transformacion del proceso antiguo corea.pdf

download transformacion del proceso antiguo corea.pdf

of 37

Transcript of transformacion del proceso antiguo corea.pdf

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    1/37

    CHEMRAWN XVI Conference

    Consultation Forum

    Innovation Stage: the way pure to the applied chemistry

    Transformation of the old process:Ethylbenzene to Styrene with CO2dilution

    CHEMRAWN XVI Conference

    Consultation Forum

    Innovation Stage: the way pure to the applied chemistry

    Transformation of the old process:Transformation of the old process:

    EthylbenzeneEthylbenzeneto Styrene with COto Styrene with CO22dilutiondilution

    MIN CHE CHON

    Chon I nternati onal Co. , Ltd.

    MIN CHE CHON

    Chon I nternati onal Co. , Ltd.

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    2/37

    Conventional Process for Styrene Production

    Drawbacks o f EBD Process w ith Steam

    -High energy consumptionduring the condensation of steam

    due to high latent heat of water

    -Catalyst deactivation in the presence of CO2as a by-product

    - The need for high steam-to-ethylbenzene ratio

    Worldwide Capacity for Production of Styrene Monomer:more than 20 Mt/year (2.3 Mt/year in Korea)

    More than 90%: Ethylbenzene Dehydrogenation with Steam

    Commercial Catalyst:Fe2O3-K2O-CeO2 with additives

    Role of Steam in Ethylbenzene Dehydro genation (EBD)

    - Shift of the equilibrium towards higher conversions

    - Supply for heat of reaction with superheated steam

    - Decrease of the amount of coke by steam gasification

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    3/37

    Company Capacity Location Starting year Process Licensor

    YNCC 140 Yeochon 1986, 1995 Badger Eng.

    LG Chemical 330 Yeochon 1990, 1991 Lummus/Monsanto

    SK Oxychemical 300 Ulsan 1991 Badger/Mobil/ARCO*

    260 Ulsan 1997 ARCO

    Dongbu Chemical 210 Ulsan 1978, 1989 Monsanto/Lummus

    Samsung GC 590 Daesan 1991, 1996 Badger

    Hyundai PC 325 Daesan 1991, 1996 Badger Raytheon

    Total 2,155 2.5 Mt/year capacity (Year 2001)

    *Dehydrogenation process of MBA (Methyl benzyl alcohol)

    Year 1999 (Unit: 1000 T/Y)

    Production of Styrene Monomer in Korea

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    4/37

    ProblemsProblems

    1. High Energy Consumption by Use of Excess SteamHigh Energy Consumption by Use of Excess Steam

    estimated to 10% of production cost

    2. Low equilibrium conversion2. Low equilibrium conversionof ethylbenzene to styrene

    due to limitation of thermodynamic equilibrium

    3. Increase in risk to crack of the reactor and preheater

    due to high temperature operation

    4. Catalyst deactivation with evaporation of potassium

    Suggestion for conventional processSuggestion for conventional process

    *New process using carbon dioxide as soft oxidant*New process using carbon dioxide as soft oxidant

    Problems of Conventional EBD Process

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    5/37

    Alternative Processes for Styrene Production

    Oxidative dehydrogenation with oxygen

    ; Higher yield by shift of the dehydrogenation equilibrium

    Flammable, Need for two catalysts with an oxidation Pd or Pt

    2. Selective oxidation of H2from dehydrogenation with O2

    ;Overcome the contamination of mixing the steam and O2 Need for very selective and stable catalysts for oxidation of H2and

    at high temperature

    3. Membrane process; Oxidative dehydrogenation avoiding the flammabilityNeed for effective permeability of membrane

    4. Oxidative dehydrogenation with carbon dioxide

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    6/37

    SODECO2 Technology DevelopmentSODECOSODECO22Technology DevelopmentTechnology Development

    SODECO2 (Styrene from Oxidative Dehydrogenation via CO2):

    Styrene Monomer Process via Oxidative Dehydrogenation of Ethylbenzene

    using Carbon Dioxide as Soft Oxidant

    Source of CO2----- By Product CO2discharged from Petrochemical

    Industry

    Developed by: Dr. S. E. Park and his group KRICT

    CCME(Catalysis Center for Molecular Engineering)

    SODECOSODECO22(Styrene from Oxidative Dehydrogenation via CO2):

    Styrene Monomer Process via Oxidative Dehydrogenation of Ethylbenzeneusing Carbon Dioxide as Soft Oxidant

    Source of CO2----- By Product CO2discharged from Petrochemical

    Industry

    Developed by: Dr. S. E. Park and his group KRICT

    CCME(CatalysisCenter for MolecularEngineering)

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    7/37

    CH2-CH3CH=CH2

    H2O+ H2

    CH2-CH3CH=CH2

    CO2+ H2O

    - CO

    Ethylbenzene Styrene

    New Development in Dehydrogenation

    Process using Carbon Dioxide as Soft Oxidant

    New Development in Dehydrogenation

    Process using Carbon Dioxide as Soft Oxidant

    New development

    Conventional process

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    8/37

    1. Role of soft oxidant to remove hydrogen as a product

    (less dangerous than oxygen)

    2. High heat capacity of CO2: 49.1 J/ mol.K at 673K

    (37.0 J/mol.K at 673K for H2O and

    33.2 J/mol.K at 673K for O2)

    3. High selectivity to styrene (97%)

    4. Activity Enhancement (high conversion)

    5. Equilibrium shift to give lower reaction temperature

    6. Cheaper gas than steam or oxygen

    Advantages of Carbon Dioxide in Dehydrogenation

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    9/37

    Comparison of Carrier Gases for DehydrogeComparison of Carrier Gases for Dehydroge

    nation of Hydrocarbonsnation of Hydrocarbons

    Not commercialized

    Endothermic

    Catalyst deactivation

    Low selectivity

    Dangerous

    Hot spot

    Expensive diluent

    Highly endothermic

    High latent heat

    High operation cost

    Disadvantage

    High selectivity

    Activity enhancement

    Equilibrium shift

    Cheap carrier gas

    High activity

    Exothermic

    Less deactivation

    High selectivity

    Catalyst stability

    Coke resistance

    Keeping oxidationstate

    Heat capacity

    High

    (49.1 J/molK at 673K)

    Low

    (33.2 J/molK at 673K)

    Medium

    (37.0 J/molK at 673K)

    Heat capacity

    Soft oxidant

    Diluent

    Strong oxidant

    Not Diluent

    Not oxidant

    Diluent

    Function

    Carbon DioxideOxygenSteamCharacteristics

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    10/37

    Characteristics of SODECO2ProcessCharacteristics of SODECO2

    Process

    1. Direct utilization of CO2as a by-product discharged fr

    om petrochemical industry (Self-sufficiency of CO2)

    2. Utilization of CO2as soft oxidant to alleviate chemical

    equilibrium of ethylbenzene dehydrogenation

    3. Selective dehydrogenation process using CO2

    (1.5% high in styrene selectivity)

    4. Energy saving effect against conventional process

    (33% saving effect: 6.5 M dollar for 0.6 Mt-SM/year)5. High activity at lower temperature

    (Release of risk in crack of reactor materials)

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    11/37

    Schematic Diagram of SODECO2ProcessSchematic Diagram ofSchematic Diagram of SODECOSODECO22

    ProcessProcess

    EthtylbenzeneEthtylbenzene

    Dehydrogen-ation reactor

    Dehydrogen-ation reactor

    Product condenser

    Product condenser

    DistillationDistillation

    Benzene/

    Toluene mixture

    Benzene/

    Toluene mixture BTX PlantBTX Plant

    Storage tank

    for styrene

    Storage tank

    for styrene

    Oxidation proc

    ess

    Oxidation proc

    ess

    CO2Oxidant

    Discharge

    without energy loss

    Lower reaction temp.

    *Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

    SODECO2(Styrene via Oxidative Dehydrogenation of Ethylbenzene with CO2)

    H2OH2O

    Off gas

    (H2, CO + CO2)

    Off gas

    (H2, CO + CO2)H2O

    H2O Water-gas shift

    reactor

    Water-gas shift

    reactor

    MembraneMembraneH2H2

    H2/CO2

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    12/37

    Schematic Diagram of SODECO2ProcessSchematic Diagram ofSchematic Diagram of SODECOSODECO22

    ProcessProcess

    EthtylbenzeneEthtylbenzene

    Dehydrogen-ation reactor

    Dehydrogen-ation reactor

    Product condenser

    Product condenser

    DistillationDistillation

    Benzene/

    Toluene mixture

    Benzene/

    Toluene mixture BTX PlantBTX Plant

    Storage tank fo

    r styrene

    Storage tank fo

    r styrene

    Oxidation proc

    ess

    Oxidation proc

    ess

    CO2Oxidant

    Discharge

    without energy loss

    Lower reaction temp.

    *Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

    SODECO2(Styrene via Oxidative Dehydrogenation of Ethylbenzene with CO2)

    H2H2

    H2OH2O

    Off gas

    (CO + CO2)

    Off gas

    (CO + CO2) MembraneMembraneO2

    O2

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    13/37

    Schematic Diagram of SODECO2ProcessSchematic Diagram ofSchematic Diagram of SODECOSODECO22

    ProcessProcess

    EthtylbenzeneEthtylbenzene

    Dehydrogen-ation reactor

    Dehydrogen-ation reactor

    Product condenser

    Product condenser

    DistillationDistillation

    Benzene/

    Toluene mixture

    Benzene/

    Toluene mixture BTX PlantBTX Plant

    Storage tank

    for styrene

    Storage tank

    for styrene

    Oxidation proc

    ess

    Oxidation proc

    ess

    CO2Oxidant

    Discharge

    without energy loss

    Lower reaction temp.

    *Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

    SODECO2(Styrene via Oxidative Dehydrogenation of Ethylbenzene with CO2)

    H2OH2O

    Off gas

    (H2, CO + CO2)

    Off gas

    (H2, CO + CO2)O2

    O2 PrOx react

    or

    PrOx react

    or

    MembraneMembraneH2H2

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    14/37

    Development of Commercial EBD catalystsDevelopment of Commercial EBD catalysts

    Generation

    Main Component

    Chemical PromoterTextual Promoter

    Selectivity Promoter

    Others (Binder, etc.)

    1st (~1960)

    Fe/K

    -

    Ca

    2nd (~1980)

    Fe/K

    Ce

    W,Cu

    -

    Ca

    3rd (~2000)

    Fe/K

    Ce, Ce-Zr

    Mg

    Mo

    Ca

    Cr

    SODECO2

    New Catalyst for EB dehydro-g

    enation with CO

    2as an oxidant

    KRICT

    > 65 ~ 80

    aStyrene yield, %

    Function

    Commercial catalysts

    Catalytic Activitya

    -

    < 55

    BASF/Shell

    55 ~ 60

    NGC, etc.

    60 ~ 65

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    15/37

    Catalyst for SODECO2ProcessCatalyst for SODECO2

    Process

    Function

    Active Phase

    Activity Promoter

    Stability Promoter

    Structural stabilizer

    Catalyst Support

    Component

    Fe3O4 V2O5

    Mn -

    Mo Sb

    Ca ,Mg Mg

    Promoted-Al2O3, ZrO2

    C i f l i f

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    16/37

    Catalyst

    Temperature (oC)

    Pressure (atm)

    Space velocity

    (LHSV, h-1)

    Carrier/EB (molar)

    Styrene yield (%)Styrene selectivity (%)

    Catalyst lifetime

    Others

    Commercial (steam)Commercial (steam)

    SOR: 625-575(600)

    EOR: 655-605(630)

    0.750.75-1.0

    8-12

    60-6694.0-96.5

    2 years

    Only H2product

    COCO22-EBD-EBD

    SOR: 525 575

    EOR: not fixed

    0.75

    1.0

    2-10

    55 6597.0 98.0

    ?

    X(CO2) = 40-45%

    CO/H2 = 1.0-1.5

    Comparison of catalytic performance

    between commercial and CO2-SM catalyst

    Comparison of catalytic performance

    between commercial and CO2-SM catalyst

    SOR : Start-of-run; EOR : End-of-run

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    17/37

    Mi cro(Lab. )Bench Pi l ot F (i n. ) 3/ 81/ 2 2 Reactor l ength(f t. ) 13 4 Catal yst vol ume 15ml

    500ml 4 l i ter Shape of catal yst granul e

    Microactivity Test Unit Bench-scale Mini Pilot

    Scal e-up Study vof SODECO2 Processf romLab to Mi ni Pi l ot

    Scal e- up Study vof SODECO2 Processf romLab to Mi ni Pi l ot

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    18/37

    Equipment

    CO2Feed

    EB Feed

    Pre-heater

    Temperature

    control

    Productanalysis

    Micro uint

    Mass flow controller

    Cylinder gas (R-grade)

    Syringe pump

    Preheating

    Zone

    Single heating zone

    Gas component; on-lined GC(TCD)

    Liq. component;

    Condensed to

    GC(FID)

    Bench scale

    Mass flow controller

    Cylinder gas (R-grade)

    LC pump

    Pre-heater (electric) wi

    th mixer

    5-zoned heater

    with PID controller

    Gas component; on-lined GC(TCD)

    Liq. component;

    Condensed to

    GC(FID)

    Mini Pilot

    Mass flow controller

    CO2from EG/EO Plant

    LC pump

    Pre-heater (electric)

    with mixer

    5-zoned heater

    with PID controller

    Gas component; on-lined GC(TCD)

    Liq. component;

    Condensed to

    GC(FID)

    Characteristics of Reactor SystemsCharacteristics of Reactor Systems

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    19/37

    Desi gn SMProducti on Capaci ty : 2.5 Ton / yr Catal yst vol ume = 500 ml Shape :spheroi d (F=3mm) LHSV = 1.0 h-1, CO2/EB = 5/1, 50%yield @ 560oC

    Design SM Production Capacity : 2.5 Ton / yr

    Catalyst volume = 500 ml Shape :spheroid ( =3mm)

    LHSV = 1.0 h-1, CO2/EB = 5/1, 50% yield @ 560oC

    Bench Scal e Uni t f or Ethyl benzene Dehydrogenati on wi th CO2

    Bench Scal e Uni t f or Ethyl benzene Dehydrogenati on wi th CO2

    SM Production via SODECO Process

    SM Production viaSM Production via SODECOSODECO22 ProcessProcess

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    20/37

    SM Production via SODECO2Process

    @ Pilot-scale system

    SM Production viaSM Production via SODECOSODECO22 ProcessProcess

    @ Pilot-scale system@ Pilot-scale system

    Annual SM Production : 20 Ton / yr

    Catalyst volume = 4 L; Shape: Tablet (5 x 3 mm)

    P = 0.75 atm, LHSV = 1.0 h-1, CO2/EB = 5/1,

    CO2Conv.= 42% @ 560oC (Dual 4 Tubes of Bench scale)

    C i f i l i

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    21/37

    Comparison of economical propertiesfor EBD processes

    Comparison of economical propertiesfor EBD processes

    Conventional

    600

    95.0

    100%

    $ 17 M

    Basis for calculation : 0.6Mt-SM/yr

    Temperature(oC)

    SM Selectivity(%)

    Economic effect

    Loss of latent heat

    Cost for

    super-heated steamEnergy saving

    Total

    SODECO2

    560

    96.5

    $ 2.7 M

    66 %

    $ 6.6M

    $ 9.3 M

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    22/37

    Key to SuccessKey to Success Scale-up Technology of Catalyst

    Stable Enough for industrial Application

    Project FinancingProject Financing

    Critical Technology-21 ProgramCritical Technology-21 ProgramGreenhouuse Gas Research Center

    Financed by the Ministry of Science and Technology

    SGCSGC DaesanDaesanPetrochemical ComplexPetrochemical Complex

    Pilot Scale Demonstration Unit for Catalyst Performance Test

    R l d P bli i

    Related Publications

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    23/37

    ? Patents

    -Catalyst for Dehydrogenating Aromatic Hydrocarbons with Carbon Dioxide, U.S. Patent 6,

    034,032, U.S.Patent 6,037,511(2000).

    -Dehydrogenation of Alkylaromatic Hydrocarbons using Carbon Dioxide as Soft Oxidant 2

    003-13139(Korea), 2003-057644(Japan), 03004382.2 (Europe), U.S. Patent under appli cation

    -4 Patents of Korea

    ? Research Papers

    Environ. Chall enge and Greenhouse Control in 21C,Green Chem (2003), Catal . Today,(2003),

    Res. Chem, I ntermed, 28, 461,(2002), Catal . Commun., 3, 227(2002); Appl . Organomet.

    Chem., 14, 815 (2001); J. Catal. ,195, 1 (2000); Catal. L ett.,65, 75 (2000); Catal . Lett.,69, 93

    (2000); Res. Chem. Intermed., 25(5), 411 (1999); Chem. Lett., (10), 1063 (1998) etc.

    ? Presentations

    ACS Keynote Lecture(2001), ACS Fuel Chem. Div. (1996), ACS Fuel Chem. Div. (2002),

    5th,6th, 7thI nt.Conf .Carbon Dioxide Uti l . (1999, 2001, 2003)

    Related PublicationsRelated Publications

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    24/37

    Dr. Sang-Eun Park

    Affiliation: Korea Research Institute of Chemical Technology

    E-mail:[email protected]

    Dr. Sang-Dr. Sang-EunEunParkPark

    Affiliation: Korea Research Institute of Chemical Technology

    E-mail:[email protected]

    Senior Researcher

    to

    Director

    KRICT1987-present

    Visiting

    Researcher

    Dept. of Chemistry,

    KAIST

    1987-1987

    Post Doc.Researcher

    Associate

    Dept. of Chemistry,

    Texas A&M Univ.

    1984-1986

    Chemical Engineeri

    ng Design Process

    Development

    Chief ResearcherCentral Research In

    st. Of Chon Enginee

    ring Co.

    1977-1984

    OthersTitleOrganizationYear

    PFD for Conventional Styrene Monomer Process

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    25/37

    ReactorR1 R2

    Steam

    Ethylbenzene

    Bz,Tol

    Ethylbenzene

    Recycle

    Styrene

    StyreneResiduCondensate

    Off-gas

    Column

    C1 C2 C3 C4

    H2O/HC

    CrudeSM

    Mixer

    Heater

    ~630oC

    ~560oC

    ~1atm

    ~0.7atm

    PFD for Conventional Styrene Monomer ProcessPFD for Conventional Styrene Monomer Process

    *Energy cost for superheated steam: 15 M dollar for 0.6 Mt-SM/year capacity

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    26/37

    Lummus/UOP Classic SMTM ProcessLummus/UOP Classic SMTM Process

    PFD of SODECO2Process

    PFD ofPFD of SODECOSODECO22ProcessProcess

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    27/37

    222H2

    Recycle GasCompressor

    CO2 PW

    Furnace

    A-Reactor

    B-Reactor

    EB

    Stripper

    Stripper

    S

    tripper

    Scrubb

    er

    Reactor

    G-W-HC

    separator

    G-W-HC

    separator

    To BTX

    EB Recycle

    BTColumn

    E

    BColumn

    Fin

    ishingColumn

    Residue

    Ab

    sorber

    Condensate

    CO2

    H2, CO CO

    2

    K2CO3Process co

    ndensate

    Steam(From OSBL)

    H2,H2O

    CO2

    Lummus/UOP-SMART Process;

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    28/37

    (Styrene Monomer Advanced Reheat Technology)

    The SMART SM process combines oxidative reheat technology with adiabatic dehydrogenation technology to produce high purity (99.85 wt% minimum) styrene monomer (SM) from e

    thylbenzene.

    This results in EB conversion of more than 80%, as well as eliminating the costly interstage reheater and reducing superheated steam requirements.

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    29/37

    UOP-SMART ProcessUOP-SMART Process

    Product

    Separation

    Heater

    Ethylbenzene

    Recycle ethylbenzene/hydrogen

    Hydrogen oxidation

    Hydrogen oxidation

    Ethylbenzenedehydrogenation

    Light ends

    Styrene

    Hydrogen Steam

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    30/37

    CO2 99.46% 99.9%

    H2O 0.51% -O2 50ppm 100ppm

    N2 50ppm 100ppm

    Methane - 300ppm

    Ethylene 140ppm 200ppm

    Ethane 80ppm 100ppm

    Component Case1 Case2

    *Separation of EO and CO2through absorption process to purify EO product

    Purity of CO2by-product from

    Ethylene Oxide (EO) Process

    Purity of CO2by-product from

    Ethylene Oxide (EO) Process

    C t l ti A ti it i EBD ith CO i B h l

    Catalytic Activity in EBD with COCatalytic Activity in EBD with CO in Bench scalein Bench scale

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    31/37

    0 100 200 300 400 5000

    20

    40

    60

    80

    EBCo

    nv.(%)

    Time-on-stream (h)

    40

    60

    80

    100

    SMSe

    lect.(%)

    Temp. = 560oC, LHSV = 1.0 h-1

    Wcat= 15 g, CO2/EB = 5.4/1.0

    Catalyst: Fe-V-Sb-Mg-Al

    Catalytic Activity in EBD with CO2in Bench-scaleCatalytic Activity in EBD with COCatalytic Activity in EBD with CO22in Bench-scalein Bench-scale

    SM Production EB Feeding : 30cc/hr

    SM Yield : ~ 60%

    SM Production = 370g/day

    SM ProductionSM Production EB Feeding : 30cc/hr

    SM Yield : ~ 60%

    SM Production = 370g/day

    New CO EBD catalyst vs Commercial steam EBD catalyst

    New CO2-EBD catalyst vs Commercial steam-EBD catalyst

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    32/37

    Lowering reaction temperature (up to 50oC) due to alleviation of

    chemical equilibrium with carbon dioxide

    SM Production : 20 M-t/Yr (SM Yield = 65% @ 560oC)

    500 550 600 6500

    20

    40

    60

    80

    100

    Styr

    eneYield(%)

    Reaction Temp. (oC)

    Equilibrium (CO2)Equilibrium (steam)

    Catalyst (CO2)

    Ce-K-Fe2O

    3(steam)

    CO2

    steam

    Commercial Steam-EBD cat

    New CO2-EBD cat

    Reaction condition:

    P = 0.75 atm, LHSV = 1.0 h-1,

    CO2/EB = 5/1 (CO2Cat.)

    CO2Conv.= 42% @ 560oC

    H2O/EB = 10/1 (Steam Cat.)

    Catalyst volume = 4 L

    New CO2-EBD catalyst vs. Commercial steam-EBD catalystNew CO2 EBD catalyst vs. Commercial steam EBD catalyst

    * Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

    Comparison of styrene yields in steam EB

    Comparison of styrene yields in steam-EB

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    33/37

    Comparison of styrene yields in steam-EB

    D and CO2-EBD catalysts

    Comparison of styrene yields in steam EB

    D and CO2-EBD catalysts

    Reaction conditions:

    Temp. = 600oC, LHSV = 1.0 h-1

    H2O(N2)/EB = 8/1; CO2/EB = 5.4/1

    Reaction conditions:

    Temp. = 600oC, LHSV = 1.0 h-1

    H2O(N2)/EB = 8/1;

    CO2/EB = 5.4/120

    40

    60

    80

    H2ON2

    CO2

    StyreneYie

    ld(%)

    Catalyst

    Commercial(K2O-Fe2O3)

    CCME-SM1

    CO2

    N2N2

    CO2

    H2O

    H2O

    *US Patent 6,037,511(2000) for catalyst; US Patent 6,034,032 (2000) for process

    Catalyst : Fe-V-Sb-Mg-Al

    Catalyst : Fe-V-Sb-Mg-Al

    Simplified Reaction Equations of EB Dehydrogenation

    Simplified Reaction Equations of EB Dehydrogenation

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    34/37

    [ ]* : a surface vacancy

    [O]s: a lattice oxygen atom

    Simplified Reaction Equations of EB Dehydrogenation

    via SODECO2and conventional

    Simplified Reaction Equations of EB Dehydrogenation

    via SODECO2and conventional

    C6H5CH2CH3+ [O]s C6H5CH=CH2 + H2O

    Oxidat iveDehyd rogenat ion of EB v ia SODECO2Process

    CO2 CO + [O]s[ ]*

    C6H5CH2CH3+ CO2 C6H5CH=CH2+ CO+ H2O

    C6H5CH2CH3 C6H5CH=CH2+ H2

    SimpleDehyd rogenation o f EB w i th Steam

    Steam

    Mechanism for Oxidative Dehydrogenation of EB with CO2

    Mechanism for Oxidative Dehydrogenation of EB with COMechanism for Oxidative Dehydrogenation of EB with CO22

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    35/37

    Support

    CO2

    Fe2+Fe3+

    Simp le Dehydrogenation Oxidative Dehydro genation

    [O]

    H2

    Support

    + CO + H2O+ H2

    Fe3O4Spinel

    Mechanism for Oxidative Dehydrogenation of EB with CO2over Iron-oxide catalyst

    y g 22over Iron-oxide catalystover Iron-oxide catalyst

    S.-E. Park et.al. , AIChE 2000 Spring Meeting, Atlanta, GA, Mar. 9 - 12, 2000.

    SODECOSODECO T h l D l t

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    36/37

    SODECOSODECO22Technology Development

    SODECO2(Styrene from Oxidative Dehydrogenation via CO2):

    New process for styrene production with CO2discharged from oxidation p

    rocess

    Discharge of 0.556 tone of carbon dioxide per 1 tone of ethylene oxide (EO)

    Purity of CO2as a by-product of EO process: > 99% (Others: 0.5% H2O a

    nd less than 300 ppm of C1 and C2 hydrocarbons)

    Production of EO: 600,000 t/year in Korea (CO2

    330,000 t/year in EO proc

    ess)

    SODECOSODECO22(Styrene from Oxidative Dehydrogenation via CO2):

    New process for styrene production with CO2discharged from oxidation p

    rocess

    Discharge of 0.556 tone of carbon dioxide per 1 tone of ethylene oxide (EO)

    Purity of CO2as a by-product of EO process: > 99% (Others: 0.5% H2O a

    nd less than 300 ppm of C1 and C2 hydrocarbons)

    Production of EO: 600,000 t/year in Korea (CO2330,000 t/year in EO proc

    ess)

    Creation of New Chemical Industry by Utilization of

  • 8/11/2019 transformacion del proceso antiguo corea.pdf

    37/37

    Creation of New Chemical Industry by Utilization of

    Carbon Dioxide Discharged from Chemical Process

    Petrochemical industry

    (styrene monomer)

    Polystyrene

    CO2mitigation

    Replacing steam

    Energy saving

    CO2utilization

    Polymerizationw/o purification

    CO2as a by

    -product in i

    ndustry

    Iron mill

    Iron oxide wasteCatalyst

    Processing