TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff...

29
TOXICOLOGY PROFILE H CARE INDUSTRY prepared by Hanchen Chen, Disease Prevention Team. Glutaraldehyde IN THE HEALT submitted to Dr. George Astrakianakis

Transcript of TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff...

Page 1: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

 

  

 

  

                

TOXICOLOGY PROFILE H CARE INDUSTRY

prepared by Hanchen Chen, Disease Prevention Team.

   Glutaraldehyde IN THE HEALT   

submitted to Dr. George Astrakianakis

Page 2: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

   

 

 

 

   Summary 

arizes different aspects of glutaraldehyde in healthcare industry, including basic chemical 

 exposure path in healthcare settings, toxicity, negative effects related to 

ed in cold sterilization and disinfection in healthcare as a substitute of 

hyde, because of its broad biocidal spectrum and lower health risk compared with formaldehyde. 

it may 

 

al 

dies 

or 

umental alternatives. Local exhaust ventilation is one of the effective engineer control measures.  

 

  

This report summ

 physical properties,and

occupational over‐exposure, regulations of glutaraldehyde as a chemical hazard and occupational hazard, 

as well as control measures. 

 

Glutaraldehyde was introduc

formalde

Based on substantial animal and human studies, glutaraldehyde is a skin irritant and allergen. Also, 

induce peripheral sensory irritation and eye irritation. Animal studies indicate inconsistent results 

concerning glutaraldehyde as a respiratory sensitizer, but there are many case reports its potential to 

induce occupational asthma. Glutaraldehyde is not likely to be phototoxic based on controlled human

study. In vitro and in vivo studies did not indicate clear genotoxic and mutagenic effects of glutaraldehyde

Animal studies concerning its carcinogenicity only indicated weak and obscure association between 

glutaraldehyde exposure and cancer or no association at all, and there is no elevated cancer rate in a 

human epidemiology study, which is the only one involving its potential as a human carcinogen. Anim

studies did not find distinct reproductive and developmental effects of glutaraldehyde, and human stu

did not reveal elevated risk of spontaneous abortion or malformation of glutaraldehyde exposure.  

 

There are several commercially available substitutes for glutaraldehyde, either chemical alternates 

instr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Page 3: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

 

2

art 1. General information 

lutaraldehyde 

11‐30‐8 

s and trade names lutaral, glutaric aldehyde, glutardialdehyde, glutarolglutaric dialdehyde, 1,5‐pentanedial, 1,5‐pentanedione, Cidex®, 

® and 1,3‐diformylpropane. 

ormula 

5H8O2    

 

escription of Chemical and Physical Property 

. Oxidation of glutaraldehyde will form glutaric acid. Glutaraldehyde 

nks with amino groups of collagen and other proteins to form intramolecular and intermolecular crosslinks (Wade et al, 

 

icidal, tuberculocidal, fungicidal and 

iricidal activity. Use of glutaraldehyde includes a fixative for election microscopy, tanning of leather, crosslinking agent 

P Substance Name   G

 CAS Number 1

 Synonymg

Glutarex®, Sonacide®, Verucasep

 

 FC

 

Structure 

 

 

Glutaraldehyde is a five‐carbon aliphatic di‐aldehyde

li

1982). Commercial products containing glutaraldehyde are most frequently available as 2%, 10%, 25% and 50% aqueous 

solutions, which are not flammable and thus have no flash point. One the one side, lutaraldehyde will polymerize into 

stable hydrates under high‐alkaline conditions; on the other side, its antimicrobial activity is maximum under alkaline 

conditions; so in order to keep its activity while avoid the polymerization, the pH range of its solution should be buffere

within weak alkaline range (7.5 to 8.5). Within the mentioned pH range, glutaraldehyde is stable for at least 14 days. In

order achieve the appropriate pH range, most glutaraldehyde used in hospitals for disinfection and sterilization purposes 

is a 2.0% concentration which has a two‐components system that must be mixed together, or activated, prior to use. 

The two components are activated solution and alkalinizing agents, whose chemical components are 2.0% 

glutaraldehyde and 0.3% sodium bicarbonate respectively (Stonehill et al, 1963).   

 Glutaraldehyde has a wide spectrum of antimicrobial activity, because of its bacter

v

in microcapsules, preservative in cosmetics, and a crosslinking or immobilizing agent in food technology (Wade et al, 

1982). Also, because of its antimicrobial activity, it is used widely in healthcare industry as sterilant and disinfectant. 

 

 

Page 4: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

S

3

ome other chemical and physical properties of glutaraldehyde are summarized in table 1. 

 

  Table 1. Chemical and physical properties of glutaraldehyde[1]

 Physical Description Colorless liquid with a pungent odorConversion Factor 1ppm=4.09 mg/m 3

Molecular Weight 100.01 g/mol Boiling Point 100 °C Freezing Point -14 °C Vapor Pressure 17 mmHg Solubility MiscibleUpper Explosive

Limit/Lower Explosive ombustible liquid Limit[2]

N/A, non-c

[1]: All data retrieved from NIOSH

[2]: % by volume  Pocket Guide to Chemical Hazards (2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 5: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

4

art 2. Use of Glutaraldehyde in Healthcare Industry 

se as Cold Sterilant 

taraldehyde is for the cold sterilization of dental, anesthetic and medical instruments and 

ndoscopes, based on its broad spectrum of biocidal activity (Urbani et al, 1990). For this purpose of application, 2.0% 

se as Tissue Fixative 

ies, glutaraldehyde is used as a fixative in electron and light microscopy, or as a tissue 

reservative. Corresponding the function as intermediates and fixatives for tissues, a higher concentration of 

 

antities 

ks 

se in X‐rays Operations 

eloping solutions as a hardening agent to shorten the drying cycle in film processing. X‐ray 

perators typically use 30~50% weight‐to‐weight ratio glutaraldehyde and dilute it to working strength solutions which 

AS, 

he National Institute for Occupational Safety and Health (NIOSH) received a series of requests for heath hazard 

valuation in several hospitals, dental offices and other healthcare plants. Some investigation focused on glutaraldehyde 

nt 

 

 

P  U 

A widespread use of glu

e

glutaraldehyde is used. This is achieved by diluting stock solutions (acidic with pH 3.0~4.5) to alkalinized solution (p

7.8~8.0). 

  U 

In some healthcare facilit

p

glutaraldehyde is necessary (25%~90%), so laboratory personnel may be exposed to solutions containing up to 50%

glutaraldehyde during the preparation of fixative solutions for use in microscopy and histology, and to small qu

of working strength solutions (3~6%). Healthcare workers may be exposed to glutaraldehyde during the following tas

performed when glutaraldehyde is used as tissue fixative: 1) preparing glutaraldehyde solution from concentration to fil

enclosed fixing basin, 2) removing and adding materials to the fixing basin, 3) handling materials fixed in the basin, 4) 

handling tissue samples for refrigeration, 5) rinsing tissue samples in a buffer, 6) slicing the tissue samples into slides. 

(NIOSH, 1986) 

  U Glutaraldehyde is used in dev

o

contains less than 1~2% glutaraldehyde. The primary sources of formaldehyde exposure during e‐ray processing are: 1) 

mixing glutaraldehyde developer solutions. 2) adding solutions to tanks and processors. 3) processing x‐rays. 4) 

removing incompletely dried processed x‐rays. 4) cleaning rollers and tanks on x‐ray machines. 5) emptying tanks and 

processors. 6) fugitive emissions from open tanks, leaky hoses and equipment. 7) automatic processor exhaust. (NICN

1994.) 

 

 

T

e

or listed it as one health hazard. Results of these studies are summarized in table 2, with working area/departme

bolded. We can conclude that employees working in departments which involve the use of glutaraldehyde have a 

greater risk of exposure. By comparing the monitoring data and ACGIH exposure limit (15min‐STEL) of 0.05ppm, job  

Page 6: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

categories which may lead to glutaraldehyde over‐exposure include: 1) hospital staff who work in areas with a cold 

5

terilizing procedure that uses glutaraldehyde (for example, gastroenterology and cardiology department), 2) hospital 

yde 

 

lly 

y unit, 

ed 

s

staff who work in operating rooms, dialysis department, endoscopy units, and intensive care units where glutaraldeh

formulations are used in infection control procedures, 3) central service or supply workers who use glutaraldehyde as a

sterilant, 4) research technicians or pharmacy personnel who either prepare the alkaline solutions or fix tissues in 

histology and pathology labs, 5) laboratory technicians who sterilize benchtops with glutaraldehyde solutions, 6) 

workers who operate X‐rays. Some occupations, such as dental office receptionists, employees of medical waste 

disposal, on the other hand, have a lower risk of exposure. Another conclusion is that exposure level does not tota

depend on concentration of glutaraldehyde solution used. For example, diluted solution (2%) is used in endoscop

but employees could be exposed to higher airborne glutaraldehyde than tissue fixing technicians, who use concentrat

solution. 

   Table 2. Glutaraldehyde monitoring data in healthcare industry 

Author Location HHE Report No.

Result (for NIOSH Report)

KLushniak-

St. Vincent Medical Center,

,

Personal samples for glutaraldehyde among employees who cleaned endoscopy tubes ex (2.4% glutaraldehyde iefer-M;

BD Staten IslandNY.

with Cidsolution) showed an exposure level of 0.06ppm, well below exposure limit.

HETA-95-0239-2553[1]

Dr. Gammuchia's HETA-94-0017-2394[2] Decker-JA dental office,

Apopka, FL.

The study investigated into employees of a dental office. Three samples were taken by personal pumps with silica gel sorbent. The two samples in the sterilization room showed an average concentration of 0.01ppm, while glutaraldehyde level in the reception area is not detectable.

HETA-90-296-2149[3] Burkhart-JE

General Hospital, ,

se Sporicidin Monongalia

MorgantownWV.

Sample concentration ranged from below limit of detection to 0.08ppm among hospital employees who u(2% glutaraldehyde solution) to disinfect endoscope and bronchoscope.

St. James CommHETA-87-176-1826[4] Gunter-BJ unity Hospital, Butte, MT.

This study investigated glutaraldehyde exposure among technicians in the sigmoidoscopy and respiratory department. The average concentration for all nine samples was 0.22 mg/m3(0.054ppm), individual level ranged from below LOD to 0.48mg/m3 (0.117ppm).

HETA-86-226-1769[5] Crandall- Montgomery

n, PA.

espiratory therapy

one

azard e

MS Hospital, Norristow

The study investigated formaldehyde exposure among healthcare workers during disinfecting requipment, bronchoscope, whirlpool tubs, surgicalinstruments, and anesthesia equipment parts, with the duration of 15 to 20 minutes. Environmental breathing zsample results ranged from below LOD to 1.6mg/m3 (0.391ppm). Personal breathing zone sample results from below LOD to 1.5 mg/m3(0.367ppm). Thus a health hof glutaraldehyde during disinfection and sterilization can bconcluded.

Page 7: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

6

[1]: http://www.cdc.gov/niosh/h dfs/

[2]: http://www.cdc.gov/niosh/hhe/reports/pdfs/

=11 

=8 

=7 

diana. http://www.cdc.gov/niosh/hhe/reports/pdfs/2000‐0041‐2796.pdf 

edication 

e can be used for medical purposes, including endodontic therapy, and the treatment of certain 

ermatological disorders including verruca, pitted keratolysis, hyperhidrosis, herpes zoster and herpes simplex, 

he/reports/p 1995‐0239‐2553.pdf 

1994‐0017‐2394.pdf 

[3]. http://www2a.cdc.gov/hhe/select.asp?PjtName=12375&bFlag=0&ID

[4]. http://www.cdc.gov/niosh/hhe/reports/pdfs/1987‐0176‐1826.pdf 

[5]. http://www.cdc.gov/niosh/hhe/reports/pdfs/1986‐0226‐1769.pdf 

[6]. http://www2a.cdc.gov/hhe/select.asp?PjtName=8183&bFlag=0&ID

[7]. http://www2a.cdc.gov/hhe/select.asp?PjtName=7389&bFlag=0&ID

[8]. OmniSource Corporation, precious metal recycling facility, Ft. Wayne, In

  M Glutaraldehyd

d

onychomycosis and epidermolysis bullosa (Ballantyne, 1984). 

  

HETA-85-257-1791[6] Pryor-P Mercy Medical Center, Denver, CO.

The study evaluated the hazard of glutaraldehyde during disinfection procedure performed by nurses, who use glutaraldehyde to disinfect surgical equipment, bronchoscopes, x-ray table tops and other contaminated surfaces. Area air samples ranged up to 0.74mg/m3 (0.181ppm), and personal samples ranged up to 1.98mg/m3 (0.484ppm). All personal samples in the radiology and emergency departments exceeded the TLV. Thus it is concluded that workers in the radiology and emergency departments are more likely to be overexposed to glutaraldehyde

HETA-84-535-1690[7] Pryor-P National Jewish Hospital, Denver,

raldehyde h technologists in various stages of tissue

pm). t from

CO.

The study evaluated the potential exposure to glutaamong researcfixing. Personal breathing zone samples showed no detectable glutaraldehyde. Samples taken of area air registered from not detectable to 0.21 mg/m3 (0.051pThus it is concluded that a health hazard did not exisglutaraldehyde at this site

OmniSource

HETA-2000-0041-2796[8]

Gwin-K; Nemhauser-J.

Corp., precious metal recycling facility, Ft. Wayne, IN.

All the ten area glutaraldehyde samples were below LOD, which indicated that glutaraldehyde was not one potential chemical hazard in the precious metal recycling (PMR) facility.

N/A n, et al., 1981

s in endith

Axo 37% of staffassociated w

oscopy units were reported to have had health problems gluta e.raldehyd

N/A Jachuck et

Among medical and nursing staff working in an endoscopy unit, eight out of nine staff were affected by glutaraldehyde exposure. Clinical manifestations included watering of eyes, rhinitis, dermatitis, respiratory difficulties, nausea andal, 1989 headache. Personal sampling result showed that maximum glutaraldehyde concentration is 12ppm.

Page 8: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

  

7

art 3. Exposure Route and Metabolism 

halation her aqueous compounds, inhalation is the major route of exposure for humans (Ballantyne et al, 2001). For 

ermal rption is another possible pathway, although only a small proportion of cutaneously applied glutaraldehyde has 

ne study focused on in vitro permeabilities of 0.75% and 7.5% [14C]‐1,5‐glutaraldehyde in skin for humans and various 

echnically, all workers who are accessible to glutaraldehyde may be dermally exposed to it, however, there are certain 

e in 

P  InLike many ot

more information concerning inhalation of airborne glutaraldehyde, please refer to the previous part of the report. 

 

 DSkin abso

been shown to be available for systemic absorption (Derek et al, 2006).  

 

O

animals (Frantz et al, 1993). Recoveries were 0.05‐1.55% in all species studies. For humans, recovery was approximately 

0.2% at both glutaraldehyde 0.2% at glutaraldehyde concentrations, which was lower than those of other animals 

studied. 

 

T

occupations in healthcare industry who are at higher risk of dermal exposure, due to contact frequency, contact 

duration, environmental glutaraldehyde level and so on. Case studies indicating dermal exposure of glutaraldehyd

healthcare are summarized in table 3.    Exposure Job category Task performed Reference route

Skin contact

Operating theater nurses Cold disinfection or sterilization of equipment Hemminki et al, 1985Laboratory technicians Fixing specimens for microscopy Shaffer et al, 2000X-ray technicians Processing x-ray films Fisher, 1981 Cleaners and Janitors Cleaning and disinfecting Nethercott et al, 1988

 

etabolism 

he major route of metabolism of glutaraldehyde is oxidization by the kidney and liver to glutaric‐λ‐semialdehyde, and 

A, 

Table 3. Job categories with potential dermal exposure to glutaraldehyde in healthcare

   M 

T

then to glutaric acid, which is used to synthesize glutaryl‐CoA, with further metabolism to glutaconyl‐CoA, crotonyle‐Co

β‐hydroxybutyryl‐CoA, and acetyl CoA, and finally CO2 (Beauchamp et al, 1992). 

 

Page 9: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

8

art 4. Health Effects 

) Irritation 

 Skin Irritation ated that glutaraldehyde is a moderate skin irritant with a skin irritation index of 2.125 (Milner et al, 

  Irritation vs. Allergy Irritation results from coming into contact with a does not involve excita

substance that irritates the skin, which tion of the immune system. Diagnosis of irritation can be achieved

by recording exposures and knowledge of possible irritants. Also negative patch test can distinguish irritation from allergic reactions. Allergy is a disorder of the immune system, wh

P   ich is characterized by excessive activation

of mast cells and basophils by IgE. One wide used diagnosis method of allergic reaction is “skin testing”, also known as “puncture testing” or “patch test”, which can determine the kind of substance patient is allergic to.

a I.Animal study indic

1977). Primary irritant effects on rabbits are summarized in table 4 (Ballantyne, 1995). From the table we can see that 

45% and 50% aqueous glutaraldehyde produce severe local inflammation and corrosion, including erythema, edema an

desquamation. 5~10% solution causes minor to moderate inflammation and 1% is a threshold for skin irritation. Other 

studies showed that 2.2% alkalinized aqueous glutaraldehyde has no significant effect on the skin irritating potential 

(Myer et al, 1994). 

   

Glutaraldehyde Contact Observations

concentration (%) time 1 4 h No effects2 4 h Minor erythema5 4 h Minor erythema and edema10 4 h Moderate erythema, minor edema and spotty necrosis 25 4 h Moderate erythema, minor edema and punctuate necrosis 45 4 h Moderate erythema, minor edema and punctuate necrosis 50 3 min Minor transient erythema50 1 h Moderate erythema, desquamation, necrosis, scabs, alopecia, necrosis50 4 h Necrosis, moderate erythema, alopecia, edema

 here are much fewer human studies on acute irritation effects of glutaraldehyde, because of ethical reasons. In one 

 

. Eye Irritation 

nimal studies showed a clear dose‐response relationship for conjunctivitis and corneal injury (Ballantyne, 1995). The 

 

moderate conjunctivitis. 

Table 4. Irritation effects on rabbits with glutaraldehyde of different concentration gradients 

T

controlled study, it was determined that for short term, 0.5% aqueous glutaraldehyde was slightly irritant (erythema),

0.2% was marginally irritant, and 0.1% was non‐irritant (Ballantyne et al, 1984). 

   II 

A

lowest concentration causing corneal injury in rabbits is 1.0%. At the level of 5%, corneal injury could be severe. For 

conjunctival irritation the threshold level is 0.2%. Eye injury among humans caused by direct contact with 

glutaraldehyde is unusual, but there are a few case reports. In one case, use of Hoskin lens with 2% glutaraldehyde

residue induced keratopathy. In another case, 2% glutaraldehyde used for anesthetic mask sterilization produced 

Page 10: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

 

9

I. Peripheral sensory irritation lutaraldehyde is a peripheral sensory irritant material, as the molecule can interact with sensory nerve receptors in 

thus resulting in sensations at the site of contact (Ballantyne et al, 2001). So with 

76) 

) Skin sensitization 

 Animal study everal animal studies showed that glutaraldehyde could induce contact hypersensitivity‐type of skin. One study showed 

hyde could induce sensitization response based on mouse ear swelling test (MEST), and when 

hyde 

 0.3% 

. Human study epeated exposure to glutaraldehyde may lead to the induction of sensitization, causing an allergic contact dermatitis, 

ds (Matthew, 2000). Case reports and group studies concerning skin sensitization effects of 

IIG

skin and exposed mucosal surfaces, 

exposure airborne glutaraldehyde above threshold limit, symptoms such as eye discomfort, excess lacrimation, 

discomfort in the nose and possibly chest, rhinorrhea and cough or sneezing may develop. Two separate human studie

showed sensory threshold for glutaraldehyde vapor at 0.24‐0.26ppm (Whitmore, 1976) and 0.3ppm (Colwell, 19

respectively. 

    b  I.S

that 1% glutaralde

challenged with 10% glutaraldehyde, 67% of mice had an average increase of 25% in ear thickness (Gad et al, 1986). 

Another study with local lymph node proliferation assay (LLNA) showed that after applying gradients of glutaralde

solutions to mouse ear, a clear concentration‐related stimulation of lymph node activity was demonstrated, which 

indicated a skin sensitizing potential for glutaraldehyde (Hilton et al, 1998). Another animal study with guinea pig and 

mouse showed a clear dose‐related hypersensitivity response that was statistically significant at the concentration of

in mice and 3% in both species (Stein et al, 1987). Also, the same study showed that unbuffered glutaraldehyde had a 

greater skin sensitizing potential than buffered glutaraldehyde. 

  IIR

most often of the han

glutaraldehyde among healthcare workers are summarized in table 5. 

   Table 5. Skin sensitization of glutaraldehyde among healthcare workers

 Author Description

Sanderson, Two nurses were contacted with glutaraldehyde from handling its solutions or disinfected instruments. ld patchy eczema were developed. Patch tests showed that both of them were reactive to 1968 Rashes and mi

1% aq. glutaraldehyde solution, and negative to 2% formalin.

Lyon, 1971

One female dental assistant was exposed to Cidex (2% aq. glutaraldehyde solution); she developed a rash on her fingers and hands that eventually spread to arms and legs; patch test results showed positive reaction to glutaraldehyde and negative reaction to formaldehyde, nickel sulfate and 12 other kinds of allergens.

Page 11: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

10

Goncalo et al, 1984

ic

itis resolved following termination of the job for one case, but persisted after exposure for

2 nursing aides developed a vesicular dermatitis of their hands and forearms after handling endoscopdisinfectants; both patients were positive to 1% glutaraldehyde and negative to 2% aq. formaldehyde; the dermatthe other case.

Fowler, 1989 A respiratory therapy department worker developed an allergic contact dermatitis of her hands, arms, face and neck after using a 2% glutaraldehyde solution; patch testing to 1% aq. glutaraldehyde was positive at 48 hours, while all other allergens tested gave negative results

Fisher, 1990

d egative reactions to

rmaldehyde.

2 hospital workers were exposed to glutaraldehyde while disinfecting endoscopes; both cases showepositive patch test reactions to a 1% aq. solution of glutaraldehyde and nfo

Kiec-Swierczynska, 1998

The incidence of allergy to glutaraldehyde in HCWs was 33/266 (12.4%) for glutaraldehyde and 37/266 (13.9%) for formaldehyde; dual positivity to glutaraldehyde and formaldehyde was seen in 6 patients; nurses, physicians and dental assistants were most frequently affected.

Kiec-Swierczynska et al, 1999

The study examined 280 healthcare workers suffering from skin lesions. Allergy was diagnosed in 64 (22.8%) patients. The majority (85.9%) were sensitive to only one single aldehyde (formaldehyde, glutaraldehyde and glyoxal). Glutaraldehyde caused allergy slightly less frequently (12.4%) than formaldehyde (13.9%).

Matthew et al, 2000.

This is a 5-year study of 168 patients who were patch tested to glutaraldehyde, 55 of which were healthcare workers (HCWs). It showed that HCWs were more than 8 times more likely to be allergic to glutaraldehyde than non-HCWs. Also, they found that allergic contact dermatitis from glutaraldehyde often causes persistent dermatitis, which frequently forces patients to leave their jobs.

Nettis et al, 2002

The study examined 360 HCWs patients who were experiencing contact dermatitis at their hands, wrists and forearms. They found that glutaraldehyde (5 out of 72) is one of the major aetiological agents that induce occupational allergy.

 

In additional to th

dermal sensitizing . One study (Marzulli et al, 1974) investigated the effect of inducing 

lutaraldehyde solutions of the concentration 0.1 and 5.0% to skin of male human aging from 21 to 50yr, using patch 

es 

 and 

lutaraldehyde cannot induce skin hypersensitivity of feet; by comparison, 2.5% glutaraldehyde applied to regions 

 

ese case reports and group studies, there are two definitive and controlled investigations into the 

 potential of glutaraldehyde

g

test. It turned that none of the 102 males receiving 0.1% glutaraldehyde were sensitized, and 7 out of 30 (23.3%) mal

receiving 5% glutaraldehyde showed positive patch response. The other study (Weaver et al, 1977) induced 0.022%

0.0022% glutaraldehyde solutions on 340 and 366 subjects respectively, and none of the total 706 subjects developed 

dermal hypersensitivity. In addition, in the same study, they applied 0.055% glutaraldehyde to the arm of two subjects 

with confirmed dermal hypersensitivity to glutaraldehyde, and no inflammation developed at the site of application. 

 

Different regions of the skin may have various hypersensitivities to glutaraldehyde. From reviewing case reports it is 

concluded that contact dermatitis occurred most often in the hands (Matthew, 2000). One study showed that 25% 

g

around antecubital fossa region evoked a local hypersensitivity reaction (Maibach et al, 1977). The differences in 

response may be attributed to the differences in the thickness of the stratum corneumand keratin binding of 

glutaraldehyde at these sites, thus producing regional variations in the percutaneous penetration of glutaraldehyde

(Ballantyne, 1984). 

 

Page 12: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

11

hyde and glutaraldehyde may be encountered among healthcare workers, it is important to know if 

ross reactivity will occur. From table 5, we can see that in most cases, HCWs who were hypersensitive to 

lutaraldehyde showed negative results for formaldehyde. In addition, by summarizing several reports investigating it is 

) Respiratory Sensitization 

ne study tested the respiratory sensitizing potential of glutaraldehyde vapor with male Hartley guinea pigs at the 

3.9ppm and subsequent challenge concentration of 4.4ppm, and no evidence of respiratory 

ensitization was observed (Werley et al, 1995). However, in the same study, a concentration‐related decrease in 

ther 

 25% and 

here are many cases of occupational asthma induced by glutaraldehyde vapor exposure, and some of these are 

le 6. 

 

Since both formalde

c

g

concluded that cross sensitization potential between glutaraldehyde and formaldehyde, it is concluded that such cross 

reactivity does not occur (Ballantyne, 1984).  

 

 

 c  I. Animal studies 

 

O

concentration of 1

s

respiratory rate was observed, and the 50% decrease in respiratory rate (RD50) were measured to be 13.9ppm. Ano

similar study had same result, which induced 14ppm glutaraldehyde and a challenge concentration of 5ppm 

glutaraldehyde vapor to guinea pig, and there was no change in the respiratory waveform that would indicate a 

pulmonary hypersensitivity response (Desgroseillers et al, 1974). However, in one mouse IgE induction study, 

glutaraldehyde produced a concentration‐related increase in serum IgE that was significant for the solutions of

10%, which were applied epicutaneously to the shaved flank skin (Ballantyne, 1995). 

 

 

II. Human studies 

 

T

summarized in tab

 

 

  Table 6. Occupational asthma induced by glutaraldehyde among healthcare workers

 Author Job Category Detailed description

Endoscopy nurse

Glutaraldehyde can cause occupational asthma, based on exposure monitoring, peak expiratory flow (PEF) and specific bronchial provocation tests. The exposure

workplace suggest that sensitization may occur at levels levels measured in thebelow the current occupational exposure standard. X-ray secreta

Gannon et al, 1995

ry

Corrado et al, Endoscopy nurses

4 female endoscopy nurses who developed chest tightness, asthma and rhinitis. Provocation tests showed that syndrome of 2 among the 4 nurses was glutaraldehyde exposure related.1986

Page 13: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

12

Quirce et al, 1999

Renal dialysis unit

The case was a 61-year-old nurse and ex-smoker, whose job task involved the use of 2% of glutaraldehyde. Ten years after working in the unit, bronchial challenge test specific for glutaraldehyde elicited an early asthmatic response. Her symptom included irritation of upper respiratory tract, chest tightness, shortness of breath, and dyspnea.

Ong et al, 2004 Laboratory technician

This is a female laboratory technician used 2.5% glutaraldehyde. Her symptom included episodic chest tightness and wheezing.

Cullinan et al, 1992 Radiographer

A 25-year-old female had worked as radiographer for 5 years, who developed breath difficulties. Serial peak flow test indicated her symptom was work-related, and further single blind inhalation tests showed exposure to glutaraldehyde at work provoked a late asthmatic response.

Chan-Yeung et al, 1993

Respiratory technologist

A workplace challenge test showed a progressive fall in FEV1 when the subject was exposed to glutaraldehyde in a sterilizing agent used to clean bronchoscopes at her workplace. After the diagnosis of occupational asthma was confirmed, the subject continued to assist with bronchoscopy but no longer cleaned the bronchoscopes.

  d) Phototoxicity 

997), 0.1~0.5% glutaraldehyde were applied six times during three weeks to the dorsal skin of 99 

plication skin sites were exposed twice to erythematogenic doses of UV light (290‐400nm). After 

0~13 days, glutaraldehyde was applied to a remote skin site in the same fashion, and the site was irradiated with 

 

es concerning genetic toxicity of glutaraldehyde, both in vivo and in vitro.  

 vivo studies with standard methodology have generally shown no evidence for genotoxic activity (micronucleus, 

w chromosomal 

aberration following the intraperitoneal injection of glutaraldehyde (National Toxicology Program, 1999). The lack of 

 

 In one study (Greim, 1

volunteers, and the ap

1

6J/cm2 UVA (320‐400nm). No photosensitivity was observed. Another study examined the phototoxic potential of a 2% 

solution of glutaraldehyde in a group of 12 healthy volunteer subjects of age range of 19~51 years (TKL Research, 1988).

Then the experimental group was applied UV radiation, while the control group remains irradiated. By comparing th

two groups, it was indicated that there are no Phototoxicity of glutaraldehyde. 

 

Consequently, it is concluded that there are no signs of phototoxicity of glutaraldehyde. 

 

 e) Genotoxicity  There are many studi

In

dominant lethal and Drosophila tests), with only one test in mice showing increased bone marro

genotoxic effects in vivo may be related to the rapid metabolism rate and protein‐binding characteristic of 

glutaraldehyde. One study found that although [14C]‐glutaraldehyde can be detected in cell cytoplasm, there are no

significant fraction present in the nuclei (Ranly et al, 1990). 

 

 

Page 14: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

13

or in vitro studies, in most instances, geno‐toxic activity of glutaraldehyde was weak and occurred in strains with 

nhanced sensitivity (Ballantyne et al, 2001). Most in vitro mammalian cell genetic toxicology assays and DNA damage 

 

) Carcinogenicity 

l animal studies concerning carcinogenicity of glutaraldehyde, and are summarized in table 7. From the 

ble we can see that there are weak and obscure association between glutaraldehyde exposure and cancer in some 

F

e

and repair tests showed results from “no mutagenic activity” to “weak positive”. One study with Chinese Hamster ovary

cells showed positive result (Galloway et al, 1985). 

 

 

 f I. Animal study 

 

There are severa

ta

studies, while others found no relationship at all. 

 

 

 Author Study design Result

van Birgelen et

00

Rats and mice were exposed to apor at the

.5 as

n-neoplastic nasal lesions, hyper-plasia, and inflammation of the squamous and respiratory epithelia were observed. So it was concluded

al, 20

glutaraldehyde vconcentration gradients from 62to 250 ppb, exposure duration w6h/day, 5d/wk, and 104wks in total.

Only no

that there was no evidence of carcinogenic activity under the conditions examined.

Zissu et al, 1998

Mice were exposed to glutaraldehyde vapor at 100 ppb for 6h/d, 5d/wk, and 52 or 78 wks in total.

Hyperplasia of the squamous epithelium lining the dorsal wall and lateral aspect of the atrioturbinate was observed in females. In addition, epidermal erosion and ulceration along with squamous and inflammatory exfoliation were noted in the nasal cavity. However, like the above study, it is difficult to relate the observed effect with cancer.

van Miller et al, 2002

g water at concentrations of

Rats were given glutaraldehyde in drinkin50, 250 and 1000 ppm for 52~104weeks. Average glutaraldehyde consumption were 4, 17 and 64 mg/kg for males and 6, 25 and 86 mg/kg for females, respectively.

Bone marrow hyperplasia and renal tubular pigmentation were observeand were most like related to the low-grade hemolytic anemia that

d

accompanies large granular lymphocytic leukemia (LGLL). And actually, the incidence of LGLL in the spleen was elevated at all exposure levels at 104 weeks. However, there are two obstacles relating LGLL occurrence with glutaraldehyde exposure: i) the incidence of LGLL was increased only in females. ii) LGLL occurs naturally in rats.

 

 

y of glutaraldehydeTable 7. Animal studies concerning carcinogenicit

 

 

 

 

 

Page 15: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

14

. Human cancer study 

formation on carcinogenicity of glutaraldehyde in humans is available from only one study. Among 186 factory 

9 and 1978, monitoring data showed indoor glutaraldehyde concentration did not exceed 

RC does not list glutaraldehyde as “agents reviewed by the IARC monographs”. ACGIH categorized glutaraldehyde as 

not classifiable as a human carcinogen”, due to lack of sufficient data. 

) Reproductive and developmental effects 

 Animal studies 

al studies have been conducted in different species to test the reproductive and developmental 

ffects of glutaraldehyde. Mice given glutaraldehyde by gavage on gestational days 6~15 showed maternal toxicity at 50 

ions or 

 

hest 

 

 30 or 60mg/kg by gavage and then mated 

ith virgin females there was no evidence of reduced fertility and no effect on embryo‐fetal viability (Tamada et al, 

 et al, 2000). 

e levels of those animal studies. 

 

II

In

employees between 195

0.2ppm, and there was no increase in mortality or incidence of malignancy (Teta et al, 1995).  

  IA

 

 

 g  I.

 

Several toxicologic

e

and 100 mg/(kg‐bodyweight*day), with some indication of fetotoxicity (Marks et al, 1980). At dosage below 50 

mg/(kg*day) no maternally reproductive negativity was observed. A study with rats reduced body weighted gain and 

maternal mortality at the dose of 50 and 100 mg/(kg‐bodyweight*day), but no effects on implantations, resorpt

number of live fetuses were observed (Emma et al, 1990) at all dosage range. Another rat study with pregnant female

Wistar rats were given glutaraldehyde in water over gestational days 6~16 at concentrations of 50, 2.5 and 7.5ppm 

(which correspond dietary dosages of 5.2, 25.7 and 68.0 mg/kg) found to observable effects besides reduction in 

drinking consumption at the middle and high doses (Union Carbide Corporation, 1990). In a rabbit study in which 

glutaraldehyde was dosed by gavage at 5, 15 and 45 mg/(kg*day) over gestational days 7~19 observed that at hig

dosage marked signs of maternal toxicity and embryo‐fetotoxicity would occur, but no malformations, and neither

maternal nor developmental effects was observed at lower doses (Ballantyne et al, 2001). For all the developmental 

studies conducted, none have shown any potential for teratogenic effects. 

 

Regarding reproductive toxicity, one dominant lethal study in mice dosed at

w

1978). In another study whose goal was to define reproductive effects of glutaraldehyde, rats were applied 

glutaraldehyde in drinking water over two generations at 50, 100 and 250 ppm, and only a dose‐related decrease in 

parental water consumption and body weight without any reproductive activity were found (Neeper‐Bradley

 

Consequently, it is concluded that there are no significant reproductive and developmental effects of glutaraldehyde at 

th

 

 

 

Page 16: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

 

II

15

. Human study 

dies on hospital workers concerning reproductive effects of glutaraldehyde, and are summarized in the 

ble 8. Both studies found no elevated risk of spontaneous abortion or malformation of glutaraldehyde exposure.  

 

There are two stu

ta

 

 

 

  Methodology ResultAuthor

Hemminki et al, 1985.

Case control study of nurses working in ments of Finland hospital.

atio for nurses with glutaraldehyde exposure was 1.1, which indicated no significant increase in risk of spontaneous

different departCase nurses were selected who had had aspontaneous abortion (N=217) or a malformed child (N=46), controls were nurses with normal birth.

Odds r

abortion or malformation after glutaraldehyde exposure.

The study included all the sterilizing staff employed in Finnish hospitals in 1980; controls were nursing auxiliaries. Exposure assessment was based on questionnaire.

After adjusting factors such as age, parity, decade of prHemminki et al, 1982

egnancy, smoking habits, and intake of coffee and alcohol, it was concluded that increased frequency of spontaneous abortion was not correlated with exposure to glutaraldehyde.

  

Table 8. Human studies of reproductive effect of glutaraldehyde exposure among hospital workers 

                   

Page 17: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

  

16

art 5. Regulation 

azard Classification 

able 9 summarized hazard classification of formaldehyde by different regulatory agencies. 

 

 T

 Table 9. Human studies of reproductive effect of glutaraldehyde exposure among hospital workers  

 stem Substance ClassificationSy

anadian

n aqueous solution

D1B “Poisonous and infectious material-Materials causing immediate and serious toxic effects-Toxic

onous and Infectious Material-Materials causing other toxic effects-Toxic material”

CWHIMIS classificatiocriteria

Glutaraldehyde

(8~25%)

material” D2A “Poisonous and Infectious Material-Materials causing other toxic effects-Very toxic material” D2B “PoisE “Corrosive material”

Canadian Ingredient Disclosure

Glutaraldehyde CAS# 111-30-8 is listed

List

on the Canadian Ingredient Disclosure List[1].

Canadian Domestic

List Glutaraldehyde CAS# 111-30-8 is listed on Canada's DSL List[2].

Substance (DSL)

NFPA Glutaraldehyde aqueous solution (8~25%) [3]

Health: 3 (Short exposure could cause serious temporary or moderate residual injury) Flammability: 0 (Will not burn) Reactivity: 1 (Normally stable, but can become unstable at elevated temperatures and pressures)

European

n

Glutaraldehyde

22 Harmful if swallowed on

on by inhalation itization by skin contact

26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice protective clothing

if you feel unwell, seek medical advice immediately (show the label where

Labeling inAccordance with EuropeaCommission Directives

aqueous solution(8~25%)

Hazard Symbols: T (Toxic) [3] Risk Phrases: RR23 Toxic by inhalatiR34 Causes burns R42 May cause sensitizatiR43 May cause sens Safety Phrases: SS36 Wear suitableS37 Wear suitable gloves S38 Wear eye/face protection S45 In case of accident orpossible). S61 Avoid release to the environment. Refer to special instructions/safety data sheets.

Page 18: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

U.S. Toxic Substances

Glutaraldehyde Control Act (TSCA)

CAS# 111-30-8 is listed on the TSCA Inventory[4].

U.S. OSHA Glutaraldehyde Not listed as “highly hazardous” by OSHA. [1] For ingredients in the Ingredient Disclosure List, their identity and concentration must be disclosed on a material safety data sheet if found in a controlled product. 

es "e r the pu for determining whether a substance is "existing" or "new" to Canada. 

e "new" chemicals. 

xposure limit 

rmaldehyde set up by four jurisdictions and agencies within or outside of Canada are summarized in ble 10. 

[2] The DSL defin xisting" substances fo rposes of implementing CEPA and is the sole basis 

Substances that are not on the DSL may require notification and assessment before they can be manufactured or imported into Canada. 

[3] Retrieved from http://www.2spi.com/catalog/msds/glutaraldehyde‐aqueous‐solution‐msds.html and http://www.polysciences.com/SiteData/poly/uploads/01909.pdf 

[4] Substances on the TSCA Inventory are considered "existing" chemicals in U.S. commerce, and substances not on the TSCA Inventory ar

     E Exposure limits of fota

    

17

Jurisdiction  WorkSafeBC  ACGIH  California’s division of OSHA[1] NIOSHWA  N/A N/A N/A N/A TSTEL  0.05ppm 0.05ppm N/A N/A Ceiling  m N/A 0.05pp 0.2ppm 0.2ppmNotation  S[2] SEN[3]; A4[4] N/A N/A [1] OSHA PEL not avai

es that  bstance is a sensit 5 the OHS Regulation. For more informat se refer to OHS Guideline G5.57 or follow the link 

Regulation/Part5.asp#SectionNumber:5.57 

 concern that they could be carcinogenic for humans but cannot be assessed 

 are sufficient to classify the agent into one of the other 

Table 10. Occupational exposure limits of glutaraldehyde

lable 

[2] “S” indicat the su izer under section  .57(1) of  ion plea

http://www2.worksafebc.com/publications/OHS

[3] “SEN” refers to the potential for an agent to produce sensitization, as confirmed by human or animal data. 

[4] “A4” refers to “Not Classifiable as a Human Carcinogen”, which indicates agents which cause

conclusively because of lack of data. In vitro or animal studies do not provide indications of carcinogenicity which

categories. 

           

Page 19: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

 

18

art 6. Control Measures 

) Substitution 

igh level disinfectant, consideration should be given to whether the alternative is safer for employees (OSHA, 2006). In 

le 

use of 

ty and 

P     a    OSHA suggests that when an alternative to glutaraldehyde is available which is at least as effective as an FDA‐approve

h

healthcare, the substitution can be achieved from two different paths: 1) Use a different drop‐in liquid chemical 

disinfectant. 2) invest in new enclosed equipment technologies that do not utilize glutaraldehyde. Some of the 

substitutions are summarized in table 11 (Department of Health, Government of South Australia, 2004; Sustainab

hospitals, 2009). From the table, we can see that certain glutaraldehyde alternatives, such as hydrogen peroxide

peracetic acid‐hydrogen peroxide (PAHP) and ortho‐phthalaldehyde, are suggested for the cold sterilization or 

disinfection of endoscopic equipment. The reason is that these substances may be safer than glutaraldehyde beca

the less likelihood of causing allergic reactions (Rideout, 2005). However, it is also possible that the relative safe

carcinogenic potential of new disinfectants used to replace glutaraldehyde may not yet be known. 

   Substitution Category

Name of Alternative

Chemical Ingredients High-level-disinfection time[1]

Drop-in LiquidChemical

hyde

mpliance

Alternatives to Glutaralde

Metrex CoTM

7.35% hydrogen peroxide and 0.23% perace 15tic acid. min at 20°C

Sporox TM 7.5% hydrogen peroxide 30 min at 30°C Cidex OPA Active ingredient: 0.55% ortho-

phthalaldehyde

12 min at 20°C

Inert ingredient: potassium phosphate dibasic (K2HPO4), potassium phosphate monobasic (KH2PO4), benzotriazole (C6H5N3), citric acid (C6H8O7), alizarin cyanine green (C28H20N2Na2O8S2), and trisodium HEDTA.

Enclosed Systems that perform High Level Disinfection

Steris 20™ Sterilant 0.2% peracetic acid (diluted from 35%).

Designed for sterilization[2]. Sterilizes in 12 min at 50°~ 55°C.

Sterrad 50 and Sterrad 100S

Enclosed system generates hydrogen peroxide gas plasma.

Designed for sterilization. Sterilization cycle is 45 min.

Sterilox 2501 The Sterilox system generates chemically activated water with strong oxidizing properties.

The Sterilox system has FDA (510k) clearance for high level disinfection, which requires a contact time of 10 minutes at 25 degrees Centigrade.

NIOSH’s prioritizing of control measures:

“……Controlling exposures to occupational hazards is the fundamental method of protecting workers. Tradition used as a means of determining how to implement feasible an his hierarchy can be summarized as follows:

e controls

equipment at the control methods at the top of the list are potentially more effective

m. Following the hierarchy normally leads to the implementation of k of illness or injury has been substantially reduced.

ally, a hierarchy of controls has beeneffective controls. One representation of td

• Elimination

• Substitution

• Engineering controls

• Administrativ

• Personal protectiveThe idea behind this hierarchy is thand protective than those at the bottoinherently safer systems, ones where the ris

Table 11. Substitution of glutaraldehyde 

Page 20: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

19

[1] High‐level disinfection: A pr ilant under s kills all form rial 

spores. 

[2]: Sterilization: Physical or chemical agent(s) or process whic s of life, pa

 

 

.S. EPA’s Case Study of Substitution 

ne case study investigated using Cidex OPA as an alternative of Cidex in the Gastroenterology Department of Kaiser 

oodland Hills Medical Center, California (U.S. EPA, 2002). The department accounts for 50% of the hospital’s total 

 use of glutaraldehyde is for high‐level disinfection of endoscopes. Active 

gredient of Cidex OPA is ortho‐phthalaldehyde at the concentration of 0.55% w/w, and the inert ingredients are 

tively lower vapor pressure, 2) reduced disinfecting time (12 minutes for Cidex OPA vs. FDA‐approved 

5 disinfecting time for glutaraldehyde solution), 3) the solution is approved for use in almost all of their equipment 

han 

 are 

as a 

ection time as mentioned above, the hospital saves approximately 8 minutes with each disinfection cycle, 

r a savings of 1 hour for each 8‐hour automated endoscope reprocessor shift. This brings extra benefits, since the cost 

ocess utilizing a ster  less than sterilizing conditions. The proces

h completely eliminates or destroys all form

s of microbial life except for large numbers of bacte

rticularly microorganisms. 

 

 

U

 

O

W

glutaraldehyde consumption, and the major

in

potassium phosphate dibasic (K2HPO4), potassium phosphate monobasic (KH2PO4), benzotriazole (C6H5N3), citric acid 

(C6H8O7), alizarin cyanine green (C28H20N2Na2O8S2), and trisodium HEDTA (Department of Health, Government of Sout

Australia, 2004).  

 

The Environmental Health and Safety Director at Woodland Hills identified Cidex OPA as a possible glutaraldehyde 

alternative for the following reasons: 1) its lower inhalation exposure risk as a result of the low percentage of active 

ingredient and rela

4

without negating the warranty. The price of Cidex OPA is approximately 25$ per gallon, which is three times more t

glutaraldehyde. However, substituting glutaraldehyde with Cidex OPA costs significantly less than installing a more 

substantial ventilation system to minimize glutaraldehyde exposure. Due to the environmental impact of Cidex OPA, 

California legislation requires treating Cidex OPA with glycine (NH2‐CH2‐COOH) on site to render it a non‐hazardous 

waste by the ratio of 25 grams of glycine per gallon Cidex OPA for 1 hour. The hospital complied with the regulation by 

purchasing the external treatment tank ($700), which includes a mobile cart, treatment tank, pump, and tubing, in 

additional to the costs of treatment device, they purchased glycine ($5 per gallon, including the cost of product and 

labor).  

 

The substitution result in less frequent and significant less severe complaints among the hospital staff, though there

very mild symptoms, such as slight eye irritation and a “chalky” taste after prolonged use. Also, because Cidex OPA h

shorter disinf

o

of endoscope is approximately $30,000 and the reprocessor around $15,000. In addition, the hospital found that Cidex 

OPA does not lose efficacy as fast as the glutaraldehyde‐based product, so they are now able to disinfect 60% more 

endoscopes during the life of the solution. 

 

     

Page 21: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

20

) Engineering Control 

 General room ventilation stitute (ANSI), in collaboration with the Association for the Advancement of Medical 

strumentation, recommended that rooms where glutaraldehyde disinfection or sterilization is performed should be 

rge enough to ensure adequate dilution of vapor and have a minimum air exchange rate of 10 air exchanges per hour 

 that natural ventilation is not always reliable for reducing glutaraldehyde 

 vapors. 

alifornia Department of Health Services also recommends local exhaust ventilation system as the “most effective” type 

f ventilation control, as it can capture contaminated air at the source before it spread.  

 preferred, as it can capture and 

move vapor at the source. Local exhaust ventilation system may include a “local exhaust hood” or “ductless fume 

er 

ryor, 1984). In addition, the American Industrial Hygiene Association recommends an average “face velocity” 

he average velocity of air drawn through the face of an open hood) of 80 to 120 feet per minute for laboratory exhaust 

 is 

rcoal or other suitable sorbent 

aterial. Since the filter has limited absorbing capacity, a preventive maintenance program in accordance with the 

  b  I.American National Standard In

In

la

(ANSI/AAMI, 1996). One study showed

exposure, and may actually increase the dispersion of glutaraldehyde vapor to other workplaces (Naidu, 1995). 

  II. Local exhaust ventilation ANSI/AAMI recommends that local exhaust ventilation also be installed at the point of release of glutaraldehyde

C

o

 

In the case of using local exhaust ventilation, the healthcare facility must ensure that the ventilation system is operating 

properly and is not obstructed by drafts from sources such as fans, supply air diffusers, open widows and doors, and 

heavily traveled aisles. Local exhaust ventilation located at the level of vapor discharge is

re

hood”.  

 

If local exhaust hood is applied as ventilation, minimum hood‐induced air velocity necessary to capture and convey 

glutaraldehyde vapor into the hood and conduct it into the exhaust system is recommended to be at least 100 feet p

minute (P

(t

hoods (AIHA, 1992 in ANSI/AAMI, 1996). Once the glutaraldehyde vapor is collected inside a suitable exhaust hood, it

transported through a duct system and then discharged to the outside via a fan. 

 

If duct fume hoods were applied (duct fume hoods refer to ventilated enclosures that have their own exhaust fan that 

draws air out of the hood, passes it through an air cleaning filter and then discharges the cleaned exhaust air back into 

the workplace), then for glutaraldehyde, the filter material could be activated cha

m

manufacture’s recommendations must be implemented to ensure optimum performance of the system. 

 

 

 

 

 

 

Page 22: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

21

I. Use of automated equipment 

utomated transfer 

SHA recommends that reducing the release of glutaraldehyde vapor during transfer operations can be accomplished 

 equipment. For example, the transfer of glutaraldehyde from drums into process 

ontainers can be automated using pumps and closed transfer lines, which helps employees avoid glutaraldehyde 

). In addition, the use of “safety nozzle” for pouring reduces the potential for splashing during 

sures of employees performing 

isinfection procedure, as well as other employees and non‐employees in the vicinity (OSHA, 2006). ANSI sets up 

tandard for the purchase and installation of automated glutaraldehyde processing equipment (ANSI/AAMI ST58), and 

 for the automated equipment.  

) Administrative Control 

mployee Information and Training 

mployees who use, handle, or may have potential exposure to glutaraldehyde solutions must be provided information 

nd training prior to their initial work assignment. According to OSHA regulation 29 CFR 1910.1200, the training should 

ds and observations that may be used to detect the presence or release of 

lutaraldehyde in the workplace, 2) the physical and health hazards of glutaraldehyde, 3) measures that workers can 

lutaraldehyde spills have the potential to create vapor concentrations that exceed recommended exposure limits. 

onsequently, a suitable plan of action with procedures for handling glutaraldehyde spills should be developed and 

facility. According to ANSI standard (ANSI/AAMI, 

996), spill control plan should incorporate the following key elements: 1) designation of individuals responsible for 

 

 

II A

O

by the use of automated and enclosed

c

exposure (OSHA, 2001

initial pouring of glutaraldehyde solutions. When using a “safety nozzle”, droplets of glutaraldehyde may remain inside 

the nozzle, so special attention should be paid to avoiding spraying droplets into the atmosphere when removing the 

nozzle from the container or screwing it onto another container (OSHA, 2006). 

 

 

Automated disinfection 

Automated disinfection equipment can significantly reduce glutaraldehyde expo

d

s

proper ventilation is still necessary

    c  E E

a

include the following elements: 1) metho

g

take to protect themselves, 4) an explanation of MSDS, the employer’s labeling system, and how employees can obtain 

and use the appropriate hazard information.  

  Safety Work Practice—Spill Control and Cleanup Procedure  

G

C

implemented by knowledgeable and responsible individuals at the 

1

Page 23: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

22

ill 

ets 

nse. 

 should be noticed that PPE should not be used as an alternative for substitution, installing engineering and 

dministrative control measures. The reasons for this are that PPE cannot eliminate hazard from the source, and the 

n estimated. A study of Italian operating room staff showed that only 38% 

gularly wore appropriate PPE while handling glutaraldehyde solutions (Angelillo et al, 1999). 

ccording to OSHA regulation 29 CFR 1910.138, employers must select and require employees to use appropriate hand 

rotection when employee’s hands are exposed to potential skin absorption of substances such as glutaraldehyde. In 

s that elbow‐length gloves or protective sleeves made of glutaraldehyde impervious material should 

e worn to protect the hands and forearms (ANSI/AAMI, 1996). Among the chemical‐protective materials, butyl rubber, 

 

ed 

ccording to OSHA regulation 29 CFR 1910.133, splash‐proof goggles or safety glasses with full face shields must be 

orn wherever there is potential for glutaraldehyde solution to contact the eyes. In addition, suitable emergency 

 must be immediately available for quick drenching or flushing of the eyes for at least 15 minutes in 

ll glutaraldehyde usage locations. It is recommended that emergency eyewash unit be accessible and located within 10 

 

managing spill cleanup, 2) evacuation procedures for nonessential personnel if necessary, 3) medical treatment 

procedures for exposed individuals, 4) site‐specific reporting requirements, 5) cleanup procedures, the location of sp

control supplies, and required personal protective equipment, 6) location and availability of material safety data she

(MSDSs) for glutaraldehyde‐based sterilants/disinfectants and manufacturer recommendations for emergency respo

 

 

 

d) Personal Protective Equipment  It

a

effectiveness of PPE in reality is much less tha

re

 

 

 

I. Skin protection  A

p

addition, ANSI state

b

nitrile and Viton are the most impervious to 50% glutaraldehyde solutions and have been shown to provide full shift 

protection against glutaraldehyde permeation (Jordan et al, 1996; Forsberg, 1999). For shorter exposures, gloves made

of polyethylene and styrene‐butadiene/styrene‐isoprene copolymers (i.e., Allergard Synthetic Surgical Gloves) provide 

protection for several hours with dilute (2% to 3.4%) glutaraldehyde solutions (Jordan et al., 1996; Ansell Health Care, 

2003). Latex gloves are not recommended for use with glutaraldehyde, as it provides far less margin of safety compar

with the materials mentioned above. Polyvinyl chloride (PVC) and neoprene gloves cannot be used against 

glutaraldehyde exposure, as they may retain or absorb glutaraldehyde (Jordan et al., 1996). 

 

 

 

II. Eye protection  

A

w

eyewash equipment

a

seconds travel time of the affected area. 

 

 

Page 24: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

23

ll personnel who may be required to wear a respirator for routine or emergency use must be included in a written 

spiratory protection program that meets the requirement of OSHA’s Respiratory Protection standard (29 CFR 1910. 

mployers must select appropriate respirators based on an exposure assessment or a reasonable estimate of employee 

res 

 

e air‐purifying respirator with organic vapor cartridges), or air‐supplying respirators (OSHA, 2006). Air‐purifying 

spirators are preferred when exposures may be reasonably anticipated to be higher, especially emergency spill 

 

 III. Respiratory Protection  

 

A

re

134). 

 

E

exposures to glutaraldehyde vapor during routine and/or emergency work procedures. For protection against exposu

to glutaraldehyde vapor during routine procedures, employers may provide air‐purifying respirators (i.e., a half‐face or

full‐fac

re

situations. OSHA also recommends that if air‐purifying respirators are provided, employers must implement a change‐

out schedule for air‐purifying canisters and cartridges to ensure that they are changed before the end of their service life.

All respirators used must be certified by NIOSH and must be appropriate for use with glutaraldehyde (29 CFR  

 

 

1910.134(d)(1)(i) and (ii)). The disposable air‐purifying particulate respirators (filtering face pieces) are not effective 

against organic vapors, thus must not be used for glutaraldehyde protection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 25: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

24

eference 

ngelillo IF, Mazziotta A, Nicotera G, (1999). Nurses and hospital infection control: Knowledge, attitudes and behaviour 

f Italian operating theatre staff. Journal Hospital Infection. 42:105~112. 

re. 2003. Allergard® II Sterile Synthetic Copolymer Surgical Gloves. [Technical Data Sheet]. Red Bank, NJ: 

nsell Health Care. 

handling of glutaraldehyde‐based products in 

ealth care facilities. Arlington, VA: Association for the Advancement of Medical Instrumentation. 

ckel R., Deverill C. and Newmann C., (1981). Disinfection in upper‐digestive tract endoscopy in 

ritain. Lancet. 1:1093. 

t observations. 

urnal of Toxicology: Culinary and Ocular Toxicology. 3: 251~262. 

xicology of Glutaraldehyde. Review of Studies and Human Health Effects, UC‐720. Union Carbide 

orporation: Danbury, CT.  

ustrial hygiene aspects of glutaraldehyde with particu 

r reference to its biocidal use in cold sterilization procedures. Journal of Applied Toxicology. 21: 131~151. 

., and Fennell, TR., (1992). A critical review of the toxicology of glutaraldehyde. Critical 

eview of Toxicology. 22: 143~174. 

ts of 

lutaraldehyde in a 2‐year inhalation study in rats and mice. Toxicology Science. 55: 195~205. 

io‐Begley F., and Lam, S., (1993). Occupational asthma in a technologist exposed to 

lutaraldehyde. Journal of Allergy Clinical Immunology. 91: 974~978. 

. Lancet. 340: 1477. 

epartment of Health, Government of South Australia, (2004). OPA solution guidelines. Retrieved from 

SSSA

Documents&field=ItemID&id=8&link=opa‐guidelines‐appendices.pdf. on June 01, 2009. 

 

R A

o

 

Ansell Health Ca

A

 

ANSI/AAMI. 1996. ST58. American National Standard for the Safe use and 

h

 

Axon A., Banks J., Co

B

 

Ballantyne B, Berman B, (1984). Dermal sensitizing potential of glutaraldehyde; a review and recen

Jo

 

Ballantyne B., (1995). To

C

 

Ballantyne, B. and Jordan, S., (2001). Toxicological, medical and ind

la

 

Beauchamp, RO., St Clair, M

R

 

van Birgelen, A., Chou, BJ., Renne, RA., Grumbein SL., Roycroft, JH., Hailey, JR., and Bucher, JR., (2000). Effec

g

 

Chan‐Yeung, M., McMurren T., Caton

g

 

Cullinan, P., Hayes, J., Cannon, J., and Madan, I., (1992). Occupational asthma in radiographers

 

Colwell CE. Communication to ACGIH‐TLV Committee, Cincinnati, OH, 1976. 

 

D

http://www.health.sa.gov.au/infectioncontrol/DesktopModules/SSSA_Documents/LinkClick.aspx?tabid=89&table=

_

 

Page 26: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

25

care 

esgroseillers JP and Brisson P, (1974). Localized epidermolysis bullosa. Report of two cases and evaluation of therapy 

mma M, Itami T, and Kawasaki H (1992). Teratological assessment of glutaraldehyde in rats by gastric intubation. 

nvironmental Protection Agency, (2002). Reducing ethylene oxide and glutaraldehyde use. Environmental Best 

isher A. A (1990). Allergic contact dermatitis of the hands from Sporicidin (glutaraldehyde‐phenate) used to disinfect 

orsberg, K., and L.H. Keith. (1997). Chemical Protective Clothing Performance Index. 2nd Edition. New York: John Wiley 

owler J F Jr., (1989). Allergic contact dermatitis from glutaraldehyde exposure. Journal of Occupational Medicine. 

rantz, SW., Beskitt, JL., Tallant, MJ., Futrell, JW., and Ballantyne, B., (1993). Glutaraldehyde: species comparisons of in 

alloway SM, Bloom AD, Resnick M, Margolin BH, nakamura F, Archer P and Zeiger PE, (1985). Dvelopment of a standard 

 

annon PF, Bright P, Campbell M, O’Hickey SP, Burge PS, (1995). Occupational asthma due to glutaraldehyde and 

oncalo S, Menezes‐Brandao F, Pecegueiro M, Moreno J A, Sousa I, (1984). Occupational contact dermatitis to 

reim H. Gluaraldehyde. Occupational toxicants, critical data evaluation for MAK values and classification of carcinogens. 

Derek R. S. and Rui‐sheng W., (2006). Glutaraldehyde exposure and its occupational impact in the health

environment. Environmental Health and Preventive Medicine. 11: 3~10. 

 

D

with glutaraldehyde. Archive of Dermatology. 109: 70~72. 

 

E

Toxicology Letters. 63: 147~153. 

 

E

Practices for Health Care Facilities.  

 

F

endoscopes. Cutis. 45:227–228. 

 

F

& Sons, Inc., pp. 326‐327. 

 

F

31:852–853. 

 

F

vitro skin penetration. Journal of Toxicology Cutaneous and Ocular Toxicolgoy. 12: 349~361. 

 

G

protocol for in vivo cytogenetic testing with Chinese hamster ovary cells; comparison of results for 22 compounds in two

laboratories. Environmental Mutagen. 7: 1~51. 

 

Gad SC, Dunn BJ, Dobbs DW, (1986). Development and vibration of an alternative dermal sensitization test: the mouse 

ear swelling test (MEST). Toxicology and Applied Pharmacology. 84: 93~114. 

 

G

formaldehyde in endoscopy and x ray departments. Thorax. 50:156~159. 

 

G

glutaraldehyde. Contact Dermatitis. 10:183–184. 

 

G

Weinheim: Weiley‐VCH. 

 

Page 27: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

26

ases, cytostatic drugs, and other potential hazards in hospitals, based on registered information 

f outcome. J Epidemiol Community Health. 39:141~147. 

ng instruments with chemical agents. British Medical Journal. 

85:1461~1463. 

ph node assay: a comparison of formaldehyde with glutaraldehyde. American Journal of Contact 

ermatitis. 9: 29~33. 

 of Occupational Medicine. 39: 69~71. 

rnational Journal of Occupational Medicine and 

nvironmental Health. 11: 349–358. 

95–898. 

aibach, H. O., and Prysowsky, S.D., (1977). Glutaraldehyde (pentanedial) allergic contact dermatitis. Archive of 

nt in 

58. 

 

d and buffered glutaraldehyde. Toxicologist. 14: 185. 

ental 

 in 

Hemminki K, Kyyronen P, Lindbohm ML, (1985). Spontaneous abortions and malformations in the offspring of nurses 

exposed to anaesthetic g

o

 

Hemminki, K., Mutanen, P., Saloniemi, I., Niemi, M‐L., and Vainio, H., (1982).  

Spontaneous abortions in hospital staff engaged in sterilizi

2

 

Hilton J, Deraman RJ, Harvey P, Evans P, Bastetter DA, Kimber J. (1998). Evaluation of relative skin sensitizing potential 

using the local lym

D

 

Jachuck S. and Bound C., (1989). Occupational hazard in hospital staff exposed to 2% glutaraldehyde in an endoscop

unit. Journal of Society

 

Jordan, S.L.P., Stowers, M.F., Trawick, E.G., and A.B. Theis, (1996). Glutaraldehyde permeation: choosing the proper 

glove. American Journal of Infection Control. 24(2): 67~69. 

 

Kiec‐Swierczynska M, Krecisz B, Krysiak B, Kuchowicz E, Rydzynski K., (1998). Occupational allergy to aldehydes in 

healthcare workers. Clinical observations. Experiments. Inte

E

 

Lyon T. C., (1971). Allergic contact dermatitis due to Cidex. Oral Surgery, Oral Medicine, Oral Pathology. 32:8

 

M

Dermatology. 113: 170. 

 

Marks TA, Worth WC, Staples RE, (1980). Influence of formaldehyde and Sonacide in embryo and fetal developme

mice. Teratology. 22: 51~

 

Matthew P. S., and Donald V. B., (2000). Allergic contact dermatitis from glutaraldehyde in healthcare workers. Contact

Dermatitis. 43: 150~156. 

 

Mayer RC, Christopher SM, Ballantyne B, and Blaszcak DL (1994). Comparative acute toxicity, irritancy and skin 

sensitization of un‐buffere

 

Marzulli, F. N., and Maibach, H. I., (1974). The use of graded concentrations in studying skin sensitizers: Experim

contact sensitization in man. Food and Cosmetic Toxicology. 12: 219. 

 

van Miller, JP., Hermansky, SJ., Losco, PE., and Ballantyne, B., (2002). Chronic toxicity study with glutaraldehyde dosed

the drinking water of Fischer 344 rats. Toxicology. 175: 177~189. 

 

Page 28: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

27

ctants/sterilizer, American Journal of Hospital 

harmacy. 34: 376. 

Occupational Health Safety‐‐‐Aust NZ. 11:43~57. 

alth and Human Services, Public Health Services, 

ational Institute of Health: Bethesda, MD, USA. 

Health, Part A. 60:101~123. 

tions/CAR/PEC/PEC3/PEC3index.htm 

 due to glutaraldehyde exposure. 

SHA, (2006). Best practice for the Safe Use of Glutaraldehyde in Health Care. OSHA 3258‐08N, 2006. Retrieved from 

 

uirce, S., Gomez, M., Bombin, C., and Sastre, J., (1999). Glutaraldehyde‐induced asthma. Allergy. 54: 1121~1122. 

adeout K, Teschke K, Dimich‐Ward H, Kenedy SM, (2005). Considering risks to healthcare workers from glutaraldehyde 

Sanderson K. V. and Cronin E., (1968), Glutaraldehyde and contact dermatitis. British Medical Journal. 3:802. 

Milner N. A, McDowell J. W., Willcockson G. W., Bruckner N. I., Stark R. and Whitmore E. J., (1977). Antimicrobial and 

other properties of a new stabilized alkaline glutaraldehyde disinfe

P

 

Naidu V, Lam S, O’Donnell G, (1995). Typical glutaraldehyde vapor levels in endoscope disinfection units in South Wale

hospitals. Journal of 

 

National Toxicology Program. Toxicology and carcinogenesis studies of glutaraldehyde in F344/N rats and B6C3F1 Mice 

(inhalation studies), Technical Report Series 490. US Department of He

N

 

Nepper‐Bradley TL, Ballantyne B. Two generation reproduction study by dosing with glutaraldehyde in drinking water of 

CD rats. Journal of Toxicology and Environmental 

 

Nethercott JR, Holness DL, Page E, (1998). Occupational contact dermatitis due to glutaraldehyde in health care workers. 

Contact Dermatitis. 18:193–196. 

 

Nettis, E., Cristina M., Soccio A., Ferrannini A., and Trust A., (2002). Occupational irritant and allergic contact dermatitis. 

Contact Dermatitis. 46: 101~107. 

 

NICNAS, 1994. Priority Existing Chemical No. 3, Glutaraldehyde, Full Public Report, 

http://www.nicnas.gov.au/publica

 

Ong, TH., Tan, KL., Lee., HS and Eng P., (2004). A case report of occupational asthma

Annuls of Academy Medicine Singapore. 33: 275~278. 

 

OSHA, 2001. Hospital e‐Tool. Retrieved from http://www.osha.gov/SLTC/etools/hospital/index.html 

 

O

www.osha.gov/Publications/glutaraldehyde.pdf on June 01, 2009.  

 

Pryor, P.D., 1984. National Jewish Hospital, Denver, Colorado. IOSH Health Hazard Evaluation Report No. 83‐074‐1525.

 

Q

 

R

alternatives in high‐level disinfection. Journal of Hospital Infection. 59: 4~11. 

 

Ranly D. M., Armstutz L., and Hern D., (1990). Sub‐cellular localization of glutaraldehyde. Endodontics and Dental 

Traumatology. 6: 251~254. 

 

Page 29: TOXICOLOGY PROFILEmed-fom-spph-oshcw.sites.olt.ubc.ca/.../2015/03/Glutaraldehyde-Rep… · staff who work in operating rooms, dialysis department, endoscopy units, and intensive care

Toxicological Profile of Glutaraldehyde in Healthcare Industry

28

0). Allergic contact dermatitis from glutaraldehyde in health‐care workers. Contact 

ermatitis. 43:150–156 

tein ML, Holsapple MR, McCay JA and Muson AE, (1987). Contact hypersensitivity response to glutaraldehyde in guinea 

tonehill, A. A., et al (1963). Buffered glutaraldehyde‐ A new chemical sterilizing solution. American Journal of Health‐

ustainable Hospitals, (2004). Glutaraldehyde controls in hospitals. Retrieved from 

eta, MJ., Avashia, BH., Cawley, TJ., and Yamin, AT., (1995). Absences of sensitization and cancer increases among 

amada M, Sasaki S, Kadono Y, Kato S, Amitani M, (1978). Mutagenicity of glutaraldehyde in mice. Bobkin Bobai Journal. 

KL Research. Phototoxicity Test, Study No. 886013. TKL Research Inc.: Maywood, NJ, 1988 

 Carbide Corporation, (1990). Study of the prenatal toxicity of glutaraldehyde in rats after oral administration, 

ASF Project No.33R0599/89025, Joint studies UCC‐BASF. Department of toxicology, BASF. 

rbani G, Cavalleri G, Gotte P. Disinfection and sterilization in dentistry. Clinical Trial Journal. 27: 20~28. 

taraldehyde. FDA By‐Lines 

o. 1, Food and Drug Administration, Washington D. C.. 

eaver, J. E. and Maibach, H. I. (1977). Dose response relationship in allergic contact dermatitis: glutaraldehyde‐

erley MS, Burleigh‐Flayer HD, and Ballantyne B, (1995). Respiratory peripheral sensory irritation and hypersensitivity 

hitmore E. Human sensory irritation threshold of glutaraldehyde vapor. Airborne Inc.: Texas, 1976. 

onically exposed by inhalation to 

lutaraldehyde. Toxicology Letters. 95: 131~139. 

 

Shaffer MP, Belsito DV, (200

D

 

S

pigs and mice. Toxicology and Industrial Health. 5: 31~43. 

 

S

System Pharmacy. 20: 458~465. 

 

S

http://www.sustainablehospitals.org/HTMLSrc/IP_Glutcontrol.html on June 01, 2009. 

 

T

glutaraldehyde workers. Toxic Substance Mechanisms. 14: 293~305. 

 

T

6:62. 

 

T

 

Union

B

 

U

 

Wade, M. J., Friedman L., and Ross V. C., (1982). Biochemical and toxicological aspects of glu

N

 

W

containing liquid fabric softener. Contact Dermatology. 3: 65. 

 

W

studies with glutaraldehyde vapor. Toxicology and Industrial Health. 11(5): 489‐501. 

 

W

 

Zissu, D., Bonnet, P., and Binet, S., (1998). Histopathological study in B6C3F1 mice chr

g