Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª...

32
Towards a complete theory of GRBs Arnon Dar & Alvaro De Rujula Vulcano Workshop, May 25, 2006

Transcript of Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª...

Page 1: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Towards a complete theory of GRBs

Arnon Dar & Alvaro De Rujula

Vulcano Workshop, May 25, 2006

Page 2: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Astrophysical jets are not conical shells

Quasar 3C175

Page 3: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Deceleration of CBs firedby the Microquasar XTEJ1550-564 in August 1998(Corbel et al. 2003)

flare up of a CBflare up of a CBby collision with by collision with a density bump?a density bump?

Bipolar jets of cannonballs of ordinary matter are ejected by compact objects following mass accretion episodes

Page 4: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

A1987 The two CBs fired by SN

Approaching CB(superluminal)

Receding CB

SN1987A

Nisenson & PapalioliosApJ 518, L29 (1999)

Page 5: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

CB Model of GRBs, CRs,

Bipolar jets fired in mass accretion episodes (Bipolar jets fired in mass accretion episodes (ShavivShaviv-Dar 1995) of-Dar 1995) offallback matter on compact central object (De fallback matter on compact central object (De Rujula Rujula 1987) in 1987) in SNeSNe

Jet of CBsJet of CBs

ICS of SN GloryICS of SN GloryGRBGRBCRsCRs

Magnetic scattering of ISMMagnetic scattering of ISM

The Cannonball (CB) model of GRBs/XRFs

Launched by magnetic pinch ?))

Page 6: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

The CB model was based on a proposed SN-GRB association (Dar et al.1992, [but, Wooseley 1993: (failed SN) - GRB association], Shaviv & Dar 1995,Dar & Plaga 1999, Dar & De Rujula 2000. Conclusive evidence from 1997-2003observations claimed in many DD, DDD publications was ignored/ encounteredskepticisim until SN2003dh akin to SN1998bw was discovered in theafterglow of GRB030329 on the predicted day by DDD (astro-ph/0304106)

Page 7: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Radiation from Relativistic CBs

Acceleration of Particles

Beaming of Emissions

Confinement of CBs

Deceleration of CBs

Emission of Radiation

A,B,C,D discussed in detail in De Rujula’s talk

Page 8: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Fermi Acceleration By Relativistic Cannonball

Lab Frame

CB’s Rest Frame

g

mAE g='Magnetic Elastic Scattering

))12(()12(

)12(

)'cos1(

2

2max

2'

mAEmA

n

dE

dn

mAE

EE

⋅--Q⋅-

ª

⋅-ª

⋅+=

2gg

g

Jbg

2-11/= bg

CBCB

((Atter Isotropization Atter Isotropization in CB)in CB)

Page 9: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Æ˙˚

˘ÍÎ

È

+ªª

W

-=

W=

W=

W

-

-=

2

222

22

2

14

1

2

)cos1(

1'cos

'cos

'

cos1

cos'cos

qgg

pd

p

qgg

qbgd

dqq

qbbq

q

nn

d

dn

d

dn

d

d

d

dn

d

dn

Relativistic Beaming

,12 >>‹ g 12 <<q

122 >>‹ qg42/ qpgn

pg /2n[Particles emitted isotropically in the CBs’ rest frame are beamedin the lab frame into a narrow cone of an opening angle:

gq /1ªb

122 <<‹ qg

Page 10: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Deceleration of CBs

sec103.1)1(

8

)1(:

122

433

2143

5030

20

220

0

2

0220

4

0

⋅+

ª+

=

++=˜¯

ˆÁÁË

Ê+˜

¯

ˆÁÁË

Êfi

- ggp

qggg

qggg

Rn

Nz

Rcn

Nztwhere

t

t

b

)(tg 022

0 )12( ttt break +ªª Jg

)1(

(22

2

z

cdtnRndxRmdNMd

dMMdMd

p +

-=-=-=

-=fi0=)

dgpgpgg

ggg

changes slowly with time until

The power-law dependence of on produces akinematical break which depends on the viewing angle

nF g

e.g. for constant R

Page 11: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

DominantEmission Mechanisms

ØICS of SN Light

Brem+Line Cooling

ØSynchrotron Radiation

time

GRB

Early time AG

Late time AG

GRB- pulse shape, pulse duration, energy dependence,spectrum, peak energy, spectral evolution, fluence,polarization, correlationsEarly AG- spectrum, light curveLate AG- spectrum, light curve

Evidence:

Page 12: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

/

Page 13: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN
Page 14: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

;2

exp1exp 21

ªª

Ô

Ô˝¸

ÔÓ

ÔÌÏ

˙˙˚

˘

ÍÍÎ

Ș¯

ˆÁË

Ê--˙˙˚

˘

ÍÍÎ

Ș¯

ˆÁË

Ê-µ

mn

t

t

t

t

dt

dNnm

Pulse Shape

2/1 rn µ‹ g

Page 15: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Rise-time versus FWHM of single pulses

RS=0.28FWHMfor m=n=2 (naiveCB model coice)

RS=0.32FWHM

Page 16: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

ba

g

-

--

-

˜˜¯

ˆÁÁË

Ê-+˜

˜¯

ˆÁÁË

Ê=

eff

TETE

eff T

Eebe

T

Ea

dE

dNeffeff )1( //

For ICS of thin thermal bremstrahlung:

,1~

)1/(

a

d zTTeff +=

2.2~b

GRB Spectrum

Page 17: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

)1/( zTEp +ª gdFor ICS of SN light (T~1 eV):

From SWIFT: <z> =2.75

From CB model fits of AGs: 310>ª>ª<< dg

keVEp 265>ª<fi)('3 RFEE iso

gg d=

{µ+ pEz)1( [ ][ ] ,5.0

,0.12/1

3/1

iso

iso

E

E

g

g

1

122

22

<<

>>

qg

qgfi

Peak Energy

Page 18: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

980425

The correlation discovered by Amati et al. 2003was predicted by the CB model ( DD 2000)

031203

( ) 05.46.0 ±isoEg

Correlation between peak energy and total ’’isotropic’’ energy

Page 19: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Double peak spectral energy flux (analogous to blazars ?)

GRB 941017 GRB 031203

INTEGRAL

XMM-Newton

Comptel

by ICS of CBs’ plasma electrons + CB accelerated electrons

Page 20: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Brem +line cooling Brem +line cooling

Sync. Sync.

SWIFT: GRB 050315(Vaughan et al. 2005)

BeppoSAX: GRB 990510(Pian et al. 2001)

CB model prediction 2001 CB model fit 2005

X-ray afterglow

break break

Page 21: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Noisy X-ray Afterglow GRB 050319

Flares in the X-RAY afterglow GRB 050502B

Brem +line cooling

Sync.

Flares: Late accretion episodes on the compact central object ?Encounters with density bumps?

Page 22: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

GRB 030329Optical flares due todensity jumps?Data: Lipkin et al. 2004Theory: CB Model (DDD)

Page 23: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

GRB 050924 GRB 050924 at z=6.29

Page 24: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

but, light-curve breaks in Swift GRB afterglows are chromatic

FM: Achromatic break in AG of conical jets when jett qg /1)( ª

8/38/18/18/153

8/3, ]2/)1[()2.0/(5 znEt edj

ojet +ª - hq

isojetjet

iso EEE ggg pqqp 2)cos1(2 ª-=and

Page 25: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

===fi+ª===fi

⋅+

ª+

=

++=˜¯

ˆÁÁË

Ê+˜

¯

ˆÁÁË

Ê

-

022

0

433

2143

5030

20

220

0

2

0

2

4

0

)12(

sec103.1)1(

8

)1(

122

tt

Rn

Nz

Rcn

Nzt

t

t

break

b

qg

ggp

qggg

qgg

Synchrotron Afterglow from Decelerating CBs

1.15.0

)]([)]([ 3132

ƪ

µ -+-

a

ndg aaan ttnRF

whenbb nnnn >Æ<

Deceleration break:

XRFs=GRBs with larger viewing angles have later breaks

Page 26: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

The Cannonball Modelof GRBs/XRFs/SHBs

Inverse Compton Scattering of glory photons or ambient light by highlyrelativistic jets of plasmoids (cannonballs) of ordinary matter ejected inmass accretion episodes on compact central objects in:

Core collapse SNe Long GRBs\XRFs

Accretion Induced Collapse (SNIa) (SHBs/GRBs/XRFs?)

Merger of compact binaries (n-n, n-bh) (SHBs?)

Phase transition in hyperstars(?)/magnetars(?) SHBs,,SGRs

Microblazars (XRFs/GRBs ?)

------------

------------

-------------

-------------

-------------

Event Display

Page 27: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN
Page 28: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

A1987 The two CBs fired by SN

Approaching CB(superluminal)

Receding CB

SN1987A

Nisenson & PapalioliosApJ 518, L29 (1999)

Page 29: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Chandra X-ray image of thequasar Pictor A

Page 30: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

Pictor AChandra X-ray image

(Emission from the Jet)

1.4 GHz VLA radio image(Emission from acceleratedCRe’s while diffusing away)

Page 31: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

M87: Cosmic Cannon

Radio

Optical

X-ray

Page 32: Towards a complete theory of GRBs · 8 (1): 2 21 4 3 3 2 314 50 3 0 0 2 22 0 0 2 220 0 4 0 ⋅ + ª + = ˜˜=++ ¯ ˆ ÁÁ Ë Ê ˜˜+ ¯ ˆ ÁÁ Ë Ê fi pg-g gq g g gq g g nR zN

CBs fired by the microquasar XTE J1550-564 seen in X-raysby Chandra (Corbel et al. 2002)

HST image of the glory (dust echo)of the stellar outburst of the redsupergiant V383 Monocerotison early January 2002 taken on28 October 2003 (Bond et al 2003)