Transducer Sound Radiation

41
Transducer Sound Radiation

Transcript of Transducer Sound Radiation

Page 1: Transducer Sound Radiation

Transducer Sound Radiation

Page 2: Transducer Sound Radiation

Learning Objectives

Planar Immersion Transduceron-axis near field - far fieldradiation into solid-normal incidence, plane interfacediffraction correction

Spherically focused transduceron axis fieldfocal spot sizeradiation into solid-normal incidence, plane interfacediffraction correction

Page 3: Transducer Sound Radiation

Learning Objectives (continued)

Contact P-wave transducer on a solidwave types presentdirectivity functions

Angle beam shear wave transducer

Overview of beam theories

Page 4: Transducer Sound Radiation

Ultrasonic Beam Models

Plane piston transducer radiating into a fluid

z,z'

x,x'y,y'

rx = (x,y,z)

y = (x',y',z' = 0)

dS

dp x, y,z,ω( ) =−iωρvz ′ x , ′ y ,ω( )dS

2πexp ikr( )

r

vz

infinite baffle

Can show that each area element that is inmotion acts like a source of spherical waves:

Page 5: Transducer Sound Radiation

If we let vz(x',y',ω) = v0(ω) (piston model)

( ) ( ) ( ) ( )0 exp, , ,

2 S

i v ikrp x y z dS

rωρ ω

ωπ

−= ∫ y

Adding up all such sources over the face of the transducer givesthe Rayleigh-Sommerfeld Integral

( ) ( ) ( ) ( ), , exp, , ,

2z

S

v x y ikrip x y z dSr

ωωρωπ

′ ′−= ∫ y

Page 6: Transducer Sound Radiation

p x,ω( ) =−iωρv0

2πexp ikr( )

rdS y( )

S∫

For on-axis response of a circular transducer of radius, a

a

r

z

xy It can be shown that

the area element can be written as dS = r dr dφ

( ) ( ) ( )2 20, exp expp z cv ikz ik a zω ρ ⎡ ⎤= − +⎢ ⎥⎣ ⎦

direct wave

edge waves

Page 7: Transducer Sound Radiation

direct wave

edge wave

edge wave

baffle

Direct and edge waves as seen for a pulsed transducer

Page 8: Transducer Sound Radiation

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z/N

Near field distance N = a2/λMaxima: z = N/(2m+1) m = 0,1,2,…Minima: z = N/2n n = 1,2,3,...

a = 6.35 mmf= 5 MHzc = 1500 m/s

|p|ρcv0

Example: for a 5 MHz,1/2 in. diameter transducer radiating into water

N = 5 in. (approx.)

on-axis pressure:

Page 9: Transducer Sound Radiation

Paraxial approximation : a/z <<1

za

a2 + z2 ≅ z 1+a2

2z2 + ...⎛

⎝ ⎜

⎠ ⎟

p z,ω( ) = ρcv0 exp ikz( ) 1− expika2

2z⎛

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

plane wave C1(a,ω,z)

diffraction correction

on-axis pressure:

Page 10: Transducer Sound Radiation

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z/N

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z/N

exact result

paraxial result

|p|ρcv0

|p|ρcv0

on-axis pressure:

Page 11: Transducer Sound Radiation

function p = on_axis(zN, A,c,F)% exact on axis pressure from a piston source%radiating into a fluid. A is radius in mm, c the%wavespeed of the fluid in m/sec, F the frequency in MHz,% zN is the distance in the fluid divided by the near field%distance a^2/lamba (lamba is the wavelength)al= 1000*A*F/c; % a/lambaka = 2*pi*al; % ka for the transducerkz = ka*al*zN;ke = 2*pi*(al^2).*sqrt(zN.^2 + (1/al)^2);p = exp(i*kz) - exp(i*ke);

Page 12: Transducer Sound Radiation

function p = par_on_axis(zN, A,c,F)% paraxial axis pressure from a piston source%radiating into a fluid. A is radius in mm, c the%wavespeed of the fluid in m/sec, F the frequency in MHz,% zN is the distance in the fluid divided by the near field%distance a^2/lambaal= 1000*A*F/c; % a/lambaka = 2*pi*al; % ka for the transducerkz = ka*al*zN;ke = ka./(2*al.*zN);p = exp(i*kz).*(1 - exp(i*ke));

Page 13: Transducer Sound Radiation

MAT> z = linspace(.2, 4,500);MAT> p = on_axis(z,6.35,1500,5);MAT> plot(z, abs(p))MAT> xlabel('z/N')

MAT> p = par_on_axis(z, 6.35, 1500, 5);MAT> plot(z, abs(p))MAT> xlabel('z/N')

Page 14: Transducer Sound Radiation

On-axis response at normal incidence to a plane interface(paraxial approximation)

z1 z2

( ) ( )2

1;012 1 1 2 2, exp 1 exp

2pP P

p p p

ik av T ik z k zi z

ωω

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

u x d%

21 2

1

p

p

cz z z

c= +%

fluid solid

( ), ,C a zω %

dp

transmission coefficient(at normal incidence)

(velocity/velocity)same diffraction correctionexpression as for a single fluid

1 1, pcρ2 2 2, ,p sc cρ

displacement in thesolid

x

Page 15: Transducer Sound Radiation

z1 z2

a

d1

d2

x

z%

d

"virtual" point where the edgewave would arrive on-axis in the solid if cp2 = cp11 1, pcρ

2 2 2, ,p sc cρ

ε

2 2 1sin sinp pd dε θ θ= = so 2 22 2

1 1

sinsin

p p

p p

cd d d

cθθ

= =

which gives, in the paraxial approximation2 2 2 2

2 211 2 1 1

1 1

a a a ac cz d d d d z zc c

≅ = ≅+ + +%

θp1

θp1

θp2

Page 16: Transducer Sound Radiation

S

x

yr

R

y =(x,y,0)

e

r = x − y( )⋅ x − y( )= Re − y( )⋅ Re − y( )≅ R 1− 2e ⋅ y / R≅ R − e ⋅ y

The far-field is usually defined as z > 3N - alsocalled the "spherical wave region"

( ) ( ) ( )0 exp, exp

2 S

ikRi vp ik dxdy

Rωρ

ωπ

−= − ⋅∫x e y

Far-field beam of a planar piston transducer

Page 17: Transducer Sound Radiation

( ) ( ) ( )0

exp, 2 , ,x y

ikRp i v F e e

Rω π ωρ ω= −x

px = kex

py = key

( )( )

( )

( )( ) ( )

2

2

1, , exp2

1 . exp2

x y x yS

x y

F e e ip x ip y dxdy

x y ip x ip y dxdy

ωπ

π

+∞ +∞

−∞ −∞

= − −

= Θ − −

∫∫

∫ ∫

Define the 2-D spatial Fouriertransform of Θ , where Θ =

1 in S0 otherwise

⎧ ⎨ ⎩

as

Then the far field pressure can be written as

angular beam profile spherical wave

Page 18: Transducer Sound Radiation

a b

xy

θ

φ

F ex ,ey ,ω( )=ab

2π( )2

sin kbex

2⎛ ⎝ ⎜ ⎞

⎠ ⎟ sin

kaey

2⎛ ⎝ ⎜

⎞ ⎠ ⎟

kbex

2⎛ ⎝ ⎜ ⎞

⎠ ⎟ kaey

2⎛ ⎝ ⎜

⎞ ⎠ ⎟

ex = sinθ cosφey = sinθ sinφ

In spherical coordinates

Rectangular Piston Transducer

( ) ( )0

exp, 2

ikRp i v F

Rω π ωρ= −x

z

Page 19: Transducer Sound Radiation

Example far-field pattern of a rectangular transducer

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

x-axis distance

y-ax

is d

ista

nce

Page 20: Transducer Sound Radiation

Circular Piston Transducer

ae

θ

eρ = ex2 + ey

2 = sinθF ex ,ey ,ω( )=

a2

2πJ1 keρa( )

keρa( )

z = 3N

z = 6N

|p|ρcv0

( ) ( )0

exp, 2

ikRp i v F

Rω π ωρ= −x

-150 -100 -50 0 50 100 1500

0.2

0.4

0.6

0.8

1

1.2

1.4

radial distance, mm

Page 21: Transducer Sound Radiation

MAT> ang = linspace(-10, 10,500);MAT> [p,r] =far_field(ang,6.35,1500,5,3);MAT> plot(r,abs(p), '--')MAT> hold onMAT> [p,r] =far_field(ang,6.35,1500,5,6);MAT> plot(r,abs(p), 'red')MAT> xlabel('radial distance, mm')

function [p, rho] = far_field(ang,A, c, F, RN)% far_field computes the normalized far field pressure % for a circular piston (omitting the exp(ikR) phase term)% A is the radius of the transducer in mm, c the wavespeed%in m/sec, F the frequency in MHz, and RN is%the normalized radial distance in near field units.% rho is the transverse distance (normal to z) in mmka = 2*pi*(1000*A*F/c);al= 1000*A*F/c;x = ka*sin(ang*pi/180);rho =RN*(A*al)*sin(ang*pi/180);p = -i*(ka/(al*RN))*besselj(1,x)./(x+eps*(x ==0));

Page 22: Transducer Sound Radiation

Spherically Focused Piston Transducer RadiatingInto a Fluid

O’Neil Modeluniformvelocity, v0

Sf ... spherical surface

aR0

p x,ω( ) =−iωρv0

2πexp ikr( )

rdS y( )

Sf

Page 23: Transducer Sound Radiation

For x on the central axis

dS = r dr dφ/q0 q0 = 1 - z/R0

z

h

a

R0

x

p x,ω( ) =ρcv0

q0exp ikz( )− exp ikre( )[ ]

re = z − h( )2 + a2 h = R0 − R02 − a2

rer

Page 24: Transducer Sound Radiation

a = 6.35 mmR0 = 76.2 mmf= 10 MHzc = 1480 m/s

Geometric focus

on-axis pressure versus z/R0:

True focus

0 0.5 1 1.5 2 2.5 3 3.5 40

2

4

6

8

10

12

z/R

|p|ρcv0

Page 25: Transducer Sound Radiation

function p = focused_on_axis(zR, A,c,F,R)% on axis pressure of a spherically focused probe% as a function of the normalized distance, zR = z/R%A, radius of the transducer in mm. R , focal length in mm.%c, the wave speed in m/sec, and F the frequency in MHzal=1000*A*F/c;ka=2*pi*al;zN=(R/A)*(1/al)*(zR);kz=ka*al*zN;kR=2000*pi*F*R/c;kh=kR-sqrt(kR^2-ka^2);kre=sqrt((kz-kh).^2+ka^2);p = (exp(i*kz) -exp(i*kre))./(1-kz./kR);

MAT> z=linspace(.2,4,500);MAT> p = focused_on_axis(z,6.35,1480,10,76.2);MAT> plot(zr,abs(p))MAT> xlabel('z/R')

Page 26: Transducer Sound Radiation

Paraxial Approximation

re ≅ z +a2q0

2z

p z,ω( ) = ρcv0 exp ikz( ) 1q0

1− expika2q0

2z⎛

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

⎧ ⎨ ⎩

⎫ ⎬ ⎭

plane wave diffraction correctionC1(a, z, R0 ,ω)

q0 = 1 - z/R0

on-axis pressure:

Page 27: Transducer Sound Radiation

|p|ρcv0

|p|ρcv0

exact

paraxial

on-axis pressure:

0 0.5 1 1.5 2 2.5 3 3.5 40

2

4

6

8

10

12

z/R

0 0.5 1 1.5 2 2.5 3 3.5 40

2

4

6

8

10

12

z/R

Page 28: Transducer Sound Radiation

function p = par_focused_on_axis(zR, A,c,F,R)% on axis pressure of a spherically focused probe,paraxial approx.% as a function of the normalized distance, zR = z/R%A, radius of the transducer in mm. R , focal length in mm.%c, the wave speed in m/sec, and F the frequency in MHzal=1000*A*F/c;ka=2*pi*al;zN=(R/A)*(1/al)*(zR);kz=ka*al*zN;kR=2000*pi*F*R/c;qo=1-kz./kR;p = (1-exp(i*ka*(A/R)*qo./(2*zR)))./qo;

MAT> z=linspace(.2,4,500);MAT> p = par_focused_on_axis(z,6.35,1480,10,76.2);MAT> plot(zr, abs(p))MAT> xlabel('z/R')

Page 29: Transducer Sound Radiation

Another way to model focusing (in the paraxial approximation)

0R

zsr

O

suppose on a planar aperture we have a spherical wave propagating (generated by a lens, for example)

then on the aperture we have a phase given approximatelyin the paraxial approximation by

[ ]( )( )

2 20 0 0 0

20 0

exp exp

exp / 2

sik r R ik R R

ik R

ρ

ρ

⎡ ⎤⎡ ⎤− − = − + −⎢ ⎥⎣ ⎦⎣ ⎦

≅ −

( )0 0/ 1Rρ <<

Page 30: Transducer Sound Radiation

Thus, suppose we use a Rayleigh-Sommerfeld model for a planar transducer and place this phase (in the paraxial approximation) in the integral:

( ) ( ) ( ) ( )0 20 0

exp, exp / 2

2 S

i v ikrp ik R dS

rωρ ω

ω ρπ

−= −∫∫x

Using the paraxial approximation and evaluating this integral exactly for x on the transducer axis gives for a circular transducer of radius a:

( ) ( ) ( )0 20

0

exp, 1 exp / 2

cv ikzp z ika q z

ω ⎡ ⎤= −⎣ ⎦

Similarly, off-axis values will also represent those from a focused transducer

Page 31: Transducer Sound Radiation

a

R0

x0R

Wave field in the plane at the geometric focus of a spherically focused transducer

p/pmax

-10 -8 -6 -4 -2 0 2 4 6 8 10-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Wf

06

4.43 1.41f dB

RW Fka

λ= =

λ … wavelengthF = R0 / 2a … transducer

F number

( ) ( ) ( )0 1 020

0 0

exp /,

/ikR J kay R

p i v aR kay R

ω ωρ= −x

kay/R0

θ0 siny R θ=

Page 32: Transducer Sound Radiation

On-axis response at normal incidence to an interface(paraxial approximation)

z1 z2

( ) ( )2

1 0;012 1 1 2 2

0

1, exp 1 exp2

pP Pp p p

ik a qv T ik z k zi q z

ωω

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟− ⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭u x d

%

% %

21 2

1

00

1

p

p

cz z z

c

zqR

= +

= −

%

%%

fluid solid

( ), ,C a zω %

dp

transmission coefficient(velocity/velocity)

same diffraction correctionexpression as for a fluid

1 1, pcρ2 2 2, ,p sc cρ

displacement

x

Page 33: Transducer Sound Radiation

p0 … pressure

STn

x'

D

d1

d1s

p

θ’

x"

For bulk waves

u ′ x ,ω( ) = p0

2πρ1cs12 Ks ′ θ ( )d1

s exp iks1D( )D

dS ′ ′ x ( )ST

+ p0

2πρ1cp12 Kp ′ θ ( ) d1

p exp ikp1D( )D

dS ′ ′ x ( )ST

D = |x' - x"|

Contact P-wave Transducer Model

solid

stress-freesurface

Page 34: Transducer Sound Radiation

Directivity functions Kp ′ θ ( ) =cos ′ θ κ1

2 κ12 / 2 − sin2 ′ θ ( )

2G sin ′ θ ( )

Ks ′ θ ( ) = κ13 cos ′ θ sin ′ θ 1−κ1

2 sin2 ′ θ 2G sin ′ θ ( )

G x( ) = x 2 −κ12 / 2( )2

+ x2 1− x2 κ12 − x2 κ1 =

cp1

cs1

Kp , Ks

Kp

Ks

0 10 20 30 40 50 60 70 80 900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

angle, degrees

Page 35: Transducer Sound Radiation

function [kp,ks] = directivity(ang, cp, cs)% computes the directivity functions for a p-wave contact%transducer. ang is angle in degrees, cp, cs are p- and s-wave %speeds k = cp/cs;angr = ang*pi/180;x = sin(angr);c =cos(angr);g=(x.^2 -k^2/2).^2 + x.^2.*sqrt(1 - x.^2).*sqrt(k^2 - x.^2);kp = c.*(k^2).*(k.^2/2 -x.^2)./(2.*g);ks = (k*x <1).*c.*(k^3).*x.*sqrt(1 - k^2.*x.^2)./(2.*g);

MAT> x = linspace(0,90,200);MAT> [kp,ks] = directivity(x, 5900, 3200);MAT> plot(x, kp)MAT> hold onMAT> plot(x, ks)MAT> xlabel('angle, degrees')

Page 36: Transducer Sound Radiation

For θ' small Kp = 1, Ks = 0

u ′ x ,ω( ) =p0n

2πρ1cp12

exp ikp1D( )D

dSST

Dp

R

EpEs

HDp … Direct P-waveEp … Edge P-waveEs … Edge S-waveH … Head waveR … Rayleigh wave

Full set of waves :integralcontains directand edge P-waves

Page 37: Transducer Sound Radiation

Angle Beam Shear Wave Transducer Model

PSV , SH

PSV

P

SV

solid

solid

P

P

SV

“fluid”

solid

Can replace elasticwedge by equivalent"fluid" (neglect shearwaves)

(small for incidentP-wave beyondcritical angle)

Page 38: Transducer Sound Radiation

Ultrasonic Beam Models

Numerically Intense ModelsEFIT - LangenbergFinite Elements - LordBoundary Elements - RizzoEdge Elements - Schmerr, Lerch

Surface Integral ModelsGeneralized Point Source -SpiesRayleigh- Sommerfeld + High Freq. Asymptotics- Schmerr, Lhemery, others

Line Integral ModelsBoundary Diffraction Wave - Schmerr, Lerch

Page 39: Transducer Sound Radiation

Ultrasonic Beam Models

Other Basis Function ModelsGauss-Hermite Models - Thompson, Gray, Newberry,Minachi, Margetan

Multi- Gaussian ModelsMinachi, Spies, Schmerr and Rudolph, Cerveny (Seismology)

Page 40: Transducer Sound Radiation

Ultrasonic Beam Models

A few references – mostly paraxial models

Lerch, T.P., Schmerr, L.W. and A. Sedov,” Ultrasonic beam models: an edge element approach,” J. Acoust. Soc. Am., 104, 1256-1265, 1998.

Thompson, R. B. and E.F. Lopez,” The effects of focusing and refraction on Gaussian ultrasonic beams,” J. Nondestr. Eval., 4, 107-123, 1984.

Newberry, B.P. and R.B. Thompson,” A paraxial theory for the propagation of ultrasonic beams in anisotropic solids,” J. Acoust. Soc. Am., 85, 2290-2300, 1989.

Schmerr, L.W., Rudolph, M., and A. Sedov,” Modeling ultrasonic transducer wave fieldsfor general complex geometries and anisotropic materials,” Review of Progress inQuantitative Nondestructive Evaluation, D. O. Thompson and D.E. Chimenti, Eds., Plenum Press, New York, 19A, 953-960, 2000.

Page 41: Transducer Sound Radiation

Schmerr, L. W., Fundamentals of Ultrasonic Nondestructive Evaluation, Plenum Press, New York, 1998.

Spies, M., and M. Kroning,” Ultrasonic inspection of inhomogeneous welds simulated by Gaussian beam superposition,” Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D.E. Chimenti, Eds., Plenum Press, New York, 18A, 1107-1114, 1999.

Minachi, A., Margetan, F.J., and R.B. Thompson,” Reconstruction of a piston transducer beam using multi-Gaussian beams (MGB) and its applications,”Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D.E. Chimenti, Eds., Plenum Press, New York, 17A, 907-914, 1989.

Gengembre,N. and A Lhemery," Calculation of wide band ultrasonic fields radiated by water-coupled transducers into heterogeneous media," Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D.E. Chimenti, Eds., Plenum Press, New York, 18A, 1107-1131, 1999.

Ultrasonic Beam Models