Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph...

37
Coagulant Overview Tom Coughlin Chemtrade 2015

Transcript of Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph...

Page 1: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulant Overview

Tom CoughlinChemtrade

2015

Outlinebull Coagulation OverviewPurpose of CoagulationCoagulant types and characteristics

bull Coagulant OptionsUnderstanding the role of CoagulationOptimizing existing treatment programsModifying coagulant treatment programs Switching coagulants Co-coagulant programs

Coagulation Overview

Coagulation Overviewbull One objective of water treatment is to manage the removal of the water-

borne solids whose presence makes the water unsuitable for its intended use

bull Many of these solids are too small to settle out on their own and are stabilized by surface charges that resist their agglomeration These surface charges are generally negative

bull The purpose of inorganic coagulants is to destabilize solids and increase their size to facilitate their removal by settling and filtration processes

bull Removing solids by coagulation and filtration significantly reduces the disinfectant demand In turn this reduces the formation of DBPs

Filter TypesCommon in WaterTreatment

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Diameter (m)

MoleculesColloids

Particulates

AlgaeVirus

DE

Bacteria

Anthracite Sand amp GAC

Activated CarbonPore Openings

1 A 1 microm 1 mm

Membranes

Oocysts

o

Sizes of Solids Involved in Water Treatment

Coagulation Overviewbull As the graph demonstrates in the absence of coagulation many solids

are too small to be directly removed by filtration

bull Colloidal material (d lt 10 micro) typically represents a significant fraction of the solids to be removed and can have a rather insignificant effect on raw turbidities

bull In many cases a significant fraction of the TOC is colloidal

bull For many systems the required coagulant dosage is controlled by the amount of charge required to neutralize the surface charges on the colloidal particles

Coagulation Demandbull ldquoApproximaterdquo coagulant demand for low turbidity raw waters

061 mg of Al+3mg of raw water DOC

126 mg of Fe+3mg of raw water DOC

This translates to 68 ppm of alum (db)ppm of raw water TOC 50 ppm of ACH (neat basis)ppm of raw water TOC 126 ppm of 50 LFS (neat basis)ppm of raw water TOC 93 ppm of FeCl3 (neat basis)ppm of raw water TOC

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 2: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Outlinebull Coagulation OverviewPurpose of CoagulationCoagulant types and characteristics

bull Coagulant OptionsUnderstanding the role of CoagulationOptimizing existing treatment programsModifying coagulant treatment programs Switching coagulants Co-coagulant programs

Coagulation Overview

Coagulation Overviewbull One objective of water treatment is to manage the removal of the water-

borne solids whose presence makes the water unsuitable for its intended use

bull Many of these solids are too small to settle out on their own and are stabilized by surface charges that resist their agglomeration These surface charges are generally negative

bull The purpose of inorganic coagulants is to destabilize solids and increase their size to facilitate their removal by settling and filtration processes

bull Removing solids by coagulation and filtration significantly reduces the disinfectant demand In turn this reduces the formation of DBPs

Filter TypesCommon in WaterTreatment

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Diameter (m)

MoleculesColloids

Particulates

AlgaeVirus

DE

Bacteria

Anthracite Sand amp GAC

Activated CarbonPore Openings

1 A 1 microm 1 mm

Membranes

Oocysts

o

Sizes of Solids Involved in Water Treatment

Coagulation Overviewbull As the graph demonstrates in the absence of coagulation many solids

are too small to be directly removed by filtration

bull Colloidal material (d lt 10 micro) typically represents a significant fraction of the solids to be removed and can have a rather insignificant effect on raw turbidities

bull In many cases a significant fraction of the TOC is colloidal

bull For many systems the required coagulant dosage is controlled by the amount of charge required to neutralize the surface charges on the colloidal particles

Coagulation Demandbull ldquoApproximaterdquo coagulant demand for low turbidity raw waters

061 mg of Al+3mg of raw water DOC

126 mg of Fe+3mg of raw water DOC

This translates to 68 ppm of alum (db)ppm of raw water TOC 50 ppm of ACH (neat basis)ppm of raw water TOC 126 ppm of 50 LFS (neat basis)ppm of raw water TOC 93 ppm of FeCl3 (neat basis)ppm of raw water TOC

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 3: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulation Overview

Coagulation Overviewbull One objective of water treatment is to manage the removal of the water-

borne solids whose presence makes the water unsuitable for its intended use

bull Many of these solids are too small to settle out on their own and are stabilized by surface charges that resist their agglomeration These surface charges are generally negative

bull The purpose of inorganic coagulants is to destabilize solids and increase their size to facilitate their removal by settling and filtration processes

bull Removing solids by coagulation and filtration significantly reduces the disinfectant demand In turn this reduces the formation of DBPs

Filter TypesCommon in WaterTreatment

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Diameter (m)

MoleculesColloids

Particulates

AlgaeVirus

DE

Bacteria

Anthracite Sand amp GAC

Activated CarbonPore Openings

1 A 1 microm 1 mm

Membranes

Oocysts

o

Sizes of Solids Involved in Water Treatment

Coagulation Overviewbull As the graph demonstrates in the absence of coagulation many solids

are too small to be directly removed by filtration

bull Colloidal material (d lt 10 micro) typically represents a significant fraction of the solids to be removed and can have a rather insignificant effect on raw turbidities

bull In many cases a significant fraction of the TOC is colloidal

bull For many systems the required coagulant dosage is controlled by the amount of charge required to neutralize the surface charges on the colloidal particles

Coagulation Demandbull ldquoApproximaterdquo coagulant demand for low turbidity raw waters

061 mg of Al+3mg of raw water DOC

126 mg of Fe+3mg of raw water DOC

This translates to 68 ppm of alum (db)ppm of raw water TOC 50 ppm of ACH (neat basis)ppm of raw water TOC 126 ppm of 50 LFS (neat basis)ppm of raw water TOC 93 ppm of FeCl3 (neat basis)ppm of raw water TOC

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 4: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulation Overviewbull One objective of water treatment is to manage the removal of the water-

borne solids whose presence makes the water unsuitable for its intended use

bull Many of these solids are too small to settle out on their own and are stabilized by surface charges that resist their agglomeration These surface charges are generally negative

bull The purpose of inorganic coagulants is to destabilize solids and increase their size to facilitate their removal by settling and filtration processes

bull Removing solids by coagulation and filtration significantly reduces the disinfectant demand In turn this reduces the formation of DBPs

Filter TypesCommon in WaterTreatment

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Diameter (m)

MoleculesColloids

Particulates

AlgaeVirus

DE

Bacteria

Anthracite Sand amp GAC

Activated CarbonPore Openings

1 A 1 microm 1 mm

Membranes

Oocysts

o

Sizes of Solids Involved in Water Treatment

Coagulation Overviewbull As the graph demonstrates in the absence of coagulation many solids

are too small to be directly removed by filtration

bull Colloidal material (d lt 10 micro) typically represents a significant fraction of the solids to be removed and can have a rather insignificant effect on raw turbidities

bull In many cases a significant fraction of the TOC is colloidal

bull For many systems the required coagulant dosage is controlled by the amount of charge required to neutralize the surface charges on the colloidal particles

Coagulation Demandbull ldquoApproximaterdquo coagulant demand for low turbidity raw waters

061 mg of Al+3mg of raw water DOC

126 mg of Fe+3mg of raw water DOC

This translates to 68 ppm of alum (db)ppm of raw water TOC 50 ppm of ACH (neat basis)ppm of raw water TOC 126 ppm of 50 LFS (neat basis)ppm of raw water TOC 93 ppm of FeCl3 (neat basis)ppm of raw water TOC

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 5: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Filter TypesCommon in WaterTreatment

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Diameter (m)

MoleculesColloids

Particulates

AlgaeVirus

DE

Bacteria

Anthracite Sand amp GAC

Activated CarbonPore Openings

1 A 1 microm 1 mm

Membranes

Oocysts

o

Sizes of Solids Involved in Water Treatment

Coagulation Overviewbull As the graph demonstrates in the absence of coagulation many solids

are too small to be directly removed by filtration

bull Colloidal material (d lt 10 micro) typically represents a significant fraction of the solids to be removed and can have a rather insignificant effect on raw turbidities

bull In many cases a significant fraction of the TOC is colloidal

bull For many systems the required coagulant dosage is controlled by the amount of charge required to neutralize the surface charges on the colloidal particles

Coagulation Demandbull ldquoApproximaterdquo coagulant demand for low turbidity raw waters

061 mg of Al+3mg of raw water DOC

126 mg of Fe+3mg of raw water DOC

This translates to 68 ppm of alum (db)ppm of raw water TOC 50 ppm of ACH (neat basis)ppm of raw water TOC 126 ppm of 50 LFS (neat basis)ppm of raw water TOC 93 ppm of FeCl3 (neat basis)ppm of raw water TOC

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 6: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulation Overviewbull As the graph demonstrates in the absence of coagulation many solids

are too small to be directly removed by filtration

bull Colloidal material (d lt 10 micro) typically represents a significant fraction of the solids to be removed and can have a rather insignificant effect on raw turbidities

bull In many cases a significant fraction of the TOC is colloidal

bull For many systems the required coagulant dosage is controlled by the amount of charge required to neutralize the surface charges on the colloidal particles

Coagulation Demandbull ldquoApproximaterdquo coagulant demand for low turbidity raw waters

061 mg of Al+3mg of raw water DOC

126 mg of Fe+3mg of raw water DOC

This translates to 68 ppm of alum (db)ppm of raw water TOC 50 ppm of ACH (neat basis)ppm of raw water TOC 126 ppm of 50 LFS (neat basis)ppm of raw water TOC 93 ppm of FeCl3 (neat basis)ppm of raw water TOC

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 7: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulation Demandbull ldquoApproximaterdquo coagulant demand for low turbidity raw waters

061 mg of Al+3mg of raw water DOC

126 mg of Fe+3mg of raw water DOC

This translates to 68 ppm of alum (db)ppm of raw water TOC 50 ppm of ACH (neat basis)ppm of raw water TOC 126 ppm of 50 LFS (neat basis)ppm of raw water TOC 93 ppm of FeCl3 (neat basis)ppm of raw water TOC

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 8: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulant Demand--Example

May 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 9: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulant Demand--ExampleMay 30 2007 July 2 2007

Raw Water Turbidity 45 NTU 48 NTU

Raw Water pH 77 765

Raw Water Alkalinity 95 ppm 100 ppm

Coagulant Dosage 40 ppm 60 ppm

UV-254 Absorbance 040 060

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 10: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Characteristics of Inorganic Coagulants

bull Have large positive valence (for charge neutralization) Coagulant efficiency significantly increases with its valence (Schulze-Hardy Rule)

bull Form insoluble precipitates in water (for adsorption and sedimentation)

bull Are inexpensive

bull Aluminum and Ferric-based salts meet these criteria and are almost universally used

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 11: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Cation ComparisonValence is the charge on an ion in solution

Cation ValenceCoagulation Efficiency

Floc Formation Unit Cost

Na+1 +1 Poor Extremely Poor ModerateCa+2 +2 Fair Poor ModerateAl+3 +3 Very Good Very Good LowFe+3 +3 Very Good Very Good LowZr+4 +4 Excellent Very Good Very High

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 12: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

071001

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
Raw Water 2 31 0000
Alum 1300 195 10 347 678 318 0060 4484 126 7 24 226 13585 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
Alum 1400 211 10 374 679 439 0061 4953 139 8 21 323 14630 3374 0225 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 500 63 292 702 198 0095 6120 172 9 23 258 9576 1613 0107 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 600 76 350 701 145 0075 4523 127 10 21 323 11491 1935 0129 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 700 89 409 700 190 0062 4212 119 11 19 387 13406 2258 0150 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 467 698 177 0065 4118 116 12 18 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 000
Raw Water 3 00 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 355 599 1381 0092 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 387 749 1727 0115 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 387 898 2072 0138 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 419 1048 2417 0161 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 516 1198 2763 0184 Hyper+Ion 1090 1243 024 134 06907 29947 4605E-03
Raw Water 4 00 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 15 22 420 725 284 0049 4271 120 21 15 400 867 2000 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 20 30 524 720 258 0054 4208 118 22 15 400 1017 2345 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 25 37 628 718 259 0050 4545 128 23 16 360 1167 2691 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03
AlumHI-1090 400 60 10 30 45 732 715 189 0055 4316 122 24 14 440 1316 3036 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 13: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

071001 (2)

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 71001 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 79 754 215 300
SETTLED WATER 16
FILTERED WATER
FINISHED WATER 003 840 Caustic added after filtration
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 790 000 dry-basis MIXING 05 3000 mixing Sets sampled at 15 in below the surface
Cat Poly 08 000 SPEEDS 90 800 coagulation
Non Poly 0027 0 AND TIMES 9 60 coagulation
90 400 coagulation
TOTAL 0000 3552 250 00 Settling
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX Sample mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1500 226 10 400 499 000 1 20 355 15675 3615 0241 Alum 434 0032 133 02410 10450 1607E-03
Alum 1600 241 10 427 656 540 000 2 19 387 16720 3856 0257 Alum 434 0032 133 02410 10450 1607E-03
Alum 1700 256 10 454 580 000 3 20 355 17765 4097 0273 Alum 434 0032 133 02410 10450 1607E-03
Clar+Ion A405P 1000 149 427 695 208 0052 4263 120 4 19 387 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1100 164 470 694 200 0056 6125 172 5 20 355 10920 2519 0168 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
Clar+Ion A405P 1200 179 513 689 143 000 6 21 323 11913 2747 0183 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03
000 0000 000 000 0000E+00
000 000
Raw Water 3 000 26
Alum 1200 180 10 320 671 521 0053 5276 149 13 18 308 1254 2892 0193 Alum 434 0032 133 02410 10450 1607E-03
Hyper+Ion 1090 200 30 10 400 777 538 0046 5275 149 14 20 231 599 230 0092 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 250 37 10 500 774 449 0053 4994 141 15 19 269 749 288 0115 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 300 45 10 600 770 413 0054 5186 146 16 19 269 898 345 0138 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 350 52 10 701 767 400 0047 5304 149 17 18 308 1048 403 0161 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Hyper+Ion 1090 400 60 10 801 765 291 0050 5083 143 18 15 423 1198 460 0184 Hyper+Ion 1090 1243 024 134 01150 29947 4605E-03
Raw Water 4 25
Clar+Ion A405P 1000 149 427 688 275 0059 4689 132 19 19 240 9927 2290 0153 Clar+Ion A405P 412 0051 134 02290 09927 1526E-03 8481E-05
Alum 1300 195 10 347 686 452265 0050 4842 136 20 15 400 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 15 22 407 725 284 0049 4271 120 21 15 400 867 1137 0133 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 20 30 507 720 258 0054 4208 118 22 15 400 1017 1194 0156 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 25 37 607 718 259 0050 4545 128 23 16 360 1167 1252 0179 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
AlumHI-1090 400 60 10 30 45 707 715 189 0055 4316 122 24 14 440 1316 1309 0202 AlumHI-1090 434 0032 133 02410 10450 1607E-03 125373 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 71001 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 14: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

052504

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52504 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 300
SETTLED WATER
FILTERED WATER
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 3552
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk Al Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 31
Alum 1250 188 10 360 292 1000 13062 3013 0201 Alum 434 0032 133 02410 10450 1607E-03
Alum 1350 203 10 387 268 1000 14107 3254 0217 Alum 434 0032 133 02410 10450 1607E-03
Ferric Sulfate (60) 750 95 10 465 073 000 1000 14364 2419 0161 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 850 108 10 523 090 000 1000 16279 2742 0183 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 950 120 10 581 102 000 1000 18194 3064 0204 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 3 00 31
Alum 1300 195 10 374 350 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 15 224 396 204 1000 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 15 224 410 217 1000 627 1257 0142 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 15 224 423 225 1000 679 1378 0150 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 15 224 436 236 1000 731 1498 0158 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
00
Raw Water 3 00 31
Alum 1300 195 10 374 280 1000 1358 3133 0209 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 10 125 187 352 178 1000 549 1108 0122 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 366 120 1000 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 379 168 1000 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 550 83 10 125 187 392 180 1000 705 1469 0146 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52504 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 15: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

052604

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Date 52604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 641 768 1150 265
SETTLED WATER 14 730
FILTERED WATER 005
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 660 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 220
PRODUCT DOSE ACTUAL Polymer ACH ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 4 308 (25)
Alum 1300 195 10 374 710 292 0054 2429 110 181 412 13585 3133 0209 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 800 120 10 414 740 072 0063 2276 103 212 312 8156 944 0125 AlumLC 423 0058 133 0118 10195 1568E-03
AlumLC 1000 150 10 510 739 094 0050 2320 105 204 338 10195 1180 0157 AlumLC 423 0058 133 0118 10195 1568E-03
Ferric Sulfate (60) 650 82 10 406 710 072 0080 2431 111 198 357 12449 2097 0140 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
Ferric Sulfate (60) 800 101 10 494 700 065 0068 2255 103 179 419 15322 2580 0172 Ferric Sulfate (60) 1200 007 158 0323 192 2148E-03
00 000 0000 000 000 0000E+00
Raw Water 5 00 321 (25)
Alum 1000 150 10 294 720 177 0069 2284 104 196 402 1045 2410 0161 Alum 434 0032 133 0241 10450 1607E-03
Fer+Ion A4025P 550 70 385 734 103 0072 2417 110 212 312 10270 1730 0115 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A4025P 700 89 490 713 049 0064 2243 102 193 373 13071 2201 0147 Fer+Ion A4025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 550 70 385 713 111 0095 2770 126 215 302 10270 1730 0115 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
Fer+Ion A5025P 700 89 490 709 064 0066 2236 102 196 364 13071 2201 0147 Fer+Ion A5025P 1170 0084 157 0314 187 2094E-03
00 000
Raw Water 6 00 328 (25) 000
AlumHI-1090 400 60 10 150 224 421 745 150 0062 2210 100 205 375 4180 1137 0134 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 10 125 187 387 743 163 0061 2205 100 210 360 4702 1228 0130 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 125 187 400 736 164 0073 2226 101 212 354 5225 1349 0138 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 10 100 149 352 732 138 0070 2136 097 206 372 5225 1320 0127 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
AlumHI-1090 600 90 10 100 149 379 729 142 0074 2325 106 204 378 6270 1561 0143 AlumHI-1090 434 0032 133 0241 10450 1607E-03 0115 4644E-03
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 52604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 16: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

111604

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Date 111604 Route TEST LOCATION
North Bay Regional Water Treatment Plant
General Chemical Corporation City of FairfieldCity of Vacaville
Syracuse Technical Center
344 West Genesee Street (800)255-7589
Syracuse NY 13202 (315)478-2323 PERSONNEL Tom Coughlin amp Mark Davis
PRESENT WATER QUALITY TURB pH COLOR TEMP HARD ALK Fe Mn TOC FLOW
NTU F mgL mgL mgL mgL mgL MGD
RAW WATER 30 722 860 170
SETTLED WATER 13 730
FILTERED WATER 003 826
FINISHED WATER
FINISHED WATER
PRODUCT DOSE $ $MG VENDOR REMARKS JAR TEST MIN RPM REMARKS
Alum 670 000 dry-basis MIXING 05 3000 rapid mix Sets sampled at 15 in below the surface
Cat Poly 000 SPEEDS 90 60 flocculation
Non Poly 0 AND TIMES 9 400 flocculation
TOTAL 9 20 flocculation
Tested on Non-Ozonated North Bay Aquaduct Raw Water 250 00 settling
Jar Test Volume 20 L 0000 202
Cat Non-Ionic
PRODUCT DOSE ACTUAL Polymer Polymer HI-1090 ACTUAL Cost SETT TURB TURB FILT FILT TOC TOC Sludge Alk M+3 Metal
TESTED ppm microliter ppm ppm ppm microliter $MG pH SETT FILT Time INDEX mgl Removal (MMG) Reduction (mMl) Metal $lb SP Grav Alk Red MG Sludge mMl
Raw Water 1 (25)
Alum 1350 203 07 379 679 352 0093 3546 176 1 00 14107 3254 0217 Alum 434 0032 133 0241 10450 1607E-03
AlumLC 785 amp 485 (stab) 800 119 07 486 698 084 0056 2346 116 2 00 5403 1035 0061 AlumLC 785 amp 485 (stab) 423 007 135 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 600 86 07 369 700 074 0007 2847 141 3 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (stab) 800 115 07 486 695 066 0062 2770 137 4 00 5403 1035 0061 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 600 86 07 369 692 088 0069 2611 129 5 00 4053 776 0045 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
AlumLC 80 amp 45 (unstab) 800 114 07 486 686 087 0074 2457 122 6 00 5403 1035 0061 AlumLC 80 amp 45 (unstab) 423 007 14 0129 068 7575E-04
000 0000 000 000 0000E+00
Raw Water 2 321 (25)
Alum 1350 203 07 002 379 672 175 0060 2600 129 7 00 1411 3254 0217 Alum 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 400 60 07 002 150 224 388 702 064 0054 2393 118 8 00 575 1137 0134 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 450 68 07 002 125 187 358 700 080 2413 119 9 00 601 1228 0130 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 125 187 371 696 065 2485 123 10 00 653 1349 0138 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumHI-1090 500 75 07 002 100 149 327 698 063 2414 120 11 00 627 1320 0127 AlumHI-1090 434 0032 133 02410 10450 1607E-03 0115 4644E-03
AlumLC 80 amp 45 (stab) 600 86 07 002 369 707 046 0058 2637 131 12 00 4053 776 0045 AlumLC 80 amp 45 (stab) 423 007 139 0129 068 7575E-04
000
General Chemical is not engaged in the business of consulting or providing technical operational or safety
advice for a fee Any such advice provided has been furnished as an accomodation and without any warranty
or representation as to its accuracy fitness for a particular purpose or any other matter The recipients use or
non-use of such advise is madesolely at the discrection and risk of the recipient
Date 111604 TEST LOCATION
00 North Bay Regional Water Treatment Plant
PRODUCT DOSE DOSE COLOR FLOC TURB TURB pH FILT Al2O3 CHEM SLDG MIX
TESTED mgL SIZE SETT FILT SETT INDEX mgL MG TIME
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
General Chemical is not engaged in the business of consulting or providing technical operational or safety advice for a fee Any such advice provided has been furnished
as an accommodation and without charge and is made without any warranty or representation as to its completeness accuracy fitness for a particular purpose or any other
matter The recipients use or non-use of such advice is made solely at the discretion and risk of the recipient
Page 17: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet2

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Cation Valence Coagulation Efficiency Floc Formation Unit Cost
Na+1 +1 Poor Extremely Poor Moderate
Ca+2 +2 Fair Poor Moderate
Al+3 +3 Very Good Very Good Low
Fe+3 +3 Very Good Very Good Low
Zr+4 +4 Excellent Very Good Very High
Page 18: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet1

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
C1V1 = C2V2
Jar Volume mls 2000 2000
Desired Conc ppm 002 070
Stock Soln Conc ppm 700 20000 50
Dosage mls 00571 00700 002
Dosage ul 571 700 1
Stock Soln Conc
ppm
Neat 1000000
10 100000
1 10000
010 1000
001 100
0001 10
Anionic Polymer 1300 gms
Dilution water 480 gals
00007152868
007
Page 19: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulant Mechanismsbull Step 1 Charge neutralization significantly reduces the electrical charge

repulsion between particles allowing them to come together

bull Step 2 Metal hydrolysis forms floc particles

bull Step 3 Adsorption of neutralized particles onto floc particles

bull Step 4 Particles grow larger due to flocculation

bull Step 5 Particles settle Small particles are adsorbed onto settling particles (ldquofloc sweeprdquo)

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
Page 20: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulant Mechanismsbull Charge neutralization occurs on an atomic ldquoscalerdquo Thus in the early

stages of treatment the number of charges delivered by the coagulant is more important than the weight of the metal

bull The number of metal atoms delivered by the coagulant also affects the number of floc particles created

bull Thus the concentration of atomic units of M+3 delivered affects coagulant performance more than the weight of M+3 (Useful to remember when comparing the performance of alum and ferric salts)

bull Itrsquos also possible that some coagulants are more effective on an ldquoequal molarrdquo basis than others (that is ldquosimple coagulantsrdquo vs ldquopolymeric inorganic coagulantsrdquo)

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
Page 21: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Charge Neutralization

Under-Treatment Treatment Over-Treatment

_ _ _

+ +_ _ _

+ +_ _ _

+ +

_ _ _

+ + +_ _ _

+ + +_ _ _

+ + +

_ _ _

+ + + +

_ _ _

+ + + +_ _ _

+ + + +

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
Page 22: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Performance vs Alum Dosage

0

5

10

15

20

25

30

35

40

45

0

05

1

15

2

25

3

35

4

45

5

0 10 20 30 40 50

T

OC

Rem

oval

Settl

ed T

urbi

dity

NTU

Alum Dosage mgL (db)

Settled Turbidity and TOC Removalvs Alum Dosage

Settled Turbidity

TOC Removal

Under-Treatment

Treatment

Over-Treatment

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
Page 23: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Chart1

Under-Treatment
Treatment
Over-Treatment
Settled Turbidity
TOC Removal
Alum Dosage mgL (db)
Settled Turbidity NTU
TOC Removal
Settled Turbidity and TOC Removal vs Alum Dosage
5
0
35
0119047619
275
01738095238
2
02214285714
12
02619047619
08
03011904762
12
03388095238
16
03752380952
22
04116666667

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
0 0
10 10
15 15
20 20
25 25
30 30
35 35
40 40
50 50
Page 24: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet1

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Hypothetical Performance vs Dosage Plot
Raw Turbidity 5 NTU
Raw TOC 42 mgL
Raw pH 8
Raw alkalinity 59 mgL
Theoretical Minimum Alum Dosage 286 mgL
Required TOC Removal 45
Settled Delta Settled
Dosage Turbidity TOC TOC TOC
Coagulant mgL NTU mgL mgL Removal
Alum 0 5 0000 42 0
Alum 10 35 0500 370 119
Alum 15 275 0230 347 174
Alum 20 2 0200 327 221
Alum 25 12 0170 310 262
Alum 30 08 0165 294 301
Alum 35 12 0158 278 339
Alum 40 16 0153 262 375
Alum 50 22 0153 247 412
Page 25: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet2

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 26: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet3

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 27: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Most Commonly-Used Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains only ldquohydratedrdquo metal ionsAluminum Sulfate (Alum)Ferric Sulfate (LFS)Ferric Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls and ACH)

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 28: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Equal Metal Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)39 Ferric Chloride 134 1418 67 (27 db)

60 Ferric Sulfate 120 1580 75 (45 db)

50 Ferric Sulfate 100 1435 90 (45 db)Liquid Alum 434 1335 100 (485 db)ACH 1217 134 36

PACS 571 124 76

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 29: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Metal Equivalent Dosagesbull 100 mgL (ldquoliquidrdquo basis) of liquid alum 100 mgL x (00434 mg of Almg of alum) x (1 mmole of Al27 mg

of Al) = 01607 mmoleL of Al

bull 50 LFS 01607 mmoleL of Fe x (558 mg of Femmole of Fe) x (1 mg of

50 LFS01 mg of Fe) = 897 mgl of 50 LFS (ldquoliquidrdquo basis)

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 30: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Organic Coagulantsbull DADMAC

bull EPI DMA

bull Polymer-Inorganic Coagulant Blends 2 by weight to 50 by weight

bull Generally speaking polymer type is more important than polymer MWmdashthat is some waters are more ldquoresponsiverdquo to one polymer type that the other

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 31: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Settling Aidsbull High molecular weight polymersDryEmulsionEither type requires a properly designed addition system to function

properly Emulsions are typically easier to use

bull Characterized by MW and charge (anionic vs non-ionic) Performance may be controlled by MW more than charge

bull Typically used at dosages of 003 ndash 03 mgl ldquoactive basisrdquo Dosage is limited to avoid possible filter issues

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 32: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Coagulant Types

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 33: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Aluminum-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Al+3 (H2O)6

Aluminum Sulfate (Alum)Aluminum Chloride

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Al speciesrdquoPolyaluminum Chlorides (PACls)Polyaluminum sulfatesPolyaluminum silicate sulfates

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 34: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Ferric-Based Inorganic Coagulants

bull ldquoSimple Coagulantsrdquo Bulk solution contains Fe+3 (H2O)n

Ferric ChlorideFerric SulfateFerric ChlorideSulfate blends

bull ldquoPolymeric Coagulantsrdquo Bulk solution contains ldquopolymeric Fe speciesrdquoPoly-Ferric Sulfate

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 35: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Characteristics of ldquoSimplerdquo Coagulantsbull To a first approximation simple coagulants tend to exhibit comparable

performance when dosed on an ldquoequal (molar) metals basisrdquo

bull Coagulant species are ldquosimplerdquo metal-hydroxy ions eg Al(OH)2+

bull Since speciation is pH-dependent optimal performance is generally pH-dependent The optimal pHs for TOC removal are generally considered to beFor simple Al salts 64 ndash 70For simple Fe+3 salts lt 60

bull Hydrolysis reaction M+3 + 3 H2O rArr M(OH)3 + 3 H+

Note 1 mole of metal releases 3 moles of acid This correlates with the post-treatment alkali requirement

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 36: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Alum - Ferric Dosage ConversionsEqual Metals

Specific Molar DosageProduct Metal Gravity ppm (liquid basis)

39 Ferric Chloride 134 1418 67

ldquo60 rdquo Ferric Sulfate 120 1580 75

ldquo50 rdquo Ferric Sulfate 100 1435 90

Liquid Alum 434 1335 100(485 DB)

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 37: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

TOC Removal Data

00

100

200

300

400

500

01 015 02 025 03

DO

C R

emov

al (

)

Coagulant Dosage (mM of M+3)

Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606

Alum

60 LFS

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 38: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Fig1--DOC (2)

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 39: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

TOC Removal Data (2)

0

5

10

15

20

25

30

35

40

45

0000 0050 0100 0150 0200 0250 0300

TOC

Rem

oval

()

Coagulant Dosage (millimoles of M+3L)

TOC Removal vs Coagulant DosageHalifax Nova Scotia

AWWARF Report

Alum pH = 66 LFS pH = 67

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
Page 40: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

AWWARF Data

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Jar Test Data
Source AWWARF Report Removal of DBP Precursors by Enhanced Coagulation and Settling
Application Lawrence KS
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
015 350 015 390 014 330 013 280
030 390 030 490 030 450 030 480
050 380 050 550 050 600 045 550
070 500 070 600 070 650 063 650
080 530 080 400 080 770
Application Grand Forks ND
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
030 360 055 400
070 480 075 500
100 550 100 650
120 600 140 700
140 630
Application New Castle PA
Alum AlCl3 LFS FeCl3
Dosage TOC Dosage TOC Dosage TOC Dosage TOC
mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal mM of Al+3 Removal
0025 100 0050 00
0075 270 0100 170
0100 300 0150 350
0130 350 0200 380
0175 380 0250 380
0200 400
pH = 66 pH = 67
Page 41: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

AB Jewell

Alum
60 LFS
Coagulant Dosage (mM of M+3)
DOC Removal ()
Figure 1 DOC Removal vs Coagulant DosageCity of Tulsa--AB Jewell Treatment PlantGeneral Chemical Jar Testing--101606
027548209366391185
02732394366197183
03223140495867769
02957746478873239
03415977961432506
03464788732394366
035812672176308535
03830985915492957
03663911845730028
04112676056338028
038842975206611563
044788732394366193

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
01285376896 012888
0160672112 01611
019280653439999998 019331999999999996
022494095679999998 022553999999999996
02570753792 025776
02892098016 028997999999999996
Page 42: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Phoenix

Alum
60 LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
Figure 1A TOC Removal vs Coagulant DosageCity of Phoenix--Val Vista PlantGeneral Chemical Jar Testing--021408
02677165354330707
02188976377952756
03385826771653543
02881889763779528
040629921259842516
034173228346456697

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
014467823999999999 014467824
019290432 019290431999999996
02411304 024113040000000002
Page 43: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

LR-ARK

28 mgl
38 mgl
48 mgl
Settled Water pH
TOC Removal
Figure 7 TOC Removal vs Settled Water pH for Alum TreatmentWilson Plant--111303
02142857142857142
01428571428571428
01428571428571428
02499999999999999
02142857142857142
02142857142857142
02499999999999999
02499999999999999
02499999999999999

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
62 592 557
633 61 604
66 641 628
Page 44: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Acid Alums

Alum
A5
A7
A10
Coagulant Dosage (mgl neat basis)
TOC Removal
Toc Removal vs Coagulant Dosage
009677419354838723
0032258064516129115
006451612903225812
00625
012903225806451613
012903225806451613
012903225806451613
015625
019354838709677424
019354838709677424
016129032258064513
01875
022580645161290325
022580645161290325
022580645161290325
021875
025806451612903236
025806451612903236
025806451612903236
02500000000000001
029032258064516125
029032258064516125
029032258064516125
02812500000000001

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
350 350 350 350
500 500 500 500
650 650 650 650
800 800 800 800
950 950 950 950
1100 1100 1100 1100
Page 45: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Lawrence KS

Alum
AlCl3
LFS
FeCl3
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageLawrence KSAWWARF Report
035
039
033
028
039
049
045
048
038
055
06
055
05
06
065
065
053
04
077

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
015 015 014 013
03 03 03 03
05 05 05 045
07 07 07 063
08 08 08
Page 46: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Grand Forks ND

Alum
LFS
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageGrand Forks NDAWWARF Report
036
04
048
05
055
065
06
07
063

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
03 055
07 075
10 10
12 14
14
Page 47: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

New Castle PA

Alum pH = 66
LFS pH = 67
Coagulant Dosage (millimoles of M+3L)
TOC Removal ()
TOC Removal vs Coagulant DosageHalifax Nova ScotiaAWWARF Report
01
00
027
017
03
035
035
038
038
038
04

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
0025 005
0075 01
01 015
013 02
0175 025
02
Page 48: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants are Al-based products having OH groups incorporated into their structure

bull Types of polyaluminum coagulants include the following empirical formulas

Al2(OH)6-x Clx Polyaluminum Chloride = PACl

Al2 (SO4)z(OH)(6-(x+2z)) Clx Polyaluminum Chlorosulfate = PACS

Al2(OH)(6-2z)(SO4)z Polyaluminum Sulfate = PAS

Al2(OH)(6-2(z+w))(SiOx)w (SO4)z Polyaluminum Silicate Sulfate = PASS

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 49: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Polyaluminum Coagulants

bull ldquoPolyaluminumrdquo coagulants can be considered to be partially ldquopre-hydrolyzedrdquo The degree of ldquopre-hydrolysisrdquo varies with the product and is defined as the productrsquos Basicity

Basicity = 100 x [OH-] 3 x [Al+3] where

the species concentrations are in moleliters

bull The basicity represents the percentage of the productrsquos Al valence that is associated with OH groups

bull Thus each polyaluminum coagulant type represents a unique ldquofamilyrdquo of coagulants with each family member having a different basicity (and treating characteristics)

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 50: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Polyaluminum Coagulants

Basicity () = x 100

bull Low Basicity = 10 - 33

bull Middle Basicity = 34 - 67

bull High Basicity = 68 - 83

[OH-]3[Al+3]

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 51: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Polyaluminum Chlorides

bull Basicities can range from 10 - 83

bull Al content can increase with increasing Basicity (the basicity stabilizes the product)

bull The amount of polymeric species increases with increasing basicity

bull Products having Basicities gt 70 contain polymeric species possessing high cationic charge and are very efficient coagulants These products are called aluminum chlorohydrates (ACHs)

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 52: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Polymeric Aluminum Speciesbull Polymeric species include Al2(OH)2(H2O)8

+4

Al6(OH)12(H2O)12+6

AlO4Al12(OH)24(H2O)12+7

Due to their higher valence these species are much more effective coagulants than +3 valence species

bull The proportion of high valence species increases with increasing Basicity

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 53: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Characteristics of ldquoPolymericrdquo Coagulantsbull Generally contain ldquoinorganic polymericrdquo species that are more

efficient than ldquosimple metal-hydroxyrdquo species

bull Effect of increasing basicityCoagulant performance becomes less pH-dependentCoagulantrsquos alkalinity consumption decreases (ie less pH

suppression) In turn this means less post-treatment alkali demand For example consider the hydrolysis reaction of an ACH having a basicity of 83

Al2(OH)5+1 + 1 H2O rArr 2 Al(OH)3 + 1 H+

Note 2 moles of metal ions releases 1 mole of acid Thus using these products significantly reduces the post-treatment alkali requirement

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 54: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Characteristics of Simple vs Polymer Coagulants

bull Alkalinity consumption ACH asymp PASS lt PACl lt PAS lt Alum asymp LFS lt FeCl3

bull Coagulant (Dosage) Efficiency ACH gt PACl ge PAS = PASS gt Alum = LFS = FeCl3

bull Ease of Use Alum = LFS = FeCl3 gt PAS = PASS gt PACL gt ACH (Based on ldquowidth of dosage treatment windowrdquo)

bull Unit Pricing ACH gt PACl gt PASS gt PAS gt Alum asymp LFS asymp FeCl3

Note Alkalinity consumption coagulant efficiency and unit pricing comparisons are on a ldquomolar basisrdquo

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 55: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Characteristics of Al vs Fe-based Coagulants

bull Filtration characteristicsFor alum filter runlengths are generally limited by turbidity breakthroughFor Fe+3 salts filter runlengths are generally limited by headloss

Inadequate filtration can cause colored water issues

bull Ferric salts are more shear-resistant than alum

bull FeCl3 is significantly more corrosive than alum or LFS

bull Sludge issues Alum will invariably generate fewer pounds of chemical sludge than Fe+3 salts Fe+3 salts generated-sludge may dewater more easily than Al-generated sludge

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 56: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Drinking Water Application Matrix

Alu

m

Alu

mP

olym

er

Aci

d A

lum

s

Aci

d A

lum

Pol

ymer

PAS

PASS

PAC

S

PAC

L

PAC

LPo

lym

er

AC

H

AC

HP

olym

er

LFS

LFS

Poly

mer

Aci

d Fe

rric

s

TOCDBP Reduction X X X X XCold Water Performance X X X X X X XLow Turbidity Raw Water X X XReduced NaOH Consumption X X X X X X XSludge Reduction X X X X XLow Alklalinty Raw Water X X X XTurbidity Reduction X X X X X X X XEase of Use X X X XVariable Raw Water Quality X X X XHigh pH Raw Water X X X XLime Softening XArsenic Removal X X X X

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 57: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Drinking Water

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X Alum PACL ACH LFS Alum PACL ACH
Turbidity Reduction X X X X X X X DOC Removal X X DOC Removal X
Arsenic Removal X X X X Turbidity Reduction X X Turbidity Reduction X X
Reduced NaOH Consumption X X X X X Arsenic Removal X X X X Arsenic Removal X X X
Low Alklalinty Raw Water X X X X X X Reduced NaOH Consumption X X Reduced NaOH Consumption X X
High pH Raw Water X X X Low Alklalinty Raw Water X X X Low Alklalinty Raw Water X X
Lime Softening X High pH Raw Water X X High pH Raw Water X
Variable Raw Water Quality X X X X Lime Softening X Lime Softening
Ease of Use X X X X Variable Raw Water Quality X X X Variable Raw Water Quality X X
Sludge Reduction X X X X X Broad Dosage Range X X Broad Dosage Range X
Cold Water Performance X X X X X X X Sludge Reduction X X Sludge Reduction X X
Cold Water Performance X X X Cold Water Performance X X
Post-Precipitation Issues X Post-Precipitation Issues X
Colored Water Issues X Colored Water Issues
Relative Dosage 1 05 - 07 025 075 Relative Dosage 1 05 - 07 025
Relative Unit Pricing 1 35 7 15 Relative Unit Pricing 1 35 7
Floc Size Large Moderate Small Large Floc Size Large Moderate Small
Page 58: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Drinking Water (2)

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Alum AlumPolymer Acid Alums Acid AlumPolymer PAS PASS PACS PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
TOCDBP Reduction X X X X X
Cold Water Performance X X X X X X X
Low Turbidity Raw Water X X X
Reduced NaOH Consumption X X X X X X X
Sludge Reduction X X X X X
Low Alklalinty Raw Water X X X X
Turbidity Reduction X X X X X X X X
Ease of Use X X X X
Variable Raw Water Quality X X X X
High pH Raw Water X X X X `
Lime Softening X
Arsenic Removal X X X X
Page 59: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Waste Water

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Alum AlumPolymer Acid Alums Acid AlumPolymer AlCl3 AlCl3Polymer PACL PACLPolymer ACH ACHPolymer LFS LFSPolymer Acid Ferrics
Odor Control X
Phosphorous Removal X X
Struvite Formation X X
Sludge Dewatering X
Page 60: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Ind Appl

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
BODCOD Removal Turbidity Reduction Phosphate Removal TSS Reduction Color Removal Specific Chemical Removal
Paper X X X
Textile X X
Meat Processing X
Mining X X
Surfactant X
Page 61: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Flows-Dosages

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Application Flow MGD Dosage mgl liquid basis Use Frequency
Drinking Water 1 - 600 10 - 200 nearly 100
Wastewater 1 - 300 application specific 25 - 50
Paper 10 - 30 rare
Textile 100 - 200 rare
Meat Processing 1- 4 300 - 1000 high
Mining application specific application specific
Surfactant 1 1000 - 5000 rare
Page 62: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet1

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Page 63: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet2

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Page 64: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

Sheet3

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS
Page 65: Training Manual Presentation - CA-NV AWWA · 30.05.2007  · Coagulation Overview • As the graph demonstrates, in the absence of coagulation, many solids are too small to be directly

QUESTIONS

  • Coagulant Overview
  • Outline
  • Slide Number 3
  • Coagulation Overview
  • Slide Number 5
  • Coagulation Overview
  • Coagulation Demand
  • Coagulant Demand--Example
  • Coagulant Demand--Example
  • Characteristics of Inorganic Coagulants
  • Cation Comparison
  • Coagulant Mechanisms
  • Coagulant Mechanisms
  • Charge Neutralization
  • Performance vs Alum Dosage
  • Most Commonly-Used Inorganic Coagulants
  • Equal Metal Dosage Conversions
  • Metal Equivalent Dosages
  • Organic Coagulants
  • Settling Aids
  • Slide Number 21
  • Aluminum-Based Inorganic Coagulants
  • Ferric-Based Inorganic Coagulants
  • Characteristics of ldquoSimplerdquo Coagulants
  • Alum - Ferric Dosage Conversions
  • TOC Removal Data
  • TOC Removal Data (2)
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Coagulants
  • Polyaluminum Chlorides
  • Polymeric Aluminum Species
  • Characteristics of ldquoPolymericrdquo Coagulants
  • Characteristics of Simple vs Polymer Coagulants
  • Characteristics of Al vs Fe-based Coagulants
  • Drinking Water Application Matrix
  • QUESTIONS