In  Quarter  4,  we  began  tracking  three  new  projects  that  together  will  create  a  100G  ring  between  the  Asia-­‐Pacific  and  Europe  (See  Section  4.A.3).  In  Year  5,  we  are  planning  to  work  with  these  collaborations  to  make  sure  that  traffic  routed  between  Europe  and  Asia  is  handled  appropriately.  This  may  result  in  a  decrease  in  the  load  on  the  TransPAC-­‐PacWave  100G  circuit,  as  traffic  that  is  currently  sent  between  Europe  and  Asia  via  the  US  may  be  routed  instead  on  one  of  these  more  direct  circuits.  

Page 15: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

15

5.C Network Analysis At  the  end  of  2017,  we  developed  a  map  based  on  analysis  of  flow  data  for  the  TransPAC-­‐PacWave  100G  circuit  to  visualize  the  countries  around  the  world  that  were  sources  and/or  destinations  of  traffic.  Our  initial  research  showed  that  in  2017,  163  countries  (84%  of  the  world)  sent  or  received  data  over  the  circuit,  as  shown  in  Figure  4.  

Figure 4: World map showing the connectivity for TransPAC in 2017 and the 163 countries that are end points for that traffic.

5.C.1 Routing Anomalies As  part  of  our  analysis  work  for  TransPAC,  we  have  found  a  number  of  potential  routing  anomalies  related  to  the  traffic  being  carried.  Many  of  these  reflect  historical  routing  decisions  that  have  not  been  updated,  and  in  part  came  to  light  when  we  visualized  the  map  shown  in  Figure  4.      Lee  and  Moynihan  presented  initial  work  describing  some  of  the  TransPAC  and  NEAAR  routing  anomalies  at  TNC18,  along  with  a  call  to  the  community  to  address  some  of  these  problems.  One  example  included  large  data  transfers  from  a  M-­‐Root  DNS  root  server  in  Japan  being  accessed  by  groups  in  South  Africa.  It  was  unclear  why  this  server  was  being  used  instead  of  the  available  instances  of  that  root  server  that  are  available  in  Europe.  Following  discussions  at  TNC18  with  South  African  National  Research  Network  (SANReN),  we  are  no  longer  seeing  this  issue.    We  believe  more  of  these  issues  can  be  corrected  if  network  operators  become  aware  of  them  and  if  there  is  an  appropriate  venue  for  discussion.  Going  forward  we  will  continue  to  develop  our  tools,    research,  and  advocate  for  a  broad  and  open  forum  for  discussion  on  this  topic.    As  we  have  deployed  our  equipment  in  Hong  Kong  and  turned  up  new  peerings,  we  worked  with  our  network  engineers  in  the  GlobalNOC  to  fully  document  our  routing  policy  as  it  relates  to  the  TransPAC  routers  in  Seattle  and  Hong  Kong  and  the  

Page 16: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

16

bilateral  peerings  that  are  being  established.  The  defined  policy  now  includes  the  following  general  guidelines:  ● General  Routing  safety  policies  should  be  applied.  

○ Do  not  advertise  or  accept  private  (RFC  1918)  IP  addresses.  ○ Do  not  accept  or  advertise  longer  than  a  /24  of  IP  space.  ○ Do  not  advertise  or  accept  IP  addresses  that  are  reserved  or  

unassigned.  ● Label  routes  with  identifiers  to  track  the  source  of  routes  (US,  Europe,  Africa,  

Asia),  and  document  those  identifiers  used  on  the  TransPAC  web  site.  ● IPv6  policy  should  match  IPv4  policy.  ● Multicast  is  enabled  as  per  current  community  practice.  ● Jumbo  frames  should  be  enabled  wherever  possible.  

 TransPAC  specific  policies:  ● Routes  from  Asia  should  be  advertised  to  all  North  American  peers.  ● Routes  from  the  North  America  should  be  advertised  to  all  Asian  peers.  ● North  American  routes  should  not  be  advertised  to  North  American  peers.  ● By  default,  routes  from  Asian  should  not  be  advertised  to  Asian  peers.  There  

maybe  be  exceptions  to  improve  connectivity  in  Southeast  Asia,  for  example  if  we  discover  traffic  that  is  being  routed  to  the  US  and  then  back  to  Asia.  

● TransPAC  also  peers  with  AARNet  and  REANNZ  across  the  Pacific  Wave  fabric.  These  routes  should  be  advertised  both  to  North  American  and  Asian  networks.    

5.C.2 Performance Anomalies Separate  from  the  work  on  routing  anomalies,  we  also  began  to  identify  instances  of  unusual,  increased  utilization  on  the  TransPAC-­‐PacWave  circuit.  Such  traffic  anomalies  often  indicate  a  large  data  transfer  on  behalf  of  a  particular  project.  We  are  working  with  the  NetSage  project  to  create  a  dashboard  to  allow  us  to  pick  out  interesting  traffic  patterns  as  well  as  automatically  identifying  changes  in  performance  behavior  on  the  circuit.  One  examples  of  this  is  the  VLBI  data  transfer,  discussed  in  Section  4.C.3.  When  interesting  anomalies  are  identified,  we  will  work  with  NetSage  to  make  sure  they  are  properly  documented  in  the  Science  Registry  and  will  engage  with  our  NREN  partners  to  reach  out  to  the  scientists  to  follow  up  on  any  network  performance  issues.  

6. Circuit Status and Performance For  the  TransPAC-­‐PacWave  100G  circuit,  we  currently  collect  sampled  flow  data,  SNMP  data,  and  perfSONAR  data  for  this  circuit.  Starting  in  September,  we  started  to  collect  sampled  flow  data,  SNMP  data,  and  perfSONAR  data  for  the  two  10G  circuits  between  Guam  and  Hong  Kong.  

6.A. Traffic Graphs Figures  5  and  6  show  the  traffic  on  the  TransPAC-­‐PacWave  100G  Circuit  during  the  period  of  December  1,  2017  to  November  30,  2018.  The  largest,  continued  variation  

Page 17: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

17

over  the  year  was  caused  by  traffic  being  rerouted  to  this  circuit  from  the  Internet2-­‐SingAREN  100G  circuit  between  Los  Angeles  to  Singapore  when  it  experienced  outages.  In  mid-­‐November,  that  circuit  was  re-­‐engineered  and  stabilized,  so  the  outages  are  not  expected  to  continue  into  the  future.      The  gap  in  the  graph  around  April  29  was  caused  by  a  configuration  error  on  the  Pacific  Wave  switch  in  Seattle  that  made  it  unreachable  by  our  monitoring  systems  for  a  short  time.  Actual  traffic  levels  were  not  impacted.      Our  analysis  project  for  Year  4  identified  several  performance  anomalies  over  the  year.  For  example,  the  large  spike  in  traffic  in  February  is  related  to  HDTV  streaming  of  the  annual  Sapporo  snow  festival  from  Japan  to  the  US  and  Singapore,  discussed  in  Section  4.B.  The  dip  in  the  graphs  on  August  3  reflects  network  outage  during  the  APAN45  meeting  that  is  discussed  in  Section  5.B.  The  large  spike  in  November  reflects  usage  during  SC18,  discussed  in  Section  4.B.  Additional  spikes  in  March  to  June  and  June  to  November  were  due  to  the  VLBI  radio  telescope  traffic  discussed  in  Section  4.C.3.    

Figure 5: TransPAC-PacWave 100G Circuit traffic using smoothed daily averages.

Figure 6: TransPAC-PacWave 100G Circuit traffic using maximum daily averages.

 Figures  7  and  8  show  the  traffic  on  the  two  10G  connections  between  Guam  and  Hong  Kong.  These  graphs  start  in  September  when  the  circuits  began  to  carry    

Page 18: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

18

production  traffic.  A  stair  step  pattern  is  evident  as  more  peers  were  enabled  throughout  Quarter  4,  drawing  more  traffic  across  the  circuit.  Peering  with  the  Universities  of  Guam  and  Hawaii  was  enabled  September  19th.  Peering  with  HARNet  was  enabled  via  HKOX  on  September  24th.  The  peering  with  ESNet  was  enabled  October  5th.  The  Internet2  peering  was  enabled  October  23rd.  The  peering  with  TEIN-­‐HK  was  enabled  November  14th.    

Figure 7: Traffic using smoothed daily averaged for the two TransPAC Guam-Hong Kong 10G circuits.

Figure 8: Traffic using maximum daily averages for the two TransPAC Guam-Hong Kong 10G circuits.

Table  1  shows  that  more  than  3  petabytes  of  data  were  transferred  over  the  TransPAC-­‐PacWave  and  Guam-­‐Hong  Kong  links  during  Quarter  4.  Table  2  shows  full  volume  of  traffic  transferred  over  the  TransPAC-­‐PacWave  and  Guam-­‐Hong  Kong  links  during  Year  4.  The  elevated  traffic  levels  in  Quarters  2  and  4  are  partially  due  to  the  VLBI  data  transfers  discussed  in  Section  4.B.3.  In  addition,  there  is  increased  traffic  in  November  due  to  the  SC18  experiments  discussed  in  Section  4.A.2.  Over  7  Petabytes  of  data  has  been  transferred  over  the  links  during  the  year.    

Page 19: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

19

Table 1: Traffic in terabytes transferred over TransPAC links, September 1, 2018 - November 30, 2018.

TB   Sept   Oct   Nov   Total  

Seattle-­‐Tokyo   426.69   691.21   707.22   1,825.13  

Tokyo-­‐Seattle   226.90   189.09   707.22   1,123.22  

Guam-­‐Hong  Kong   0.01   18.27   71.02   89.30  

Hong  Kong-­‐Guam   11.46   18.88   52.45   82.79  

Total   665.07   917.45   1,537.92   3,120.44    Table 2:   Traffic in terabytes transferred over TransPAC links, December 1, 2017 - November 30, 2018.

  Dec-­‐Feb   Mar-­‐May   Jun-­‐Aug   Sep-­‐Nov   Total  

Seattle-­‐Tokyo   1,561.68   1,791.40   1,502.55   1,825.13   5,119.08  

Tokyo-­‐Seattle   567.11   530.65   568.48   1,123.22   2,222.35  

Guam-­‐Hong  Kong   0   0   0   89.30   89.30  

Hong  Kong-­‐Guam   0   0   0   82.79   82.79  

Total   2,128.79   2,322.05   2,071.03   3,120.44   7,513.52  

 

6.B Flow Data for Year 4 Quarter 4 At  the  beginning  of  the  year,  the  TransPAC-­‐PacWave  100G  circuit  was  collecting  sampled  flow  data  and  unsampled  Tstat  data.    De-­‐identified  versions  of  this  data  were  also  shared  with  the  IRNC  NetSage  project.  In  Quarter  4,  it  was  discovered  that  Tstat  cannot  gather  data  accurately  for  asymmetric  paths.  Due  to  how  many  science  organizations  have  their  routes  set  up,  a  significant  portion  of  the  traffic  on  the  TransPAC  circuits  are  asymmetric.  In  addition,  it  was  discovered  that  the  Tstat  server  had  challenges  when  there  were  large  volumes  of  flows,  for  example  during  SC18.  The  NetSage  project  is  investigating  these  issues,  but  in  the  meantime  we  have  halted  the  collection  of  Tstat  data.    Figures  9  and  10  display  the  Top  10  Talkers  for  outbound  traffic  to  Asia  by  autonomous  system  sources  and  destinations  for  Quarter  4.  Figures  11  and  12  display  the  Top  10  Talkers  for  inbound  traffic  to  United  States  by  autonomous  systems  sources  and  destinations  for  this  quarter.      VBLI  data  transfers  to  Japan  dominated  traffic  outbound  from  the  United  States  to  Asia.  These  transfers  alone  accounted  for  over  30%  of  the  total  outbound  traffic  during  the  quarter.  We  continue  to  see  traffic  from  European  sources  transiting  the  United  States  to  get  to  Asian  destinations.  When  the  direct  100G  links  between  Europe  and  Asia  are  upgraded,  it  is  likely  this  traffic  will  shift  to  a  different  route.  

Page 20: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

20

Otherwise  the  sources  of  traffic  from  the  United  States  remained  fairly  consistent  with  earlier  quarters.  Outbound  destinations  remained  fairly  consistent  as  well,  featuring  sites  in  Japan,  Pakistan,  and  Singapore  as  in  previous  quarters.      Traffic  inbound  into  the  United  States  did  not  coalesce  into  strong  patterns  in  Quarter  4,  with  both  sources  and  destinations  spread  across  a  large  number  of  institutions.  Inbound  data  tended  to  show  significant  high  energy  physics  usage,  as  has  been  the  case  in  the  past  with  sources  such  as  the  Chinese  University  of  Hong  Kong  (CUHK)  and  the  Pakistan  Education  and  Research  Network  (PERN)  sending  physics  related  data  to  the  cluster  at  the  University  of  Chicago  that  is  used  by  Atlas  and  the  Atlas  Tier  2  cluster  at  Simon  Frasier  University  in  Canada.  Other  science  areas  include  VLBI  transfers  between  facilities  hosted  by  National  Institute  of  Informatics  /  Science  Information  Network  (SINET)  in  Japan  and  NASA  as  well  as  WIDE,  National  Astronomical  Observatory  of  Japan  (NAOJ),  and  Atacama  Large  Millimeter  Array  (ALMA)  in  Chile.  The  USGS  was  the  destination  for  geoscience  data  from  locations  such  as  the  Earth  Remote  Sensing  Analysis  Center  (ERSAC)  in  Japan  and  the  National  University  of  Singapore.    

Figure 9: Top 10 Talkers by autonomous system source, outbound from the US for Sept 1, 2018 - Nov 30, 2018.

Page 21: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

21

Figure 10: Top 10 Talkers by autonomous system destination, outbound from the US for Sept 1, 2018 - Nov 30, 2018.

Figure 11: Top 10 Talkers by autonomous system source, inbound to the US for Sept 1, 2018 - Nov 30, 2018.  

Page 22: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

22

Figure 12:  Top 10 Talkers by autonomous system destination, inbound to the US for Sept 1, 2018 - Nov 30, 2018.

6.C Flow Data for Year 4 Inclusive Figures  13  and  14  display  the  Top  10  Talkers  for  outbound  traffic  to  Asia  by  autonomous  system  sources  and  destinations  for  Year  4.  Figures  15  and  16  display  the  Top  10  Talkers  for  inbound  traffic  to  the  United  States  by  autonomous  systems  sources  and  destinations  for  Year  4.    Looking  at  the  year  in  full,  some  trends  emerge  for  the  outbound  data.  For  example,  astronomy  data  has  been  steadily  growing  over  time,  and  certainly  stands  out  in  the  annual  charts,  especially  for  VBLI  sources  in  Italy  and  Sweden  discussed  in  Section  4.C.3  sending  large  amounts  of  data  to  their  corresponding  destinations  at  APAN-­‐JP/NICT  and  WIDE  in  Japan.  The  University  of  Chicago  appears  at  the  top  of  the  outbound  sources  mainly  due  to  a  Cancer  Genomic  Data  Commons  run  by  the  National  Cancer  Institute  (https://gdc.cancer.gov/),  which  is  hosted  at  the  University  of  Chicago.  That  traffic  did  not  reappear  in  Quarter  4.  Other  sources  of  data  involved  geoscience  from  the  USGS,  genomics  from  JISC  (including  the  European  Bioinformatics  Institute  -­‐  EBI)  and  LHC  data  from  Stanford  and  JISC  (GridPP).      On  our  inbound  traffic,  Geoscience  is  a  contributor  with  large  amounts  of  data  being  sent  from  the  Japan  Aerospace  Exploration  Agency  (JAXA)  Earth  Observation  Research  Center  (EORC)  to  NASA  and  other  data  being  sent  to  the  US  Geological  Survey  (USGS).  High  energy  physics  is  also  a  large  data  mover  inbound  as  their  

Page 23: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

23

community  continues  to  transfer  data  between  Tier  2  centers  in  Hong  Kong  and  Taiwan  to  the  United  States.  Some  of  this  data  also  goes  directly  to  or  from  CERN  or  LHC  related  computing  facilities  in  the  UK  and  Germany.  Astronomy  is  represented  with  VLBI  transfers  between  facilities  hosted  by  NII/SINET  to  NASA  and  encrypted  data  transfers  from  WIDE/NAOJ  to  ALMA.    With  the  continuing  instability  of  the  Singapore-­‐US  100G  circuit  throughout  Year  4,  we  also  see  traffic  on  TransPAC  for  Singapore  on  both  inbound  and  outbound,  though  this  traffic  may  drop  off  in  the  Year  5  as  that  link  was  re-­‐engineered  to  be  more  reliable  in  November  2018.  

Figure 13: Top 10 Talkers by autonomous system source, outbound from the US for December 1, 2017 - November 30, 2018.

Page 24: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

24

Figure 14: Top 10 Talkers by autonomous system destination, outbound from the US for December 1, 2017 - November 30, 2018.

 

Figure 15: Top 10 Talkers by autonomous system source, inbound to the US for December 1, 2017 - November 30, 2018.

Page 25: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

25

Figure 16: Top 10 Talkers by autonomous system destination, inbound to the US for December 1, 2017 - November 30, 2018.  

6.D PerfSONAR

6.D.1 Deployments The  TransPAC  project  supports  perfSONAR  servers  in  Hong  Kong  and  Seattle  that  provide  periodic  testing  between  several  US  and  Asian  sites.  TransPAC  participates  in  the  IRNC  mesh  available  at  http://data.ctc.transpac.org/maddash-­‐webui/index.cgi?dashboard=IRNC%20Mesh.  We  also  participate  in  the  APAN  testing  matrix,  http://ps2.jp.apan.net/maddash-­‐webui/.    In  April,  Howard  Peng  at  the  State  Department  briefed  his  senior  leadership  on  the  status  of  available  throughput  data  for  the  State  Department  Southeast  Asia  network,  using  data  from  the  perfSONAR  deployment  the  TransPAC  team  helped  him  to  set  up.  This  was  the  basis  of  his  proposal  for  additional  capacity  and  an  extended  perfSONAR  deployment  to  support  enterprise  network.  His  presentation  generously  acknowledged  the  support  of  the  TransPAC  team.    Bangladesh  Research  and  Education  Network  (BdREN)  deployed  a  perfSONAR  node  that  was  included  in  the  APAN  MaDDash  in  October  of  2018.  During  this  installation  process,  the  configuration  files  for  this  MaDDash  instance  were  reviewed  and  an  error  that  was  precluding  joining  members  from  showing  was  found  by  APAN  personnel  and  corrected.   6.D.2 Training TransPAC  funding  supports  training  activities  in  the  region.  At  APAN46  in  New  Zealand  in  August,  Addleman  and  Lee  executed  a  1-­‐day  perfSONAR  tutorial  and  a  

Page 26: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

26

look  at  the  different  types  of  file  transfer  tests.  This  training  included  live  troubleshooting  using  two  perfSONAR  small  nodes  to  show  the  effect  of  latency  on  large  sustained  file  transfers.  Despite  having  offered  several  similar  workshops  at  past  APAN  meetings,  this  session  was  well  attended  with  24  delegates  from  7  different  countries.  A  subsequent  survey  of  participants  indicated  that  these  continue  to  be  valued  by  the  APAN  community  and  that  most  attendees  would  like  them  to  continue.      Planning  continues  for  the  two  3-­‐day  perfSONAR  workshops  to  be  held  in  2019,  partially  funded  by  Asi@Connect/TEIN*CC.    The  Southeast  Asia  workshop,  March  6-­‐8,  in  Laos,  will  host  attendees  from  Laos,  Vietnam,  Cambodia,  Thailand,  and  Myanmar.  A  second  South  Asia  workshop  will  be  held  July  8-­‐10  at  the  IU  Global  Gateway  office  in  New  Delhi,  India,  with  attendees  from  India,  Afghanistan,  Nepal,  Bhutan,  Bangladesh,  and  Sri  Lanka.  The  funding  secured  from  Asi@Connect  will  be  used  to  pay  for  workshop  logistics,  some  equipment,  and  travel  expenses  for  in-­‐region  attendees.  TransPAC  will  fund  our  instructors  to  develop  the  training  materials  needed  and  travel  expenses  for  the  instructors.    The  team  has  also  been  approached  by  several  members  of  the  Pakistan  Education  and  Research  Network  (PERN)  about  the  possibility  of  having  a  perfSONAR  workshop  specifically  for  that  community.  Due  to  the  challenges  of  IN@IU  staff  traveling  to  Pakistan,  we  have  encouraged  them  to  request  funding  from  Asi@Connect  to  enable  their  engineers  to  travel  to  an  APAN  meeting,  where  we  could  conduct  a  multi-­‐day  workshop  for  several  participating  regions.      In  Year  5  we  will  continue  to  assess  training  requests  as  they  are  received.  We  will  work  with  the  community  to  provide  training  where  it  is  needed  and  where  it  most  meets  the  overall  goals  of  the  project.    

6.D.3 General Support Addleman  and  Lee  passed  their  support  assistance  roles  for  the  APAN  MaDDash  to  Chevalier  this  reporting  period.  Chevalier  now  helps  to  monitor  and  provide  guidance  to  the  dashboard  administrator  on  problems  seen  within  the  APAN  MaDDash.  At  least  one  issue,  with  a  perfSONAR  node  in  Japan  having  fallen  out  of  working  order,  has  already  been  caught  and  corrected  through  this  partnership.  Currently  APAN’s  MaDDash  is  up-­‐to-­‐date  on  software  versions  and  ready  for  new  participants  receiving  small  nodes  at  the  Laos  workshop  in  March  and  the  India  workshop  in  July.    

Page 27: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

27

6.E Trouble Tickets During  Year  4,  there  was  only  five  scheduled  maintenances,  as  shown  in  Table  3,  and  eight  unscheduled  outages,  as  shown  in  Table  4.      Table 3:  Scheduled Maintenances for TransPAC equipment and circuits, December 1, 2017 - November 30, 2018.

Ticket  Number  

Customer  

Impact  

Network  Impact  

Title   Maint    Type  

Source  Impact  

Current  State  

Start  Time  (UTC)  

End  Time  (UTC)  

1912:62   3  -­‐  Moderate  

2  -­‐  High   Maintenance  Completed  -­‐  TransPAC  Backbones  SEAT-­‐TOKY  and  SEAT-­‐SEAT  

Circuit   Vendor   Closed   2017-­‐12-­‐14  00:00:00  

2017-­‐12-­‐14  00:00:00  

1913:62   3  -­‐  Moderate  

2  -­‐  High   Maintenance  Completed  -­‐  TransPAC  Backbones  SEAT-­‐TOKY  and  SEAT-­‐SEAT  

Circuit   Vendor   Closed   2018-­‐01-­‐10  00:00:00  

2018-­‐01-­‐10  00:00:00  

CHG0032635   3  -­‐  Moderate  

3  -­‐  Normal  

Maintenance  1  of  2  Completed  -­‐  TransPAC  Backbone  SEAT-­‐TOKY  

Circuit   Vendor   Closed   2018-­‐08-­‐27  15:03:41  

2018-­‐08-­‐27  15:57:55  

CHG0032636   3  -­‐  Moderate  

3  -­‐  Normal  

Maintenance  2  of  2  Completed  -­‐  TransPAC  Backbone  SEAT-­‐TOKY  

Circuit   Vendor   Closed   2018-­‐08-­‐30  16:20:16  

2018-­‐08-­‐30  16:27:44  

CHG0033371   3  -­‐  Moderate  

3  -­‐  Normal  

Maintenance  Complete  -­‐  TransPAC  Backbones  SEAT-­‐TOKY  and  SEAT-­‐SEAT  

Circuit   Vendor   Closed   2018-­‐11-­‐26  01:07:08  

2018-­‐11-­‐26  01:17:30  

 Table 4  : Unscheduled Outages for TransPAC equipment and circuits, December 1, 2017 - November 30, 2018.

Incident  Number  

Cust  Impact  

NW  Impact  

Title   Outage  Type  

Source  of  

Impact  

Current  State  

Start  Time  (UTC)  

End  Time  (UTC)  

1908:62   2  -­‐  High   2  -­‐  High   Stability  -­‐  TransPAC  Backbone  SEAT-­‐TOKY  

Unann.  Maint  

Vendor   Closed   2017-­‐12-­‐06  15:03:00  

2017-­‐12-­‐06  23:27:00  

1914:62   2  -­‐  High   2  -­‐  High   Outage  Resolved  -­‐  TransPAC  Backbone  SEAT-­‐TOKY  

Circuit  Dam  Fiber  

Vendor   Closed   2017-­‐12-­‐20  22:32:00  

2017-­‐12-­‐22  02:27:00  

1931:62   2  -­‐  High   2  -­‐  High   Outage  Resolved  -­‐  TransPAC  Backbone  SEAT-­‐TOKY  

Power  -­‐  UPS  Power  

Vendor   Closed   2018-­‐04-­‐23  03:36:00  

2018-­‐04-­‐23  08:18:00  

INC0019773  

2  -­‐  High   2  -­‐  High   Outage  Resolved  -­‐  TransPAC  Backbone  HONG-­‐HONG  

Circuit  -­‐  Other  

Vendor   Closed   2018-­‐09-­‐27  06:23:07  

2018-­‐09-­‐27  06:42:18  

INC0021161  

4  -­‐  Low   2  -­‐  High   Availability  -­‐  TransPAC  Backbone  HONG-­‐GUAM  

Undetermined  

Vendor   Closed   2018-­‐10-­‐14  12:08:00  

2018-­‐10-­‐14  12:09:00  

INC0021670  

2  -­‐  High   2  -­‐  High   Availability  -­‐  TransPAC  Backbone  HONG-­‐GUAM  

Undetermined  

Vendor   Closed   2018-­‐10-­‐21  03:46:00  2018-­‐10-­‐21  

2018-­‐10-­‐21  03:47:00  2018-­‐10-­‐21  

Page 28: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

28

03:48:00  2018-­‐10-­‐21  04:00:00  

03:53:00  2018-­‐10-­‐21  04:35:00  

INC0022144  

2  -­‐  High   2  -­‐  High   Availability  -­‐  TransPAC  Circuit  HONG-­‐GUAM  

Undetermined  

Vendor   Closed   2018-­‐10-­‐28  01:07:02  

2018-­‐10-­‐28  09:50:30  

INC0022948  

4  -­‐  Low   2  -­‐  High   Availability  -­‐  TransPAC  Backbone  HONG-­‐GUAM  

Undetermined  

Vendor   Closed   2018-­‐11-­‐08  08:35:01  

2018-­‐11-­‐08  08:36:02  

 6.F Downtime and Availability

Table  5  shows  that  the  core  nodes  for  the  project  did  not  experience  any  down  time  during  Project  Year  4.  Table  6  lists  the  overall  downtime  for  the  project  circuits,  which  was  approximately  2  days.    Table 5  : Downtime and availability for TransPAC core nodes.

TransPAC  Nodes   Down  Time   Quarter  4    Availability  

Project  Year  4  Availability  

dcp.seat.transpac.org   00  hr  00  min   100%   100%  netsage-­‐probe.seat.transpac.org   00  hr  00  min   100%   100%  oob.seat.transpac.org   00  hr  00  min   100%   100%  rtr.seat.transpac.org   00  hr  00  min   100%   100%  test.seat.transpac.org   00  hr  00  min   100%   100%  dtn.hong.transpac.org   00  hr  00  min   100%   100%  netsage-­‐probe.hong.transpac.org   00  hr  00  min   100%   100%  oob.hong.transpac.org   00  hr  00  min   100%   100%  perf.hong.transpac.org   00  hr  00  min   100%   100%  rtr.hong.transpac.org   00  hr  00  min   100%   100%  

Table 6: Downtime and availability for TransPAC circuits.

TransPAC  Backbone  Circuits   Down  Time   Quarter  4  Availability  

Project  Year  4  Availability  

TP2-­‐SEAT-­‐TP-­‐TOKY-­‐100GE-­‐01522  (100G  TransPAC-­‐PacWave  circuit)  

1  days  18  hr  13  min   99.52%   99.53%  

TP2-­‐SEAT-­‐TP-­‐SEAT-­‐TP-­‐100GE-­‐01523  (Cross  Connect  between  TP  router  and  Pacific  Wave  switch)  

00  hr  00  min   100%   100%  

TP2-­‐HONG-­‐GUAM-­‐10GE-­‐01527  (Telstra  Hong  Kong-­‐Guam  10G)  

8  hr  44  min   99.90%   99.90%  

TP2-­‐HONG-­‐GUAM-­‐10GE-­‐01528  (AT&T  Guam-­‐Hong  Kong  10G)  

0  hr  42  min   99.99%   99.99%  

TP2-­‐HONG-­‐HONG-­‐10GE-­‐01525  (10G  Connection  to  HKOX)  

00  hr  00  min   100%   100%  

TP2-­‐HONG-­‐HONG-­‐10GE-­‐01526  (10G  Connection  to  HKIX-­‐RE)  

0  hr  19  min   99.99%   99.99%  

Page 29: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

29

7. Software and Systems Work In  Year  4  we  adjusted  our  software  research  goals  after  community  feedback.  The  BGP  Path  Hinting  project,  originally  proposed  by  Brent  Sweeny,  has  received  little  to  no  interest  from  the  community.  Path  Hinting  relied  on  broad  participation  to  be  successful.  Due  to  the  lack  of  interest  we  will  no  longer  pursue  this  deliverable.        Addleman's  DDOS  detection  work  also  saw  a  setback  when  SciPass  lost  ongoing  support.  There  is  a  new  OpenFlow  controller,  Faucet,  and  a  related  plug-­‐in,  Nozzle,  that  may  be  able  to  take  the  place  of  SciPass,  although  both  are  still  in  active  development  and  not  yet  stable  for  third  party  deployments.  Addleman  has  been  in  contact  with  the  developers  and  anticipates  release  in  Year  5  allowing  research  to  continue.    This  research,  if  successful,  will  allow  TransPAC  to  track  DDOS  traffic  on  it’s  international  links.      During  Year  4,  Pacific  Wave  included  the  Tokyo  and  Seattle  switches  in  their  pilot  deployment  of  Automated  GLIF  OPen  Light  Path  Exchange  (AutoGOLE)  using  the  Network  Services  Interface(NSI),  bookending  the  TransPAC-­‐PacWave  circuit  so  thereby  including  it  as  well.  The  Tokyo  switch  has  a  direct  NSI  peering  with  SINET  and  the  Seattle  switch  has  direct  NSI  peerings  with  Starlight,  JGN-­‐Seattle,  ESNet,  and  the  Pacific  Wave  switch  in  Sunnyvale,  as  shown  in  Figure  17.  The  AutoGOLE  fabric  allows  researchers  and  network  engineers  to  self  provision  network  connectivity  from  Japan,  across  the  TransPAC-­‐PacWave  100G  link,  and  around  the  world.  We  had  preliminary  discussions  after  the  Guam-­‐Hong  Kong  infrastructure  was  put  into  production  with  GOREX,  HKIX,  and  HKOX  to  begin  to  evaluate  whether  or  not  it  would  be  useful  to  enable  NSI  in  Hong  Kong.  If  our  partners  feel  it  is  advantageous  to  do  so,  this  will  occur  in  Year  5.        

Figure 17: The map published by the AutoGOLE group showing all the networks involved in the AutoGOLE using NSI pilot.

Page 30: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

30

8. Security Events and Activities During  Year  4,  the  security  documents  were  upgraded  to  include  all  resources  that  are  part  of    IN@IU.  The  hardware  inventory  was  maintained  by  the  team  and  upgraded  to  better  display  pertinent  information.  We  have  also  added  all  IN@IU  servers  to  the  GlobalNOC  database  in  an  effort  to  work  more  closely  with  the  GlobalNOC  systems  team.  Indiana  University  is  starting  a  review  of  the  Cyber  Risk  Mitigation  Responsibilities  policy  (IT-­‐28).    More  information  on  this  can  be  found  at  https://kb.iu.edu/d/bdls.  We  are  working  closely  with  the  GlobalNOC  systems  team  to  be  in  full  compliance  with  this  policy.    Security  measures  were  maintained  throughout  the  year  and  there  were  no  incidents.  IN@IU  Security  documents  can  be  reviewed  at:  https://internationalnetworks.iu.edu/about/policies.html.  

9. Year 5 Planning The  current  TransPAC4  project  officially  runs  through  February  29,  2020,  so  we  are  entering  the  last  planned  year  for  the  project.  Due  to  program  savings,  detailed  in  Section  11,  we  believe  we  will  be  able  to  continue  the  project  an  additional  7  months,  and  are  planning  to  request  a  No  Cost  Extension.  This  will  see  us  through  the  minimum  current  contracts,  September  2020.  This  includes  extending  other  circuit  contracts  to  meet  that  date.    

9.A Circuits WBS  1.2.1,  1.3.1,  3.2.3,  3.3.1,  3.5.4,3.5.1,  3.5.2,  3.5.3  Sections  6,  4.B  The  current  TransPAC-­‐PacWave  100G  circuit  is  scheduled  to  run  until  mid  December  2019.  We  have  already  begun  discussions  with  Pacific  Wave  to  extend  this  for  4  months  through  the  end  of  the  TransPAC4  project  (Feb  28,  2020).  Starting  in  November  2019,  we  will  begin  the  procedure  for  shutting  down  the  link  -­‐  turning  off  the  contracts  for  co-­‐lo  and  ports,  as  well  as  informing  our  partners  that  we  will  need  to  evaluate  and  re-­‐map  routes.      The  current  contracts  for  to  two  10G  circuits  between  Guam  and  Hong  Kong,  due  to  delays  in  the  RFP  process,  actually  run  past  the  end  of  the  project  lifespan  until  September  2020.  Financially,  what  this  means  is  that  all  TransPAC  activities  except  those  vital  to  the  support  of  these  circuits  will  end  on  or  about  February  29,  2020,  but  these  support  activities  (Tier  2/3  support,  PI  support,  minimal  engineering  and  systems  support)  will  continue  until  September  2020.  Three  months  prior  to  this  we  will  begin  the  shut  down  procedures  for  these  services  as  well.    During  Year  5,  we  will  also  track  the  progress  of  the  three  100G  connections  being  put  in  place  between  Asia  and  Europe.  It  is  likely  this  will  require  adaptations  to  existing  routes  and  peerings.  

Page 31: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

31

9.B Year 5 Travel and Training WBS  2.6.1  Section  3  We  expect  Year  5  travel  and  Training  to  be  similar  to  what  was  done  in  prior  years,  with  attendance  at  APAN,  TNC,  SC,  and  Internet2  meetings  continuing.  In  Year  5,  we  will  teach  two  multi-­‐day  perfSONAR  workshops,  co-­‐funded  with  Asi@Connect,  one  in  Laos  and  one  in  India.  We  will  likely  also  do  two  one-­‐day  perfSONAR  workshops  at  the  APAN  meetings.  We  will  seek  out  options  for  additional  multi-­‐day  perfSONAR  workshops  in  Year  5.  

9.C Year 5 Collaborations WBS  1.2.2,  1.3.2,  1.3.3,  2.6.2  Sections  4.A,  4.B  In  Year  5,  we  will  continue  our  collaborations  with  the  IRNC  partners.  It  is  likely  we  will  expand  the  work  with  the  NetSage  project,  as  we  will  have  an  additional  focus  on  analysis  in  support  of  science  engagement  (which  has  grown  out  of  our  augmented  MOUs),  so  we  plan  to  work  closely  with  NetSage  as  they  update  and  modify  their  tools.    With  out  Asian  partners,  we  plan  to  sign  at  least  one  more  MOU  with  Academica  Sinica  (Taiwan).  We  will  also  continue  to  support  network  experimentation  for  SC  and  TNC  as  requested  by  our  partners.  

9.D Year 5 Science Engagement WBS  2.2.1,  2.6.3,  2.6.4,  2.6.5,  2.6.6,  3.5.3,    Section  4.C    Year  5  will  continue  our  strong  focus  on  working  with  end  user  scientists.  These  will  include  (but  are  not  limited  to)  our  existing  collaborations  with  high  energy  physics,  astronomy,  geoscience,  and  bioinformatics.  We  will  expand  our  identification  of  large  users  of  the  network  via  the  tools  available  from  NetSage  and  others  we  will  build  for  ourselves.  We  are  also  planning  to  develop  a  more  targeted  approach  to  our  overall  engagement  efforts  that  will  allow  us  to  devote  more  time  to  individual  science  domains.  This  approach  will  help  focus  our  engagements  and  help  us  answer  specific  questions  about  how  different  science  communities  are  using  research  and  education  networking  resources.        We  are  considering  offering  additional  support  for  scientific  data  movement  in  Year  5  through  the  use  of  Data  Archive  and  Data  Transfer  Nodes  located  at  our  points  of  presence  in  Seattle,  Tokyo,  Hong  Kong,  and  Guam.  If  this  moves  forward  this  would  include  partnering  with  the  PRP  consortium  to  have  these  nodes  as  part  of  their  “Data  Movement  SuperHighway”,  as  well  as  additional  monitoring  for  performance.  We  would  advertise  this  service  broadly  for  use  by  large  scale  scientific  collaborations  in  the  region.  

Page 32: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

32

9.E Network Analysis WBS  2.3.2,  2.6.5,  4.2.1,  4.3.3  Section  5.C  We  will  continue  to  expand  our  work  in  analyzing  the  use  of  the  network,  correcting  anomalous  paths,  and  working  to  improve  end-­‐to-­‐end  performance  through  the  discovery  of  high-­‐connectivity  source-­‐destination  pairs.  This  will  include  working  not  only  directly  with  NetSage  and  their  tools,  but  in  developing  extensions  for  our  own  uses  cases.    

9.F Software, Experimental, and Security Support WBS  2.3.1,  3.2.1,  3.2.2,  4.1.1  Sections  7,  8  We  will  continue  to  fully  support  the  circuits  through  their  lifespan.  We  will  stay  involved  in  the  AutoGOLE/NSI  support  that  Pacific  Wave  is  offering,  and  evaluate  the  extension  of  this  framework  to  include  Guam.  As  Faucet  and  Nozzle  reach  stability,  we  will  explore  their  deployment  on  the  TransPAC  circuits  for  use  in  DDoS  detection.  We  will  also  maintain  current  security  practices,  and  continue  to  update  our  cyber  risk  mitigation  processes.  

10. Milestones and Progress

1. Planning / Coordination 1.2.1  Evaluate  circuit  capacity  and  community  needs.  Negotiate  with  vendors  and  partners  for  new  circuits  as  capacity  demands  grow.  Phase  2  planning.  •   ONGOING  -­‐  Two  10G  circuits  between  Guam  and  Hong  Kong  became  operational  in  September  2019  based  on  feedback  from  the  community.    1.2.2  Finish  partner  MOU  process  -­‐  Contact  partners  and  start  the  process  of  signing  Memorandum  of  Understandings  with  each.  •   ONGOING  -­‐  This  year  we  signed  an  MOUs  with  JUCC  (Hong  Kong),  SingAREN  (Singapore),  and  CERNET  (China).  The  only  remaining  MOU  we  currently  expect  to  work  on  is  with  Taiwan’s  Academia  Sinica  Grid  Computing  Centre  (ASGC).      1.3.1  Evolve  network  architecture  -­‐  New  network  designs  over  the  evolution  of  the  5  year  award.  This  will  include  100G  circuit  speeds,  software  defined  networking/  exchanges,  possible  new  peering  points,  and  greater  than  10G  flows.  •        ONGOING  -­‐  We  added  two  10G  circuits  between  Guam  and  Hong  Kong,  and  will  continue  discussions  with  partners  to  make  sure  community  need  is  being  met.  We  continue  to  expand  our  peering  partners.    1.3.2  Coordinate  with  IRNC:NOC  winner  -­‐  Coordinate  with  the  IRNC:NOC  awardee  to  ensure  they  have  a  sufficient  and  appropriate  level  of  access  to  all  of  the  TransPAC4  equipment  supporting  international  activities.  This  includes  appropriate  logs,  SNMP  access,  portal  or  login  access  to  obtain  data  not  available  via  SNMP,  etc.  

Page 33: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

33

•        ONGOING  -­‐  The  TransPAC  project  continues  close  coordination  with  the  IRNC  NOC.  1.3.3  Coordinate  with  IRNC:AMI  winner  -­‐  Coordinate  with  the  IRNC:AMI  awardee  for  the  appropriate  distribution  of  flow  data,  per  our  own  security  and  data  policies,  SNMP  and  other  access  as  appropriate.  •   ONGOING  -­‐  TransPAC  shares  measurement  data,  specifically  SNMP,  perfSONAR,  and  flow  data,  with  NetSage.  TransPAC  continues  to  work  closely  with  NetSage  in  areas  such  as  Tstat  analysis  and  the  Science  Registry.  We  also  are  coordinating  on  the  use  of  the  dashboards.      1.3.4  Overall  Management  of  the  project  •   ONGOING  -­‐  Meetings  continue  more  than  quarterly  with  project  partners  at  conferences  including  APAN,  TNC,  SC,  and  Internet2’s  Global  Summit  and  TechX.    1.3.5  Project  Reporting  -­‐  Report  generation  for  the  life  of  the  project  •   ONGOING  -­‐  Reporting  infrastructure  is  in  place  for  up  to  date  reporting;  WBS  update  as  part  of  this  report.    1.3.6  Documentation  and  dissemination  •   ONGOING  -­‐  Both  private  and  public  facing  documentation  continues  to  be  updated.    

2. Outreach 2.2.1  Analyze  usage  data  to  identify  geoscience/bioinformatics  researchers.  Leverage  our  TransPAC4  partners  to  provide  support  and  if  possible  connectivity  for  these  researchers.  •   ONGOING  -­‐  See  Section  4.B    2.3.1  Coordinate  with  network  partners  to  extend  SDN/SDX  to  100G  circuits  •   COMPLETED  -­‐  Y4Q2,  see  Section  5.B      2.3.2  Analyze  current  network  traffic  and  reach  out  to  possible  new  network  users  •        ONGOING  -­‐  See  Section  4.B    2.3.3  Evangelize  Path  Hinting  •   CANCELED,  see  Section  7.      2.6.1  Attend  domestic  and  international  conferences  for  application  identification  and  relationship  maintenance  •   ONGOING  -­‐  See  Section  3    2.6.2  Coordinate  connectivity  with  existing  and  new  TransPAC  Partners    •   ONGOING  –  We  will  continue  to  hold  meetings  at  APAN,  TNC,  and  Internet2  

Page 34: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

34

Conferences  with  our  partners.    2.6.3  Ensure  connectivity  in  support  of  the  Large  Hadron  Collider    •   ONGOING  -­‐  We  continue  our  support  of  the  Large  Hadron  Collider  through  our  efforts  in  the  LHCONE  community.  See  Section  4.B.      2.6.4  Ensure  connectivity  in  support  of  Belle-­‐II  •   ONGOING  -­‐  See  Section  4.B    2.6.5  Coordinate  with  network  partners  and  researchers  to  support  large  flows    •   ONGOING  –  We  will  continue  to  develop  new  flow  analysis  tools  that  will  assist  us  in  identifying  appropriate  researchers.  See  Section  5.C      2.6.6  Explore  additional  application  communities    •        ONGOING  –  We  continue  to  look  through  flow  data  and  discuss  with  our  partners  what  application  communities  would  most  benefit  from  more  intentional  engagement.  See  Section  4.B  and  5.C.  2.6.7  Identify  and  contact  US  branch  campuses  in  Asia-­‐Pacific  region    •   CANCELED,  see  Section  4.B.  

3. Operations 3.2.1  Integrate  TransPAC3  SDN  Controller  -­‐  Work  with  systems  engineers  to  transition  the  TransPAC3  SDN  controller  into  the  TransPAC4  network.  •   COMPLETED  Y4Q2,  see  Section  5.B.    3.2.2  Deploy  SDN  DDOS  Solution  Deploy  the  SDN  based  DDOS  mitigation  solution.  •   DELAYED  -­‐  This  work  will  continue  in  Year  5,  see  Section  7.    3.2.3  Evaluate  and  update  existing  POPs  and  equipment.  Evaluate  and  install  new  points  of  presence  and  equipment  as  community  demands  expands  and  changes.  •   ONGOING  -­‐  See  discussions  in  Section  5  for  additional  circuits  and  OXP.    3.2.4  Deploy  Path  Hinting  service  into  the  TransPAC4  routers  and  work  with  partners,  connectors,  and  peers  to  adopt  the  service.  •   CANCELED,  see  Section  7.    3.3.1  Evaluate  and  deploy  new  circuits  •   COMPLETED  -­‐  See  Section  5.A    3.5.1  Refine  network  measurement  and  monitoring  data.  Refine  and  make  network  telemetry  useful  to  researchers  and  the  IRNC:NOC.  This  will  include  creating  public  web  pages  and  repositories  that  provide  easy  access  to  data.  •   ONGOING  -­‐  We  continue  to  work  with  IRNC  NOC.    

Page 35: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

35

3.5.2  Tune  and  support  large  flows  Monitor  large  flows  across  the  network  and  work  with  researchers  to  fine  tune  the  end  points  and  entire  path.  Work  with  researchers  to  ensure  performance  is  as  expected.  •   ONGOING  -­‐  We  continue  to  work  closely  with  network  researchers  to  support  both  large  scale  demos  and  day  to  day  activities  to  ensure  effective  network  performance.  See  Section  5.C.    3.5.3  Deploy  support  and  telemetry  for  large  flows.  Work  with  partners  to  configure  and  allow  for  large  flows  across  the  TransPAC4  network.  Work  with  systems  to  deploy  monitoring  solutions  for  large  flows.  •   ONGOING  -­‐  The  tools  we  have  developed  support  collection  of  data  for  large  flows  and  we  will  continue  to  improve  them  as  well  as  work  with  our  partners  to  ensure  effective  network  performance.  See  Section  5.C.    3.5.4  Operate  Infrastructure;  Pay  for  circuit,  port,  maintenance,  and  hardware  costs.  •   ONGOING  

4. Research / Experimentation 4.1.1  SDN  for  DDOS  mitigation  -­‐  Research  the  feasibility  of  using  SDN  technologies  for  detection  and  mitigation  of  DDOS  attacks  on  the  TransPAC  network.  •   DELAYED  -­‐  See  Section  7.    4.2.1  Test  larger  than  10G  flows  Test  network  equipment,  configuration,  and  support  for  greater  than  10G  flows.  •   DELAYED  -­‐  Delayed  until  network  experimenters  express  a  concerted  interest  in  such  activity.      4.2.2  Path  Hinting  deployment  for  testing,  experimentation,  and  running  community  demonstrations.  •   CANCELED  -­‐  See  Section  7.    4.3.1  SDN  at  100G  •   COMPLETED  Y4Q2,  see  Section  5.B.      4.3.2  Evaluate  SDN  in  an  Internet  Exchange  environment    •   COMPLETED  Y4Q2  -­‐  See  Section  5.B.    4.3.3  Evaluate  routing  issues  using  Flow  data  •   ONGOING  -­‐  See  Section  5.C.  

Page 36: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

36

11. Financial Reporting Details Year 4 The  financial  projections  at  this  time  have  us  maintaining  the  current  level  of  staffing  through  the  end  of  Year  5  (February  2020).  At  that  point,  we  have  enough  funding  to  continue  the  full  project  for  an  additional  7  months  through  September  2020,  which  is  the  current  contract  period  for  the  Guam-­‐Hong  Kong  circuits.      Table  7  shows  the  expenditures  for  Project  Year  4.  Please  note  that  the  circuit  expenses  in  Year  4  appear  reduced,  but  that  is  simply  because  in  prior  years  the  invoice  for  the  TransPAC-­‐PacWave  100G  Circuit  was  paid  in  November,  whereas  this  year  the  invoice  arrived  late  and  it  was  paid  in  December  2018.  Also,  charges  for  the  two  Guam-­‐Hong  Kong  circuit  weren’t  invoiced  and  paid  until  very  late  in  the  quarter,  so  those  expenses  trail  the  actual  time  period  as  well.        Table  8  gives  a  summary  of  expenditures  to  date,  and  predicted  expenditures  for  Year  5  and  a  partial  Year  6,  including  full  expenses  for  all  current  circuits.   Table 7: Year 4 expenditures.

Description Dec  2018

Jan  2018

Feb  2018

Mar  2018

Apr  2018

May  2018

Jun  2018

Jul  2018

Aug  2018

Sep  2018

Oct  2018

Nov  2018 Total

Schopf 1,753 1,753 1,753 1,753 1,753 1,753 1,753 1,864 1,864 1,864 1,864 1,864 21,591 Lee 7,457 7,457 7,457 7,457 7,457 7,457 7,457 5,966 5,966 5,966 5,966 5,966 82,027 Addle  man 9,403 9,403 9,403 9,403 9,403 9,403 9,403 7,555 7,555 7,555 7,555 7,555 103,596 Southworth                     1,208 1,208 2,416 Chevalier 1,835 1,835 1,835 1,835 1,835 1,835 1,835 1,106 1,106 1,106 1,106 1,106 18,375 Moynihan 4,674 4,674 4,674 4,674 4,674 4,674 4,674 1,174 1,174 1,174 1,174 1,174 38,588 Hubbard 3,277 1,457 1,457 1,458 1,531 1,676 1,531 1,115 1,194 976 865 1,367 17,904 Support-­‐  Systems 2,227 2,227 2,227 2,227 2,227 2,227 2,227 2,227 2,227 2,227 2,227 2,227 26,724 Support-­‐  Network  Eng 2,333 2,333 2,333 2,333 2,333 2,333 2,333 2,333 2,333 2,333 2,333 2,333 27,996 F&A  32% 10,547 9,964 9,964 9,965 9,988 10,035 9,988 7,469 7,494 7,424 7,775 7,936 108,549 Subtotal  Compensation 43,506 41,103 41,103 41,105 41,201 41,393 41,201 30,808 30,913 30,625 32,073 32,735 447,766                             Travel-­‐  Lee-­‐SC  Denver  Nov’17 1,322                       1,322 Travel-­‐Lee-­‐  Tokyo/Daejeon  Oct’17   3,484                     3,484 Travel-­‐Lee-­‐  APR  Singapore  Nov’17   1,745                     1,745 Travel-­‐Addleman  Fiona  Dec’17 1,187 469                     1,656 Travel-­‐Schopf  PTC  Honolulu  Jan’18   1,350 1,723 50       222 22       3,367 Travel-­‐Lee  PTC  Honolulu  Jan’18   1,133   2,134                 3,267 Travel-­‐Schopf  Cenic  SD  Mar’18   1,334 -­‐100 1,604 494 -­‐884   22         2,470 Travel-­‐Lee  APAN  Sing.  Mar’18     1,596 1,360                 2,956 Travel-­‐Tierney  APAN  Sing.  Mar’18     1,818     2,676             4,494 Travel-­‐Lee  I2  SD  May’18     750     520  2,332           1,270

Page 37: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

37

 Dec  2018  

Jan  2018  

Feb  2018  

Mar  2018  

Apr  2018  

May  2018  

Jun  2018  

Jul  2018  

Aug  2018  

Sep  2018  

Oct  2018  

Nov  2018   Total  

Training  Equip  APAN   949 407                   1,356 Travel-­‐Moynihan  LHCONE  Oxford  Mar’18     252 820                 1,072 Travel-­‐Lee  TNC18  Norway  Jun’18       956   1,936   1,715         4,607 Travel-­‐Addleman  APAN  NZ  Aug’18           369       1,471 1,080   2,920 Travel-­‐Lee  APAN  NZ  Aug’18             372     2,330 2,214   4,916 Travel  -­‐  Addleman  -­‐NSF  Cybersecurity  Aug’18             200     667     867 Travel-­‐Terzino  Install  Hong  Kong  Aug’18             304     2,357     2,661 Travel-­‐Schlemmer  Install  Hong  Kong  Aug’18             304     2,099     2,403 Travel  -­‐  Lee  SC18  Nov’18                     100   100 Travel  -­‐  Konishi  20th  aniv  b'ton  Aug’18                     1,000   1,000 Travel  -­‐  Myint  -­‐  LMI  Sept’18                     387   387 Travel  -­‐  Moynihan  -­‐  LMI  Sept’18                   2,706 86   2,792 Travel  -­‐  Grimshaw  -­‐  LMI  Sept’18                       3,444 3,444 Travel  -­‐  Moynihan  -­‐  LHCONE  Oct’18                       526 526 FedEx     56     11   27         94 F&A  32% 803 3,348 2,081 2,216 158 1,481 1,124 636 7 3,722 1,557 1,270 18,403 Subtotal  Other  Expenses 3,312 13,812 8,583 9,140 652 6,109 4,636 2,622 29 15,352 6,424 5,240 75,911                             Seattle-­‐Tokyo  co-­‐lo  (PNWGP) 1500 1500 1500 1500 1500 1500 1500 1500 0 1500 1500 1500 16,500 Guam  Circuit-­‐  Telstra                     19,823 13,359 13,359 46,541 Guam  Circuit  -­‐  ATT                         10,400 10,400 Hong  Kong  Co-­‐lo  iAdvantage                 9750 3250 3801   16,801 CDW  -­‐  Guam  Equip           424 424   807 44     1,699 Dell  -­‐  Guam  Equip             22,921           22,921 Napatech  -­‐  Guam  Equip             10931           10,931 Pier  Group  splitter-­‐  Guam             1,390           1,390 Arista  -­‐  Guam  switch             26719 26719         53,438 OSI  -­‐  Guam  Equip             3739 7711 380       11,830 Apple  laptop  refresh                 3398 19     3,417 Dell  -­‐  Seattle  DTN                     11457   11,457

Page 38: TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 … Y4...1 TransPAC4 Award #1450904 Year 4 Annual and Quarter 4 1 Dec 2017 through 30 Nov 2018 Jennifer M. Schopf, Andrew Lee

38

 Dec  2018  

Jan  2018  

Feb  2018  

Mar  2018  

Apr  2018  

May  2018  

Jun  2018  

Jul  2018  

Aug  2018  

Sep  2018  

Oct  2018  

Nov  2018   Total  

VMWare  Software                   160     160 Wire  Transfer  Fees                 20 40 40   100 Subtotal  Circuit   1,500 1,500 1,500 1,500 0 0 43,904 35,930 14,355 5,656 55,084 25,259 186,188                             Grand  Total 48,318 56,416 51,186 51,744 41,853 47,502 89,741 69,360 45,297 51,632 93,581 63,235 709,865

Table 8: Summarized expenditures and forecasted expenses.

TransPAC   Year  1   Year  2   Year  3   Year  4   Year  5  estimate   Year  6  Est   TOTAL  Dates   Mar'15-­‐Nov'15   Dec15-­‐Nov16   Dec16-­‐Nov17   Dec17-­‐Nov18   Nov18-­‐Feb20   Mar20-­‐  Sept  20    #months   9   12   12   12   15   6    Salaries   58,418   224,945   449,976   447,766   613,305   293,561   2,087,971  Travel   7,918   114,384   133,653   75,911   192,649   92,400   616,915  Circuits   0   38,393   509,070   186,188   868,549   475,679   2,077,879  TOTAL   66,336   377,722   1,092,699   709,865   1,674,503   861,640   4,782,765