Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2,...

23
Towards the production of an anti- hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1, Y.Kanai1, H.A.Torii2, M.Corradini4, M.Leali4, E.Lodi- Rizzini4, V.Mascagna4, L.Venturelli4, N.Zurlo4, K.Fujii2, M.Otsuka2, K.Tanaka2, H.Imao5,Y.Nagashima3, Y.Matsuda2, B.Juhász6, A.Mohri1 and Y.Yamazaki1,2 1/25 Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan 1 RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan 2 Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan 3 Department of Physics, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan 4 Dipartimento di Chimica e Fisica per l’Ingegneria e per i Materiali, Universitá di Brescia & Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, 25133 Brescia, Italy 5 RIKEN Nishina Center for Accelerator Based Science, Hirosawa, Wako, Saitama 351-0198, Japan 6 Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Wien, Austria (ASACUSA-MUSASHI)

Transcript of Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2,...

Page 1: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Towards the production of an anti-hydrogen beam

Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1, Y.Kanai1, H.A.Torii2, M.Corradini4,

M.Leali4, E.Lodi-Rizzini4, V.Mascagna4, L.Venturelli4, N.Zurlo4, K.Fujii2, M.Otsuka2, K.Tanaka2, H.Imao5,Y.Nagashima3, Y.Matsuda2, B.Juhász6, A.Mohri1

and Y.Yamazaki1,2

1/25

Graduate School of Advanced Sciences of Matter, Hiroshima University,Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan

1 RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan2 Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan

3 Department of Physics, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan4 Dipartimento di Chimica e Fisica per l’Ingegneria e per i Materiali, Universitá di Brescia & Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, 25133 Brescia, Italy

5 RIKEN Nishina Center for Accelerator Based Science, Hirosawa, Wako, Saitama 351-0198, Japan6 Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Wien, Austria

(ASACUSA-MUSASHI)

Page 2: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Why Antihydrogen ?

*Antihydrogen is the simplest atom consisting entirely of antimatter. *Hydrogen counterpart is one of the best understood and most precisely measured atoms in physics.*A comparison of antihydrogen and hydrogen offers one of the most sensitive tests of CPT symmetry.

If there is some asymmetry we may get aware of it comparing mirrored systems which are

fully understood.

Page 3: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

GOAL

High precision spectroscopy of the ground state hyperfine splitting of antihydrogen.

HOW?

Rabi spectroscopy of a spin-polarized anti-atomic beam.

Page 4: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

4/25Low energy anti-hydrogen atoms (Level diagram)

experiments (Hz) Dnexp /n |ntheory-nexp |/n

n1S-2S 2,466,061,413,187,103(46) 1.7 x 10-14 1 x 10-11

nHFS 1,420,405,751.768(1) 6.3 x 10-13 (3.5+0.9) x 10-6

(F,M)=(1,-1)

(F,M)=(1,0)

(F,M)=(1,1)

(F,M)=(0,0)

experiments performed with hydrogen atoms under field free conditions

High Field Seekers

Low Field Seekers

Page 5: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

3/25Low energy anti-hydrogen atoms

[1] A. Mohri and Y. Yamazaki, Europhys. Lett. 63 (2003) 207.[2] Y. Enomoto et al., Phys.Rev.Lett.105 (2010) 243401.

Anti Helmholtz configuration: HFS-states: de-focused LFS-states: focused

EXTRACTION OF A POLARIZED BEAM

Page 6: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

RFQD

Production target3.5GeV/c ~5x 107 pbar stochastic cooling2 GeV/c stochastic cooling300MeV/c stochastic cooling & e-coolling100MeV/c(~5MeV) stochastic cooling & e-coolling        ~ 107 pbar pulse from AD (~100s cycle)100keV <5 x 106 pbar with RFQD

9/25Low energy anti-proton beams (AD to RFQD)

ASACUSA extraction line

Page 7: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

14/25How to produceASACUSA-MUSASHI experimental setup

MUSASHI trap – pbar accumulatorPositron accumulatorCUSP trapSpin flip cavitySextupole MagnetDetectors

We need antihydrogen → has to be synthesized first

Page 8: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

In Reality

Antiprotons from AD RFQD decelerator(200 MHz, 1.1 MW, 0.5 ms)

MUSASHI

CUSP

e+

Page 9: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Status of the new e+ sourcee+ source1.85 Gbq (<100 keV)

Cusp trap

B = 0.3 T

B = 2.7 T

20/25

5 x 105 pbar(< 20 eV)

B = 2.5 T

Ne moderator2.3 106/s (<3 keV)

e+ trap106/15s (<3 keV)

Page 10: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Detection of Antihydrogen

Neutral antihydrogen escapes from trapApply field ionization well → strip positron, catch pbar.Release field ionization well

Result after releaseNo peak without positronsClear indication for production of antihydrogen.Downstream detector: hbar candidate signals detected.

Page 11: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

19/25

6 x 10 e+/ 60 shot, ~0.01eV

6

~ 150eV e+ pulse

~ 150eV pulse

Cusp trap

H produced !

201 Direct Injection ( of p) scheme

Page 12: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Potential

• Axial Frequency Scaling

Exciting the particles as by a swept rf with a certain stop frequency:

Definition of interaction energy

How to improve on the F.I. signal ? A.R.

Page 13: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Insert slide AR

+Figuur Kuroda-san.

Page 14: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Prepare 40 million positrons in the nestedInject directly from MUSASHI trapApply RF during interaction

RF Assisted Direct Injection

Produced encouraging results – further evaluation in progress

Frequency Scaling in Nested Well

Page 15: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

12/25

CjLjRcjljr

Z

nnn

11

/1

11

)(

30

35

40

45

50

10.4 10.6 10.8 11.0 11.2

po

wer

(d

B)

frequency(MHz)

Q ~ 100 (f ~ 100 kHz)

30

35

40

45

50

10.4 10.6 10.8 11.0 11.2

po

wer

(d

B)

frequency(MHz)

Q ~ 100 (f ~ 100 kHz)

0.0

1.0

2.0

3.0

4.0

0 100 200 300 400 500N

e f (kHz)

x 10 8

2)( fn

0

12

2z

Vedzmzmzm z

irdticdt

dilV s

ss

12

12

20

20

2

21

2

21

2

20 4

,4

,4

de

mzr

zm

dec

de

mzl s

zss

nrrnccnllinI snsnsn /,,/, 0

1

2z

dzei

oddkk

k

k Pz

rd )(cos

2

1

0

[11] X.Feng, M.Charlton, M.Holtzscheiter, et al., J. Appl. Phys.79, 8 (1996)

Low energy antiproton beam (Tank circuit signal)

Page 16: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

13/25

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0

Np

bar

f (kHz)

x10 6

(d)

How to produce (Low energy antiproton beam)Tank circuit signal with 3AD shot accumulated in MUSASHI

H

Page 17: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Summary

Production of antihydrogen demonstrated. Candidate signals for extracted hbar at downstream detector. Applying Continuous rf incread the Hbar formation rate by ~factor 4. Major step towards first antihydrogen hyperfine spectroscopy.

Analysis of 2012 data is ongoing and results will be presented soon !

Page 18: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Thank you for your attention

Antiproton trapPositron trapCUSP trapHbar detectorCUSP detectorsSMI cavity +sextupole + hodoscope

The chief

Page 19: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Backup slides

Page 20: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Spectroscopy

Correction: QED and proton/antiproton structure – level 10-6.Together with high precision proton g-factor measurement: constraints on antiproton structure

We aim at 10-6 or better.

1.420 405 751 766 7(9) GHz

Page 21: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

Proposals to measure more precisely

Far Future !

Page 22: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

3 x 10 pbar(< 20 eV)

5

18/25

6 x 10 positron(<0.1eV, ne+~108cm-3)

6

CERN PS (3.5GeV/c, 5 x 10 )AD (5MeV, 10 )RFQD (100keV, 5 x 10 )MUSASHI (150eV, 5 x 10 )

7

6

5

7

27mCi Na (<100keV, ~109 /s)W moderator, N2buffer gas

(<3 eV, ~106 /s)Pre-accumulator (130eV, 2 x 105 /30s)

22

positron

antiproton (pbar)CUSP trap

How to produce Specifications

Page 23: Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,

RFQD

Production target3.5GeV/c ~5x 107 pbar stochastic cooling2 GeV/c stochastic cooling300MeV/c stochastic cooling & e-coolling100MeV/c(~5MeV) stochastic cooling & e-coolling        ~ 107 pbar pulse from AD (~100s cycle)100keV <5 x 106 pbar with RFQD

9/25Low energy anti-proton beams (AD to RFQD)

ASACUSA extraction line