Trac (e) ing geochemical processes and pollution in groundwater

17
0 1 10 L i -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 0 1 10 Be 1 10 100 1000 B 0 1 101001000 10000 100000 Al 1000 1 0 0 0 01 0 0 0 0 0 1000000 Ca 0 0 1 T i 0 1 10 100 1000 Mn -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 1 0 10 0 1 0 0 01 0 0 0 0 1 0 00 0 0 F e 0 0 1 10 Co 0 0 1 10 100 Ni 0 1 10 Cu 1 10 100 Z n 0 0 1 10 100 As -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 1 10 Se 0 0 1 10 Rb 1 0 1 0 0 1 0 0 0 Sr 0 0 0 1 10 100 Y 0 0 0 1 Z r 0 0 0 1 10 100 Mo -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 0 1 Ag 0 0 0 0 1 10 Cd 0 0 0 0 1 Sn 0 0 0 1 Sb 0 0 0 1 Cs 0 0 0 0 Hf -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 1 10 Pb 0 0 0 0 Bi 0 0 0 0 1 T h 0 0 0 1 10 U 0 0 0 0 0 0 1 Eu 0 1 10 L i -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 Be 0 1 10 100 B 0 1 10 100 Al 10000 100000 1000000 Ca 0 0 1 10 T i 0 0 1 10 Cr 1 0 1 0 0 1 0 0 0 Mn -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 1000 10000 F e 0 0 1 Co 0 0 1 10 Ni 0 0 1 10 Cu 1 10 100 Z n 0 1 10 Ga 0 0 0 1 10 As -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 1 10 Se 0 1 10 Rb 10 1 0 0 1 0 0 0 Sr 0 0 1 Y 0 0 0 1 10 Z r 0 0 0 1 Nb 0 0 1 10 Mo -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 0 0 Ag 0 0 0 0 0 1 Cd 0 0 0 0 1 Sn 0 0 0 Sb 0 0 0 Cs 1 0 1 00 1 0 0 0 Ba 0 0 0 0 0 Hf -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 1 Pb 0 0 0 0 Bi 0 0 0 0 0 T h 0 0 0 0 U 0 0 0 0 Eu 0 0 0 1 L a Trac Trac (e) (e) ing geochemical ing geochemical processes and pollution processes and pollution in groundwater in groundwater M.J.M. Vissers P.F.M. van Gaans S.P. Vriend

description

Trac (e) ing geochemical processes and pollution in groundwater. M.J.M. Vissers P.F.M. van Gaans S.P. Vriend. Multilevel wells have advantages over single level GWQ networks when studying trace elements. Many geochemical processes + The dynamic behavior of groundwater + - PowerPoint PPT Presentation

Transcript of Trac (e) ing geochemical processes and pollution in groundwater

Page 1: Trac (e) ing geochemical processes and pollution in groundwater

0 1 10

Li

-30

-25

-20

-15

-10

-5

0

5

0 0 0 0 1 10

B e1 10 100 1000

B0 1 10 100100010000100000

Al1000 100001000001000000

C a0 0 1 10

Ti0 0 1 10 1001000

C r

0 1 10 100 1000

M n

-30

-25

-20

-15

-10

-5

0

5

1 0 1 0 0 1 0 0 01 0 0 0 01 0 0 0 0 0

F e0 0 1 10

C o0 0 1 10 100

N i0 1 10

C u1 10 100 1000

Z n0 1 10

G a

0 0 1 10 100

A s

-30

-25

-20

-15

-10

-5

0

5

0 0 1 10

S e0 0 1 10

R b1 0 1 0 0 1 0 0 0

Sr0 0 0 1 10 100

Y0 0 0 1 10

Zr0 0 0 0 1

N b

0 0 0 1 10 100

M o

-30

-25

-20

-15

-10

-5

0

5

0 0 0 0 1

A g0 0 0 0 1 10

C d0 0 0 0 1

S n0 0 0 1

S b0 0 0 1 10

C s1 0 1 0 0 1 0 0 0

B a

0 0 0 0

H f

-30

-25

-20

-15

-10

-5

0

5

0 0 0 1 10

P b0 0 0 0

Bi0 0 0 0 1

T h0 0 0 1 10

U0 0 0 0 0 0 1 10

E u0 0 0 1 10 1001000

L a

0 1 10

Li

-45-40-35-30-25-20-15-10

-505

0 0 0

B e0 1 10 100

B0 1 10 100

Al10000 100000 1000000

C a0 0 1 10

Ti0 0 1 10

C r

1 0 1 0 0 1 0 0 0

M n

-45-40-35-30-25-20-15-10

-505

1000 10000

F e0 0 1

C o0 0 1 10

N i0 0 1 10

C u1 10 100

Z n0 1 10

G a

0 0 0 1 10

A s

-45-40-35-30-25-20-15-10

-505

0 0 1 10

S e0 1 10

R b1 0 1 0 0 1 0 0 0

Sr0 0 1

Y0 0 0 1 10

Zr0 0 0 1

N b

0 0 1 10

M o

-45-40-35-30-25-20-15-10

-505

0 0 0 0 0

A g0 0 0 0 0 1

C d0 0 0 0 1

S n0 0 0

S b0 0 0

C s1 0 1 0 0 1 0 0 0

B a

0 0 0 0 0

H f

-45-40-35-30-25-20-15-10

-505

0 0 1

P b0 0 0 0

Bi0 0 0 0 0

T h0 0 0 0

U0 0 0 0

E u0 0 0 1

L a

TracTrac(e)(e)ing geochemical processes ing geochemical processes and pollution in groundwaterand pollution in groundwater

M.J.M. Vissers

P.F.M. van Gaans

S.P. Vriend

Page 2: Trac (e) ing geochemical processes and pollution in groundwater

Multilevel wells have advantages over single level GWQ networks when studying

trace elements

• Many geochemical processes +• The dynamic behavior of groundwater +• Changes in input (anthropogenic influence) i.e.

no steady state +• (Analytical / sampling errors )

Page 3: Trac (e) ing geochemical processes and pollution in groundwater

I will show this by presenting:

Study area and processes that (may) occur

Two example elements– Rubidium– Uranium

Page 4: Trac (e) ing geochemical processes and pollution in groundwater

Study area and processes Map of the study area

Sandy, unconsolidated aquifer, with ice-pushed ridge in the east Mainly Agricultural land use, eastern part cultivated in the 1920’s 10 Borings, total of 244 mini screens

NZwolle

Deventer

210 212 214 216 218 220 222 224

482

484

486

A1A2A3A4A5

A6

A7A8

A10

A11

Heeten

Wesepe

HaarleBroekland

Village ForestH eather

X -coord ina te

Y-c

oord

ina

te

G rass / agricultu re

Page 5: Trac (e) ing geochemical processes and pollution in groundwater

++

-45-40-35-30-25-20-15-10

-505

1015

Boring with mini well screens

Calcite saturated waters

NO3/Fe redox boundary

SO4 redox boundary

Groundwater level

Streamlines

Pine / deciduous forest

Arable land (mostly corn)

2 km

Clay

Clay

A5A10

Study area and processes Cross-section of the study area

Filtrated over 0.45μm, analyzed on ICP-MS Sampled in 1989 (no trace elements), 1996 (½), and 2002 (all) Randomly analyzed on > 70 inorganic components and DOC

Page 6: Trac (e) ing geochemical processes and pollution in groundwater

Study area and processes Processes and number of observed boundaries

> 60 11 9 4 5

Pollution / changes in inputIron reductionMn reduction

Sulphate reductionpH changes / carbonate bufferingMineral Dissolution / Precipitation

Coprecipitation / CodissolutionAdsorption / Desorption

KineticsAnalytical problems

In m

ajor

ele

men

ts

Page 7: Trac (e) ing geochemical processes and pollution in groundwater

Rubidium and Uranium Two example elements

• Rubidium: “No” mineral phases, input from either recharge or sediment, and adsorption processes are expected to play role

• Uranium: Many saturation phases, depending on redox conditions.

What is needed for interpretation?• Concentration – depth profiles of trace element• Knowledge derived from macro-chemistry• Geochemical knowledge

Page 8: Trac (e) ing geochemical processes and pollution in groundwater

RubidiumConcentration (μg/l) - depth profiles of all borings

0 1 10

A 1

-45-40-35-30-25-20-15-10

-505

10

0 1 10A 2

0 1 10

A 3

0 1 10A 4

0 1 10

A 5

0 1 10A 6

0 1 10 100

A 7

0 1 10A 8

0 1 10

A10

0 1 10A11

Legend

2002

1996-45-40-35-30-25-20-15-10-505

1015

“Noisy profiles”Base level

Page 9: Trac (e) ing geochemical processes and pollution in groundwater

RubidiumInput and adsorption, and influence of pH and redox in boring A7

• Rubidium 0.3 μg/l in pristene water• Adsorption plays a role (retention): boring A5 and A8• Input by recharge (up to 100 μg/l)• No (direct) influence of redox and pH boundaries

0 0 0 1 10

B e

-25

-20

-15

-10

-5

0

5

0.0 0.0 0.1

C s

0 0 1 10S b

100 1000 10000

F e

0 0 1 10 100C o

0 1 10 100

R b

1 0 1 0 0 1 0 0 0H f

468p H

“Ox”Red

AcidBuff

Page 10: Trac (e) ing geochemical processes and pollution in groundwater

-8

-6

-4

-2

0

2

4

6

8

-200 -100 100 200 300

U3O8(C)

U4O9(C)

UO2(am)

Uraninite

USiO4(C)

MnNO3FeSO4

UraniumSI – Eh dependence of a 6 ppb groundwater

Log

Satu

ratio

n in

dex Eh (mv)

Page 11: Trac (e) ing geochemical processes and pollution in groundwater

-45-40-35-30-25-20-15-10-505

10

0.01 0.1 1 10A2

0.01 0.1 1 10

A3

0.01 0.1 1 10

A70.01 0.1 1 10

A100.01 0.1 1

A10.01 0.1 1 10

A5

0.01 0.1 1A11

UraniumConcentration (μg/l) – depth profiles of all borings

0.01 0.10A4

0.01 0.10A6

0.01 0.10A8

Low concentrations as complete boring is reduced: Uraninite

U (µg/l)

Page 12: Trac (e) ing geochemical processes and pollution in groundwater

Uranium

0.01 0.1 1

A10.01 0.1 1 10

A5

0.01 0.1 1A11

Oxic waters: Undersaturation, concentrations determined by recharge

-45-40-35-30-25-20-15-10-505

10

0.01 0.1 1 10A2

0.01 0.1 1 10

A3

0.01 0.1 1 10

A70.01 0.1 1 10

A10

U (µg/l)

Page 13: Trac (e) ing geochemical processes and pollution in groundwater

-45-40-35-30-25-20-15-10-505

10

0.01 0.1 1 10A2

0.01 0.1 1 10

A3

0.01 0.1 1 10

A70.01 0.1 1 10

A10

Uranium

High concentrations, not related to input

U (µg/l)

Page 14: Trac (e) ing geochemical processes and pollution in groundwater

UraniumConcentration – depth profiles of boring A7 in μg/l

500 1000 1500

Ec (uS /cm )

-25

-20

-15

-10

-5

0

5

100 1000 10000M n

100 1000 10000

F e

0 0 1 10U

4 6 8

p Hμ

Page 15: Trac (e) ing geochemical processes and pollution in groundwater

Uranium

• Iron reduced waters have concentrations of 0.001 – 0.05 μg/l (uraninite saturation)

• Input in recently recharged water: 0.1μg/l• In deeper oxic water lower concentrations are found• At reduction boundary (manganese reduced) concentrations

reach 1 – 8 μg/l• Source is the sediment

Page 16: Trac (e) ing geochemical processes and pollution in groundwater

Conclusions

In the examples, multilevel wells give possibility to:– Determine background concentration for Rb– Exclude redox and pH as important process for Rb– Show input and retention are important for Rb– Accuratly determine redox zone of high U– Exclude pollution as potential U-source– Estimate input of U from recharge and from sediment

[email protected]

Page 17: Trac (e) ing geochemical processes and pollution in groundwater

Conclusions II

• Even with the help of multilevel wells, it is hard to determine trace element systematics

[email protected]