Transmission Lines 1 - CBNU

54
Transmission Lines 1 1

Transcript of Transmission Lines 1 - CBNU

Page 1: Transmission Lines 1 - CBNU

Transmission Lines 1

1

Page 2: Transmission Lines 1 - CBNU

Transmission-Line Theory

We need transmission-line theory whenever the length of a line is significant compared to a wavelength.

2

L

Page 3: Transmission Lines 1 - CBNU

Transmission Line

2 conductors: c1=signal, c2=ground

4 per-unit-length parameters:

C = capacitance/length [F/m]

L = inductance/length [H/m]

R = resistance/length [/m]

G = conductance/length [ /m or S/m] z

3

Page 4: Transmission Lines 1 - CBNU

Transmission Line (cont.)

z

,i z t

+ + + + + + +- - - - - - - - - - ,v z tx x xB

4

Note: There are equal and opposite currents on the two conductors.(We only need to work with the current on the top conductor, since we have chosen to put all of the series elements there.)

+

-

+

-

,i z z t ,i z t

,v z z t ,v z t

R z L z

G z C z

z

Page 5: Transmission Lines 1 - CBNU

( , )( , ) ( , ) ( , )

( , )( , ) ( , ) ( , )

i z tv z t v z z t i z t R z L zt

v z z ti z t i z z t v z z t G z C zt

Transmission Line (cont.)

5

+

-

+

-

,i z z t ,i z t

,v z z t ,v z t

R z L z

G z C z

z

Page 6: Transmission Lines 1 - CBNU

Hence

( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , )

v z z t v z t i z tRi z t Lz t

i z z t i z t v z z tGv z z t Cz t

Now let z 0:

v iRi Lz ti vGv Cz t

“Telegrapher’sEquations”

TEM Transmission Line (cont.)

6

Page 7: Transmission Lines 1 - CBNU

To combine these, take the derivative of the first one with respect to z:

2

2

2

2

v i iR Lz z z t

i iR Lz t z

v v vR Gv C L G Ct t t

Switch the order of the derivatives.

TEM Transmission Line (cont.)

7

i vGv Cz t

Page 8: Transmission Lines 1 - CBNU

2 2

2 2( ) 0v v vRG v RC LG LC

z t t

The same differential equation also holds for i.

Hence, we have:

2 2

2 2

v v v vR Gv C L G Cz t t t

TEM Transmission Line (cont.)

8

Note: There is no exact solution in the time domain, in the lossy case.

Page 9: Transmission Lines 1 - CBNU

2

2

2( ) ( ) 0d V RG V RC LG j V LC V

dz

2 2

2 2( ) 0v v vRG v RC LG LC

z t t

TEM Transmission Line (cont.)Time-Harmonic (=Sinusoidal) Waves:

9

( ) cos( ), (phasor of ),jv t A t V Ae v jt

Page 10: Transmission Lines 1 - CBNU

Note that

2

2

2( )d V RG V j RC LG V LC V

dz

2( ) ( )( )RG j RC LG LC R j L G j C

= =

Z R j LY G j C

series impedance / unit length

parallel admittance / unit length

Then we can write:2

2( )d V ZY V

dz

TEM Transmission Line (cont.)

10

Page 11: Transmission Lines 1 - CBNU

Phasor Domain

Phasor counterpart of

Page 12: Transmission Lines 1 - CBNU

Time and Phasor Domain

It is much easier to deal with exponentials in the phasor domain than sinusoidal relations in the time domain

Just need to track magnitude/phase, knowing that everything is at frequency

Page 13: Transmission Lines 1 - CBNU

Complex Numbers

We will find it is useful to represent sinusoids as complex numbers

jyxz jezzz

1j

Rectangular coordinatesPolar coordinates

sincos je j

Relations based on Euler’s Identity

yzxz

)Im(Re

Page 14: Transmission Lines 1 - CBNU

Complex NumbersRectangular to Polar Conversion

2 2

1

1

1

1

cos (0 ), 0

cos , 0

tan , 0

undefined, 0, 0

/ 2, 0, 0

/ 2, 0, 0

tan , 0

j

z x jy

z e

x y

x y

x y

y xx

x y

x y

x y

y xx

Page 15: Transmission Lines 1 - CBNU

Relations for Complex Numbers

Learn how to perform these with yourcalculator/computer

Page 16: Transmission Lines 1 - CBNU

Define

We have:

Solution:

2 ZY

( )

: voltage wave propagating in + direction

: voltage wave propagating in direction

z

z z

z

V z Ae Be

Ae z

Be z

1/2( )( )R j L G j C

2

2

2

d V zV z

dzThen

TEM Transmission Line (cont.)

is called the “propagation constant”.

16

Question: Which sign of the square root is correct?

Page 17: Transmission Lines 1 - CBNU

Principal square root:

TEM Transmission Line (cont.)

/2jz r e

17

1/2( )( )R j L G j C

We choose the principal square root.

Re 0z

( )( )R j L G j C Re 0

Hence

(Note the square-root (“radical”) symbol here.)

jz re

Page 18: Transmission Lines 1 - CBNU

Denote:

TEM Transmission Line (cont.)

Re 0

18

( )( )R j L G j C

[np/m] attenuationcontant

j

rad/m phase constant 1/m propagation constant

Page 19: Transmission Lines 1 - CBNU

TEM Transmission Line (cont.)

19

z z j zV z Ae Ae e

Wave traveling in +z direction:

j

Wave is attenuating as it propagates.

z z j zV z Ae Ae e

Wave traveling in −z direction:

j

Wave is attenuating as it propagates.

Page 20: Transmission Lines 1 - CBNU

TEM Transmission Line (cont.)

20

out10

in

10

dB 20log

20log

20 0.43438.686

z

VV

A eA

zz

Attenuation in

10log 0.4343 lnx xNote:

Attenuation in dB/m: z j zV z Ae e

1

(dB/m) 8.686 (Np/m)Np: neper, 1 Np = 0.37e

Page 21: Transmission Lines 1 - CBNU

Wavenumber Notation

21

( )( )R j L G j C "(complex) propagationconstant"

z z j zV z Ae Ae e

zjk z z j zV z Ae Ae e

( )( )zk j R j L G j C "(complex) wavenumber"

zjk

j

zk j

Page 22: Transmission Lines 1 - CBNU

TEM Transmission Line (cont.)

0 0( ) z z j zV z V e V e e

Forward travelling wave (a wave traveling in the positive z direction):

0

0

0

( , ) Re

Re

cos

z j z j t

j z j z j t

z

v z t V e e e

V e e e e

V e t z

2

g

2g

The wave “repeats” when:

Hence:

22

g 0t

z

0zV e

“snapshot” of wave

Page 23: Transmission Lines 1 - CBNU

Phase Velocity

Let’s track the velocity of a fixed point on the wave (a point of constant phase), e.g., the crest of the wave.

0( , ) cos( )zv z t V e t z

23

z

(phase velocity)pv

Page 24: Transmission Lines 1 - CBNU

Phase Velocity (cont.)

0

t zdzdtdzdt

constantSet

Hence pv

24

Page 25: Transmission Lines 1 - CBNU

Characteristic Impedance Z0

0( ) : characteristic impedance( )

V zZI z

0

0

( )

( )

z

z

V z V e

I z I e

so 00

0

VZI

Assumption: A wave is traveling in the positive z direction.

(Note: Z0 is a number, not a function of z.)

25

I z

V z

z

Page 26: Transmission Lines 1 - CBNU

Use first Telegrapher’s Equation:

v iRi Lz t

so

dV RI j LI ZIdz

Hence0 0

z zV e ZI e

Characteristic Impedance Z0 (cont.)

26

0

0

( )

( )

z

z

V z V eI z I e

Recall:

Page 27: Transmission Lines 1 - CBNU

From this we have:

Use:

00

0

V Z ZZI ZY

Characteristic Impedance Z0 (cont.)

Z R j LY G j C

27

Both are in the first quadrant

0

0

/

Re 0

ZY

Z Z ZY

Z

first quadrant

right - half plane

0ZZY

(principal square root)

Page 28: Transmission Lines 1 - CBNU

Hence, we have

Characteristic Impedance Z0 (cont.)

28

0Z R j LZY G j C

0Re 0Z

Page 29: Transmission Lines 1 - CBNU

RLGC from Z0 and γ

29

00

0 0

0

0

0

0

1

( )( )

,

Re( )

Im( ) /

Re( )

Im( ) /

Z R j LZY G j C Y

R j L G j C

Z R j L Y G j C

R Z

L Z

G Y

C Y

Page 30: Transmission Lines 1 - CBNU

00

0 0

j z j j z

z z

z j zV e e

V z V e V

V e e e

e

e

0

0 cos

c

, R

os

e j t

z

z

V e t

v z t V z

z

V z

e

e t

In the time domain:

Wave in +zdirection Wave in -z

direction

General Case (Waves in Both Directions)

30

Page 31: Transmission Lines 1 - CBNU

31

Backward and Forward Waves

Page 32: Transmission Lines 1 - CBNU

Backward-Traveling Wave

0( )( )

V z ZI z

0

( )( )

V z ZI z

so

A wave is traveling in the negative z direction.

Note:The reference directions for voltage and current are chosen the

same as for the forward wave.

32

z

I z

V z

Page 33: Transmission Lines 1 - CBNU

General Case

0 0

0 00

( )

1( )

z z

z z

V z V e V e

I z V e V eZ

A general superposition of forward and backward traveling waves:

Most general case:

33

z

I z

V z

Page 34: Transmission Lines 1 - CBNU

0 0

0 0

0 0

0

z z

z z

V z V e V e

V VI z e eZ

j R j L G j C

R j LZG j

Z

C

2 mg

[m/s]pv

Guided wavelength:

Phase velocity:

Summary of Basic TL formulas

34

dB/m 8.686Attenuation in

I z

V z

Page 35: Transmission Lines 1 - CBNU

Small Loss Case

0 0

0

,

( )( )

( )( ) 1 1 1 12 2

12

4

11 1

2 21

1

R L G C

j R j L G j C

R R R Gj L j C j j j LC j jL C L C

R GZ Y

RGLC LCLC

Rj L jL R GLZ j j

R C L Cj C jC

L RGC

2 2 24L R GjC L CLC

35

Page 36: Transmission Lines 1 - CBNU

Lossless Case0, 0R G

( )( )j R j L G j C

j LC

so0

LC

0R j LZG j C

0LZC

1

pvLC

pv

(independent of freq.)(real and independent of freq.)

36

Page 37: Transmission Lines 1 - CBNU

Lossless Case (cont.)1

pvLC

If the medium between the two conductors is lossless and homogeneous(uniform) and is characterized by (, ), then (proof given later):

LC

The speed of light in a dielectric medium is1

dc

Hence, we have that: p dv c

In the lossless case the phase velocity does not depend on the frequency, and it is always equal to the speed of light (in the material).

(proof given later)

37

0 r rLC k k and

Page 38: Transmission Lines 1 - CBNU

L, Z0 from C

0

0

,

: can easily be calculated

LZ LCC

C

LC

ZC

(proof given later)

38

Page 39: Transmission Lines 1 - CBNU

Distortionless Line

: frequency independent

if

j

R GRG j LCL C

(proof given later)

39

Page 40: Transmission Lines 1 - CBNU

(proof given later)

40

Page 41: Transmission Lines 1 - CBNU

41

Square Root of Complex Numbers

Square Root of A Complex Number:

2 2

2 2

cos sin2 2

1 cos 1 coscos ; sin2 2 2 2

1 1cos ; cos ; sin2 2 2 2 2 2

; / 2 / 2 / 2

sgn( )2 2

z x jy j

x y

x x x

x xz x jy j y

Page 42: Transmission Lines 1 - CBNU

42

Square Root of Complex Numbers

Square Root of An Inverse of A Complex Number:

Square Root of A Producto of Two Complex Numbers:

1 1 sgn( )2 2

x xz j yx jy

1 1 2 2

2 2 2 21 2 1 1 1 2 2 2

1 2 1 2

1 2 2 1

( )( ) sgn( )2 2

; ;

x xz x jy x jy j y

x y x y

x x x y y

y y x y x

Page 43: Transmission Lines 1 - CBNU

43

Square Root of Complex Numbers

Square Root of A Radio of Two Complex Numbers:

1 1 1 2 1 2

2 2 2

2 21 1 1

2 22 2 2

1 1 1 2

1 2 2 1

1 sgn( )2 2

x jy x xz j yx jy

x y

x y

x x y y y

y y x y x

Page 44: Transmission Lines 1 - CBNU

(proof given later)

44

Page 45: Transmission Lines 1 - CBNU

(proof given later)

45

Page 46: Transmission Lines 1 - CBNU

(proof given later)

46

Page 47: Transmission Lines 1 - CBNU

(proof given later)

47

Page 48: Transmission Lines 1 - CBNU

(proof given later)

48

Page 49: Transmission Lines 1 - CBNU

(proof given later)

49

Page 50: Transmission Lines 1 - CBNU

(proof given later)

50

01-Python: Z0,gamma from R,L,G,C

# Transmission Line: Z0,gamma from R,L,G,C# Sample values: RG-59 coaxial cable# Input: R=36e-3 ohm/m, L=430e-9 H/m, G=10e-6 S/m, C=69e-12 F/m, f=100e6 Hz# Output:# Z0=(78.94228228730861+0.0038450155279376556j)# gamma=(0.0006227261020735598+3.4224620530010226j)

import cmathpi=3.14159265while True:R=float(input('R(ohm/m)='))L=float(input('L(H/m)='))G=float(input('G(S/m)='))C=float(input('C(F/m)='))while True:f=float(input('f(Hz)=(negative to stop)'))if f < 0:breakZ=complex(R,2*pi*f*L); Y=complex(G,2*pi*f*C)Z0=cmath.sqrt(Z/Y); gamma=cmath.sqrt(Z*Y)print('Z0(ohm)=',Z0)print('gamma(per meter)=',gamma)

Page 51: Transmission Lines 1 - CBNU

(proof given later)

51

https://www.online-python.com/ 에 접속하여 소스코드를 위 창에 copy

[Run]아이콘 클릭

아래 창에 데이터 입력 prompt가 표시되면 키보드로 데이터 입력

출력은 아래 창에 표시됨.

Page 52: Transmission Lines 1 - CBNU

(proof given later)

52

Page 53: Transmission Lines 1 - CBNU

(proof given later)

53

Python cmath 모듈 확인

- 구글에서 python cmath modules 입력

- 결과 중에서 적절한 것을 선택하여 열어 봄.

Page 54: Transmission Lines 1 - CBNU

54