Transient Motor Starting Lab Sheet

44
FACULTY OF ELECTRICAL ENGINEERING POWER LAB TRANSIENT MOTOR STARTING EXPERIMENT 1 Analysis on Test System 1 EXPERIMENT 2 Analysis on Test System 2 EXPERIMENT 3 Analysis on IEEE Recommended Power System Analysis network

description

Japs says : Compare easy study

Transcript of Transient Motor Starting Lab Sheet

Page 1: Transient Motor Starting Lab Sheet

FACULTY OF ELECTRICAL ENGINEERING

POWER LAB

TRANSIENT MOTOR STARTING

EXPERIMENT 1

Analysis on Test System 1

EXPERIMENT 2

Analysis on Test System 2

EXPERIMENT 3

Analysis on IEEE Recommended Power System Analysis network

Page 2: Transient Motor Starting Lab Sheet

EXPERIMENTAL THEORY

1. INTRODUCTION

Basically, these experiments deals with simulation and analysis of three phase

induction motor in power system network. Load (induction motor) is one of the factors

contribute to unstable power systems. This is because, starting large induction motor will

produce voltage drop, draw high current and create high loss in active power. “SKM Power

Tools for Windows” is a simulation software package use for design and analysis of

electrical power systems. Manual calculation analysis is very tedious process for getting the

result, which open up into calculation error especially for complex system. This software is

suitable for analyze complex system which helps in time reduction and occurrence of

calculation error if compare to analysis by manual.

1.1 Objective

(i) Recognize the normal problems that always happen in industrial power system

when three phase induction motors are used;

(ii) To understand the behavior, characteristics and performance of three phase

induction motor in power system; and

(iii) To understand the effect of starting large three phase induction motors to the local

power system

1.2 Scope

(i) Analysis of transient motor starting base on manual calculation and software.

(ii) Simulation via “SKM Power Tools for Windows” software package.

(iii) Analysis of IEEE Industrial Power Systems.

1.3 Need for Motor Starting Study

Starting large three phase induction motor, especially across-the-line can cause

several disturbances to the motor and any locally connected load, and also to buses

Page 3: Transient Motor Starting Lab Sheet

electrically remote from the point of motor starting. A brief discussion of major problems

associated with starting large motors, and therefore of significant in power system design

and evaluation.

1.3.1 Voltage Dips

Probably the most widely recognize and studied effect of motor starting is the

voltage dip experienced throughout an industrial power system as a direct result of

starting large induction motors. Available accelerating torque drops appreciably at the

motor bus as voltage dips to a lower value, extending the starting interval and affecting,

some times adversely, overall motor starting performance. During motor starting, voltage

level at the motor terminals should be maintained at approximately 80 % of rated voltage.

This value result from examination of speed-torque characteristic of this type motor (150

% starting torque at full voltage) and the desire to successfully accelerate a fully loaded

motor at reduced voltage (that is, torque varies with the square of the voltage).

When other motors or lower shaft loading are involve, the speed torque

characteristic of both the motor and its load should be examined to specially determine

minimum acceptable voltage. Assuming reduced voltage permits adequate accelerating

torque, it should also be verified that the longer starting interval required at reduced

torque cause by a voltage dip does not result in the damage limit of the motor being

exceed.

1.3.2 Weak Source Generation

Smaller power systems are usually served by limited capacity sources, which

generally magnify voltage drop problems on motor starting, especially when large

induction motors are involve.

Page 4: Transient Motor Starting Lab Sheet

Small systems also often have limited on-site generation, which further

complicates normal problem since additional voltage drops occur in transient impedance

of local generators during the motor starting interval the type of voltage regulator system

applied with the generators can dramatically influence motor starting.

A motor starting study can be useful, even for analyzing the performance of small

system. SKM power tools can accurately model regulator response under motor starting

conditions necessary for meaningful result and conclusion.

1.3.3 Special Torque Requirement

Sometimes special load must be accelerated under carefully controlled condition

without exceeding specified torque limitation of the equipment. An example of this is

starting a motor connected to a load trough gearing. This application requires a special

period of low torque cushioned acceleration to allow slack the gear and coupling to be

picked up without damage to the equipment.

High inertia loads increase motor starting time, and heating in the motor due to

high current drawn during starting can be intolerable. In TMS study, allows accurate

values of motor acceleration current and time. This makes it possible to determine if

thermal limits of standard motor will be exceed for longer starting time intervals. Other

loads have special starting torque requirements or accelerating time limits that require

special high starting torque (and inrush) motors.

Additionally, the starting torque of the load or process may not permit low inrush

motors in situation where these motors might reduce the voltage dips cause by starting a

motor having standard inrush characteristics. A simple inspection of the motor and load

speed-torque curves is not sufficient to determine whether such problems exist. This is

another area where the motor torque and accelerating time study can be useful.

Page 5: Transient Motor Starting Lab Sheet

1.3.4 Analyzing Starting Requirement

A speed-torque and accelerating time study often in conjunction with the

previously discussed voltage dips study permits a means of exploring a variety of

possible motor speed torque characteristic.

This type of motor starting study confirms that starting time are within acceptable

limits. The accelerating study assists in establishing the necessary thermal damage

characteristic of motors or verifies that machines with locked rotor protection supervised

by speed switches will not experience nuisance tripping on starting. Speed-torque /

accelerating time motor starting study is also used to verify special torque or inrush

characteristics, specified to actually produce desire result.

Mechanical equipment requirement and special ratings necessary for motor

starting auxiliary equipments are bases on information developed from motor starting

study.

1.4 Type of Motor Starting Study

From the above discussion, it is clearly that depending on the factors of concern

in any specific motor starting situation, more type of motor starting study can be required.

1.4.1 The Voltage Drop Snapshot

One method of examining the effect of voltage dip during starting is to ensure the

maximum instantaneous drop that occurs, leaves bus voltage at acceptable levels

throughout the system. This is done by examining the power system that corresponds to

the worst case voltage. Through appropriate system modeling, this study can be

performed by various calculating methods using the digital computer. The snapshot

voltage drop study is useful only for finding system voltage. Except for the recognition of

Page 6: Transient Motor Starting Lab Sheet

generator transient impedances when appropriate, machine inertias, load characteristics

and other transient effect are usually ignored. This type of study, while certainly an

approximation is often sufficient for many applications.

1.4.2 The Motor Torque and Acceleration Time Analysis

Perhaps the most exciting analysis for motor starting for motor starting conditions

is the detailed speed-torque analysis. Similar to the transient stability study ( some can

also be used to accurately investigate motor starting ), speed-torque analysis provides

electrical and accelerating torque calculation for specified time intervals during the motor

starting period.

Motor slip, load and motor torque, terminal voltage magnitude and angle, and the

complex value of motor current drawn are values to be examined at time zero at the end

of each time interval. Under certain circumstances, even across-the line starting, the

motor may not be able to break away from standstill or it may stall at some speed before

acceleration is complete. A speed-torque analysis, especially when performed using a

computer program, and possibly in combination with one or more previously discuss

studies, can predict these problem areas and allow corrections to be made before

difficulties arise. When special starting techniques are necessary, such as auto-

transformer reduced voltage starting, speed-torque analysis can account for the auto-

transformer magnetizing current and it can determine the optimum time to switch the

transformer out of the circuit.

The starting performance of wound rotor motors is examined through this type. A

particular adaptation can require a slight modification of any of the above studies to be of

greatest usefulness. Often combinations of several types of studies described are required

to adequately evaluate system motor starting problems.

Page 7: Transient Motor Starting Lab Sheet

EXPERIMENT 1: TEST SYSTEM 1

Figure 1

Input data

ALL PU VALUES ARE EXPRESSED ON A 100 MVA BASE.

FEEDER INPUT DATA

NAME FROM TO QTY Kv LENGTH SIZE TYPE

CBL-0001 BUS-0002 BUS-0003 1 3300 1000.0m 25 Copper

Duct Material: Non-Magnetic Insulation Type: PLC Insulation Class:

+/- Impedance: 0.8989 + J 0.0781 Ohms/1000 m 8.25 + J 0.7170 PU

Z0 Impedance: 1.43 + J 0.1985 Ohms/1000 m 13.12 + J 1.82 PU

TRANSFORMER INPUT DATA

NAME NO NAME L-L (kV) NO NAME L-L (kV) KVA

XF2-0001 BUS-0001 D 69000.0 BUS-0002 YG 3300.00 10000.0

Pos. Seq. Z%: 0.710 + J 8.97 0.071 + j 0.897 PU

Zero Seq. Z%: 0.710 + J 8.97 0.071 + j 0.897 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

Page 8: Transient Motor Starting Lab Sheet

NAME NO NAME L-L (kV) NO NAME L-L (kV) KVA KVA

XF2-0002 BUS-0001 D 69000.0 BUS-0003 YG 3300.00 10000.0 10000.0

Pos. Seq. Z%: 0.710 + J 8.97 0.071 + j 0.897 PU

Zero Seq. Z%: 0.710 + J 8.97 0.071 + j 0.897 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

GENERATION DATA

BUS NAME GENERATION VOLT SIZE InitKW MaxKVAR TYPE

BUS-0001 GEN-0003 1 pu 100 MVA 0.00000 0.00000 SB

ENERGY AUDIT LOADS

BUS LOAD NAME VOLTS SIZE LOADTYPE PF LAG/LEAD

BUS-0002 LOAD-0001 3300 0.8*1.00MVA KVA 0.80 LAG

BUS-0003 LOAD-0002 3300 0.4*1.00MVA KVA 0.80 LAG

MOTOR LOAD DATA

BUS LOAD NAME VOLT SIZE # TYPE EFF PF

BUS-0002 MTRI-0001 3300 500.0* 1 HP KVA 0.80 0.80 LAG

BUS-0003 MTRI-0002 3300 800.0* 1 HP KVA 0.80 0.80 LAG

Method

1. Draw Figure 1 using “SKM Power Tools for Windows” software.

2. Simulate Figure 1 and determine the voltage drop at each busbar.

3. Any problems to draw and simulate, please refer to the manual in appendix.

4. By manual calculation, determine the voltage drop at each busbar. Use Gauss

Siedel Method.

5. Compare the result obtained from step 2 and step 4.

6. For motor starting result, display each motor starting curves from the TMS

(Transient Motor Starting) module.

Page 9: Transient Motor Starting Lab Sheet

Load Flow Solution (Gauss-Siedel Method)

Impedance between buses;

For admittance between buses;

The admittance (Y) matrix of the system;

Page 10: Transient Motor Starting Lab Sheet

Y =

Iteration for ;

Iteration for ;

Iteration for ;

Page 11: Transient Motor Starting Lab Sheet

Power generates;

Summary of manual calculation

P Q |V|

Slack Bus 0.01988 0.06502 1.0 0

Bus 2 -0.01783 -0.09008 0.9881 0.104

Bus 3 -0.00948 -0.03566 0.9545 0.04

Bus 4 -0.00800 -0.05043 0.9396 -0.03

Comparison of manual calculation and skm result

|V|

Bus

Slack Bus 1.0 1.0 - 0 0

Bus 0002 0.9862 0.9881 0.0019 1.4 1.19

Bus 0003 0.9510 0.9545 0.0035 4.9 4.55

Bus 0004 0.9381 0.9396 0.0015 6.2 6.04

Example of motor starting result

Page 12: Transient Motor Starting Lab Sheet

EXPERIMENT 2: TEST SYSTEM 2

Page 13: Transient Motor Starting Lab Sheet

Figure 2

Input data

ALL PU VALUES ARE EXPRESSED ON A 100 MVA BASE.

FEEDER INPUT DATA

NAME FROM TO QTY Kv LENGTH SIZE TYPE

CBL-0001 BUS-0001 BUS-0002 1 69000 1000.0 m 120 Copper

Duct Material: Non-Magnetic Insulation Type: XLPE Insulation Class:

+/- Impedance: 0.1951 + J 0.1539 Ohms/1000 m 0.0041 + J 0.0032 PU

Z0 Impedance: 0.3101 + J 0.3917 Ohms/1000 m 0.0065 + J 0.0082 PU

TRANSFORMER INPUT DATA

NAME NO NAME L-L (kV) NO NAME L-L (kV) KVA

XF2-0001 BUS-0002 D 69000.0 BUS-0003 YG 3300.00 20000.0

Pos. Seq. Z%: 0.575 + J 9.48 0.028 + j 0.474 PU

Zero Seq. Z%: 0.575 + J 9.48 0.028 + j 0.474 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

GENERATION DATA

Page 14: Transient Motor Starting Lab Sheet

BUS NAME GENERATION VOLT SIZE InitKW MaxKVAR TYPE

BUS-0001 GEN-0001 69000.0 100.0 MVA 0 0 SB

KG: 1.03 xdsat: 1.60 Excitation Limit: 1.30 Ik - ON

Pos Sequence Impedance (100 MVA Base) 0.0100 + J 0.1500 PU

Neg Sequence Impedance (100 MVA Base) 0.0103 + J 0.1549 PU

Zero Sequence Impedance (100 MVA Base) 0.0103 + J 0.1549 PU

MOTOR CONTRIBUTION DATA

BUS CONTRIBUTION VOLTAGE BASE Motor

NAME NAME L-L kVA X"d X/R Number

BUS-0003 MTRI-0001 3300 932.5 0.17 10.0 1.00

Pos Sequence Impedance (100 MVA Base) 1.82 + j 18.23 PU

BUS-0003 MTRI-0002 3300 233.1 0.17 10.0 1.00

Pos Sequence Impedance (100 MVA Base) 7.29 + j 72.93 PU

Method

1. Draw Figure 2 using “SKM Power Tools for Windows” software.

2. Simulate Figure 1 and determine the voltage drop at each busbar.

3. Any problems to draw and simulate, please refer to the manual in appendix.

4. By manual calculation, determine the voltage drop at each busbar. Use Gauss

Siedel Method.

5. Compare the result obtained from step 2 and step 4.

6. For motor starting result, display each motor starting curve from the TMS

(Transient Motor Starting) module.

Load flow solution – Gauss Siedel Method

Page 15: Transient Motor Starting Lab Sheet

Impedance between buses;

Admittance between buses;

Admittance matrix (Y) of the systems;

Iteration for ;

Iteration for ;

Page 16: Transient Motor Starting Lab Sheet

Iteration for ;

Power generates;

Summary of manual calculation

P Q V

Slack bus 0.01300 0.070039 1.0 0

Bus 0002 0.012795 0.069500 0.9897 0.12

Bus 0003 0.012774 0.069492 0.9880 -0.01

Bus 0004 0.012677 0.067073 0.9556 -0.17

Comparison of manual calculation and skm result

Page 17: Transient Motor Starting Lab Sheet

|V| Bus

Slack Bus 1.0 1.0 - 0 0

Bus 0001 0.9893 0.9897 0.0004 1.1 1.03

Bus 0002 0.9891 0.9886 0.0005 1.1 1.1

Bus 0003 0.9554 0.9556 0.0002 4.5 4.4

Example of motor starting result

EXPERIMENT 3 : IEEE RECOMMENDED POWER SYSTEM ANALYSIS

NETWORK

Method

1. Draw Figure 3 using “SKM Power Tools for Windows” software.

2. Simulate Figure 3 and determine the voltage drop at each busbar.

3. Any problems to draw and simulate, please refer to the manual in appendix.

Page 18: Transient Motor Starting Lab Sheet

4. For motor starting result, display each motor starting curve from the TMS

(Transient Motor Starting) module.

5. Compare result in experiment 1,2 and 3

6. Make your assumption regarding experiment 1, 2 and 3.

Input data

ALL PU VALUES ARE EXPRESSED ON A 100 MVA BASE

FEEDER INPUT DATA

NAME NAME NAME /PH L-L SIZE TYPE

CBL-0001 BUS-0001 BUS-0002 1 69000 10000 FEET 120 Copper

Duct Material: Non-Magnetic Insulation Type: XLPE Insulation Class:

+/- Impedance: 0.0595 + J 0.0563 Ohms/1000 ft 0.0125 + J 0.0118 PU

Z0 Impedance: 0.0945 + J 0.1433 Ohms/1000 ft 0.0199 + J 0.0301 PU

CBL-0002 BUS-0001 BUS-0003 1 69000 10000. FEET 120 Copper

Duct Material: Non-Magnetic Insulation Type: XLPE Insulation Class:

+/- Impedance: 0.0595 + J 0.0563 Ohms/1000 ft 0.0125 + J 0.0118 PU

Z0 Impedance: 0.0945 + J 0.1433 Ohms/1000 ft 0.0199 + J 0.0301 PU

CBL-0003 BUS-0004 BUS-0006 1 11000 2000 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.1617 + J 0.0514 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.2570 + J 0.1307 PU

NAME NAME NAME /PH L-L SIZE TYPE

CBL-0005 BUS-0006 BUS-0007 1 11000 650.0 FEET 50 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.1411 + J 0.0326 Ohms/1000 ft 0.0758 + J 0.0175 PU

Z0 Impedance: 0.2243 + J 0.0830 Ohms/1000 ft 0.1205 + J 0.0446 PU

Page 19: Transient Motor Starting Lab Sheet

CBL-0006 BUS-0007 BUS-0008 1 11000 1833.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.1482 + J 0.0471 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.2355 + J 0.1198 PU

CBL-0007 BUS-0009 BUS-0010 1 480 20.0 FEET 25 Copper

Duct Material: Non-Magnetic Insulation Type: Insulation Class:

THWN

+/- Impedance: 0.2216 + J 0.3942 Ohms/1000 ft 1.92 + J 3.42 PU

Z0 Impedance: 0.3523 + J 1.00 Ohms/1000 ft 3.06 + J 8.71 PU

CBL-0010 BUS-0013 BUS-0015 1 3300 10.0 FEET 95 Copper

Duct Material: Non-Magnetic Insulation Type: PLC Insulation Class:

+/- Impedance: 0.0753 + J 0.0245 Ohms/1000 ft 0.0069 + J 0.0022 PU

Z0 Impedance: 0.1197 + J 0.0623 Ohms/1000 ft 0.0110 + J 0.0057 PU

CBL-0011 BUS-0012 BUS-0016 1 11000 200.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0162 + J 0.0051 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0257 + J 0.0131 PU

CBL-0012 BUS-0017 BUS-0018 1 480 40.0 FEET 35 Copper

Duct Material: Non-Magnetic Insulation Type: Insulation Class:THWN

+/- Impedance: 0.1597 + J 0.3115 Ohms/1000 ft 2.77 + J 5.41 PU

Z0 Impedance: 0.2539 + J 0.7926 Ohms/1000 ft 4.41 + J 13.76 PU

NAME NAME NAME /PH L-L SIZE TYPE

CBL-0014 BUS-0006 BUS-0019 1 11000 325.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PLC Insulation Class:

+/- Impedance: 0.0963 + J 0.0300 Ohms/1000 ft 0.0259 + J 0.0081 PU

Z0 Impedance: 0.1531 + J 0.0763 Ohms/1000 ft 0.0411 + J 0.0205 PU

Page 20: Transient Motor Starting Lab Sheet

CBL-0015 BUS-0006 BUS-0022 1 11000 650.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0525 + J 0.0167 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0835 + J 0.0425 PU

CBL-0016 BUS-0023 BUS-0024 1 480 20.0 FEET 35 Copper

Duct Material: Non-Magnetic Insulation Type: Insulation Class: THWN

+/- Impedance: 0.1597 + J 0.3115 Ohms/1000 ft 1.39 + J 2.70 PU

Z0 Impedance: 0.2539 + J 0.7926 Ohms/1000 ft 2.20 + J 6.88 PU

CBL-0017 BUS-0023 BUS-0025 1 480 66.0 FEET 35 Copper

Duct Material: Non-Magnetic Insulation Type: Insulation Class: THWN

+/- Impedance: 0.1597 + J 0.3115 Ohms/1000 ft 4.58 + J 8.92 PU

Z0 Impedance: 0.2539 + J 0.7926 Ohms/1000 ft 7.27 + J 22.70 PU

CBL-0019 BUS-0006 BUS-0026 1 11000 150.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0121 + J 0.0039 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0193 + J 0.0098 PU

CBL-0020 BUS-0014 BUS-0029 1 11000 100.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0081 + J 0.0026 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0128 + J 0.0065 PU

NAME NAME NAME /PH L-L SIZE TYPE

CBL-0021 BUS-0014 BUS-0035 1 11000 150.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0121 + J 0.0039 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0193 + J 0.0098 PU

Page 21: Transient Motor Starting Lab Sheet

CBL-0022 BUS-0014 BUS-0032 1 11000 150.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0121 + J 0.0039 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0193 + J 0.0098 PU

CBL-0023 BUS-0033 BUS-0034 1 480 150.0 FEET 35 Copper

Duct Material: Non-Magnetic Insulation Type: Insulation Class: THWN

+/- Impedance: 0.1597 + J 0.3115 Ohms/1000 ft 10.40 + J 20.28 PU

Z0 Impedance: 0.2539 + J 0.7926 Ohms/1000 ft 16.53 + J 51.60 PU

CBL-0025 BUS-0012 BUS-0032 1 11000 100.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0081 + J 0.0026 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0128 + J 0.0065 PU

CBL-0026 BUS-0014 BUS-0037 1 11000 100.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0081 + J 0.0026 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0128 + J 0.0065 PU

CBL-0027 BUS-0037 BUS-0038 1 11000 100.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0081 + J 0.0026 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0128 + J 0.0065 PU

NAME NAME NAME /PH L-L SIZE TYPE

CBL-0028 BUS-0037 BUS-0040 1 11000 100 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0081 + J 0.0026 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0128 + J 0.0065 PU

Page 22: Transient Motor Starting Lab Sheet

CBL-0031 BUS-0014 BUS-0044 1 11000 150.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0121 + J 0.0039 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0193 + J 0.0098 PU

CBL-0033 BUS-0047 BUS-0006 1 11000 50.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0040 + J 0.0013 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0064 + J 0.0033 PU

CBL-0036 BUS-0007 BUS-0011 1 11000 165.0 FEET 70 Copper

Duct Material: Non-Magnetic Insulation Type: PILS Insulation Class:

+/- Impedance: 0.0978 + J 0.0311 Ohms/1000 ft 0.0133 + J 0.0042 PU

Z0 Impedance: 0.1555 + J 0.0791 Ohms/1000 ft 0.0212 + J 0.0108 PU

CBL-0038 BUS-0002 BUS-0051 1 69000 10000. FEET 120 Copper

Duct Material: Non-Magnetic Insulation Type: XLPE Insulation Class:

+/- Impedance: 0.0595 + J 0.0563 Ohms/1000 ft 0.0125 + J 0.0118 PU

Z0 Impedance: 0.0945 + J 0.1433 Ohms/1000 ft 0.0199 + J 0.0301 PU

TRANSFORMER INPUT DATA

NAME NO NAME L-L NO NAME L-L KVA

XF2-0001 BUS-0002 D 69000.0 BUS-0006 Y 11000.0 20000.0

Pos. Seq. Z%: 0.575 + J 9.48 0.028 + j 0.474 PU

Zero Seq. Z%: 0.575 + J 9.48 0.028 + j 0.474 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

Page 23: Transient Motor Starting Lab Sheet

XF2-0002 BUS-0003 D 69000.0 BUS-0014 Y 11000.0 20000.0

Pos. Seq. Z%: 0.575 + J 9.48 0.028 + j 0.474 PU

Zero Seq. Z%: 0.575 + J 9.48 0.028 + j 0.474 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0003 BUS-0004 D 11000 BUS-0005 Y 3300.00 1600.00

Pos. Seq. Z%: 1.13 + J 5.89 0.707 + j 3.68 PU

Zero Seq. Z%: 1.13 + J 5.89 0.707 + j 3.68 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0004 BUS-0008 D 11000.0 BUS-0009 Y 480.00 2000.00

Pos. Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Zero Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0005 BUS-0011 D 11000.0 BUS-0013 Y 3300.00 5000.00

Pos. Seq. Z%: 0.828 + J 8.96 0.165 + j 1.79 PU

Zero Seq. Z%: 0.828 + J 8.96 0.165 + j 1.79 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0006 BUS-0016 D 11000.0 BUS-0017 YG 480.00 2000.00

Pos. Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Zero Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

NAME NO NAME L-L NO NAME L-L KVA

XF2-0007 BUS-0019 D 11000.0 BUS-0020 Y 3300.00 2500.00

2000.00

Pos. Seq. Z%: 1.31 + J 5.89 0.656 + j 2.95 PU

Zero Seq. Z%: 1.31 + J 5.89 0.656 + j 2.95 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

Page 24: Transient Motor Starting Lab Sheet

XF2-0008 BUS-0019 D 11000.0 BUS-0021 Y 3300.00 2500.00

Pos. Seq. Z%: 1.31 + J 5.89 0.656 + j 2.95 PU

Zero Seq. Z%: 1.31 + J 5.89 0.656 + j 2.95 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0009 BUS-0022 D 11000.0 BUS-0023 Y 480.00 2000.00

Pos. Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Zero Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0010 BUS-0026 D 11000.0 BUS-0027 Y 3300.00 2000.00

Pos. Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Zero Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0011 BUS-0026 D 11000.0 BUS-0028 Y 3300.00 4000.00

Pos. Seq. Z%: 1.000 + J 7.08 0.250 + j 1.77 PU

Zero Seq. Z%: 1.000 + J 7.08 0.250 + j 1.77 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0012 BUS-0029 D 11000.0 BUS-0030 YG 3300.00 5000.00

Pos. Seq. Z%: 1.000 + J 7.08 0.250 + j 1.77 PU

Zero Seq. Z%: 1.000 + J 7.08 0.250 + j 1.77 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

NAME NO NAME L-L NO NAME L-L KVA

XF2-0013 BUS-0032 D 11000.0 BUS-0033 YG 480.00 2000.00

Pos. Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Zero Seq. Z%: 1.31 + J 5.89 0.820 + j 3.68 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

Page 25: Transient Motor Starting Lab Sheet

XF2-0014 BUS-0035 D 11000.0 BUS-0036 YG 480.00 800.00

Pos. Seq. Z%: 1.27 + J 4.32 1.59 + j 5.39 PU

Zero Seq. Z%: 1.27 + J 4.32 1.59 + j 5.39 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0015 BUS-0038 D 11000.0 BUS-0039 YG 600.00 2500.00

Pos. Seq. Z%: 0.980 + J 6.43 0.392 + j 2.57 PU

Zero Seq. Z%: 0.980 + J 6.43 0.392 + j 2.57 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

XF2-0016 BUS-0040 D 11000.0 BUS-0041 YG 600.00 1000.00

Pos. Seq. Z%: 1.21 + J 4.85 1.21 + j 4.85 PU

Zero Seq. Z%: 1.21 + J 4.85 1.21 + j 4.85 PU

Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

GENERATION DATA

BUS NAME GENERATION VOLT SIZE InitKW MaxKVAR TYPE

BUS-0001 UTIL-0001 1 pu SB

Three Phase Contribution: 1000.30 MVA X/R : 2.20

Line to Earth Contribution: 75.00 MVA X/R : 9.90

Pos sequence impedance (100 MVA base) 0.1515 + J 0.3330 PU

Zero sequence impedance (100 MVA base) 0.1874 + J 4.19 PU

BUS NAME GENERATION VOLT SIZE InitKW MaxKVAR TYPE

BUS-0004 GEN-0001 1 pu 15.60 MVA 14062.5 6810.30 PV

BUS-0014 GEN-0002 1 pu 15.60 MVA 14040.2 6799.40 PV

ENERGY AUDIT LOADS

BUS-0025 LOAD-0002 480 100.0*1.00kVA KVA 0.91 LAG

Page 26: Transient Motor Starting Lab Sheet

MOTOR LOAD DATA

BUS NAME LOAD NAME VOLT SIZE # TYPE EFF PF

BUS-0005 MTRI-0001 3300 200.0* 1 HP KVA 0.80 0.80 LAG

BUS-0005 MTRI-0002 3300 600.0* 1 HP KVA 0.80 0.80 LAG

BUS-0009 MTRI-0003 480 100.0* 1 HP Z 0.80 0.80 LAG

BUS-0009 MTRI-0004 480 110.0* 1 KW KVA 0.80 0.80 LAG

BUS-0010 MTRI-0005 480 150.0* 1 HP KVA 0.80 0.80 LAG

BUS-0013 MTRI-0006 3300 250.0* 1 HP KVA 0.80 0.80 LAG

BUS-0013 MTRI-0007 3300 500.0* 1 HP KVA 0.80 0.80 LAG

BUS-0015 MTRI-0008 3300 250.0* 1 HP KVA 0.80 0.80 LAG

BUS-0017 MTRI-0009 480 300.0* 1 HP KVA 0.80 0.80 LAG

BUS-0017 MTRI-0010 480 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0018 MTRI-0011 480 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0020 MTRI-0012 3300 300.0* 1 HP KVA 0.80 0.80 LAG

BUS-0021 MTRI-0013 3300 500.0* 1 HP KVA 0.80 0.80 LAG

BUS-0023 MTRI-0014 480 485.0* 1 KW KVA 0.80 0.80 LAG

BUS-0023 MTRI-0015 480 100.0* 1 KW KVA 0.80 0.80 LAG

BUS-0024 MTRI-0016 480 110.0* 1 KW KVA 0.80 0.80 LAG

BUS-0025 MTRI-0030 480 100.0* 1 HP KVA 0.71 0.89 LAG

BUS-0025 MTRI-0031 480 50.0* 1 HP KVA 0.80 0.89 LAG

BUS-0025 MTRI-0032 480 100.0* 1 HP KVA 0.71 0.89 LAG

BUS-0027 MTRI-0017 3300 1200.0* 1 HP KVA 0.80 0.80 LAG

BUS-0028 MTRI-0018 3300 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0028 MTRI-0019 3300 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0030 MTRI-0020 3300 500.0* 1 HP KVA 0.80 0.80 LAG

BUS-0030 MTRI-0021 3300 800.0* 1 HP KVA 0.80 0.80 LAG

BUS-0033 MTRI-0022 480 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0033 MTRI-0023 480 50.0* 1 HP KVA 0.80 0.80 LAG

BUS-0034 MTRI-0024 480 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0036 MTRI-0025 480 50.0* 1 HP KVA 0.80 0.80 LAG

Page 27: Transient Motor Starting Lab Sheet

BUS-0039 MTRI-0026 480 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0041 MTRI-0027 600 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0041 MTRI-0028 600 100.0* 1 HP KVA 0.80 0.80 LAG

BUS-0044 MTRI-0029 11000 2000.0* 1 HP KVA 0.80 0.80 LAG