Totally Integrated Power Technical Series, Edition 1 · devices (RCD). The highest standard is...

6
siemens.com/tip-cs Totally Integrated Power Technical Series Edition 1 Modelling IT Isolating Transformers in SIMARIS® design for Hospital Applications

Transcript of Totally Integrated Power Technical Series, Edition 1 · devices (RCD). The highest standard is...

  • siemens.com/tip-cs

    Totally Integrated Power

    Technical Series Edition 1Modelling IT Isolating Transformers in SIMARIS® design for Hospital Applications

  • 2

    Technical Series Edition 1

    Planning a hospital is determined by the medical procedures and their interrela-tions. They always focus on the benefit of the patients. Therefore the objective of “patient protection“ also applies to elec-trical plant design as first and foremost objective. In a direct sense, patients must be protected against the immediate ef-fects of electric current during treatment. Indirectly, patients must be protected in terms of minimum medical treatment available to them at any time, also in case normal power supply is interrupted, even if this extends to a period of several days. IEC 60364-7-710 (DIN VDE 0100-710) divides power consumers in medically used areas into three groups. For areas categorized as Group 0 and 1, the stan-dard demands, inter alia, a power system configuration as TN-S and a protection against excessively high touch voltages by means of residual current devices (RCD). The highest standard is provided in Group 2, where an interruption of me-dical examination or treatment would be irresponsible.

    Group 0

    From an electrical point of view, rooms in Group 0 are in no way differently equip-ped than rooms for any ordinary use also outside medical facilities. An assignment to this group however implies that such rooms nevertheless are of a considerable relevance to medical procedures.

    Group 1

    Group 1 covers all those rooms and areas where patients are in care whose condi-tion and type of medical treatment places higher requirements on the electric ins-tallation. An unexpected interruption of power supply does not expose the patient to imminent danger and the medical exa-mination can be repeated at any time.

    Group 2

    Rooms and areas categorized as Group 2 are used for diagnosis and patient thera-py where the type of medical treatment may be directly or indirectly dangerous for the patient.

    In parts of Group 2 and Group 1 areas there are IT isolating transformers which ensure an additional safety standard. The first fault, which would result in power failure in other common supply networks, remains without consequences in the IT network. Only the second fault will result in disconnection from supply and thus a power failure. This type of power system configuration is generally used in opera-ting theatres, for example.

    SIMARIS design can be used to dimension electric networks based on real products with a minimum of input – from me-dium voltage to the socket outlet. This software helps electrical engineering consultants reduce their overall planning expenses for power distribution systems and minimizes selection and dimensio-ning time for the necessary equipment enormously – at the same time offering a high degree of planning reliability into the bargain.

    The use of 1-phase isolating transformers in these medical IT networks cannot, however, be simulated directly in SIMARIS design. But with the aid of equivalent circuit mapping, the circuits and the equipment applied as well as their selec-tivity towards these subnetworks can be verified.

    Technical Series Edition 1

    Modelling IT Isolating Transformers in SIMARIS® design for Hospital Applications

    1. Fundamentals

  • 3

    Technical Series Edition 1

    2. Procedure for Equivalent Circuit Mapping

    SIMARIS design provides the option to enter an equivalent impedance. This serves for simulating IT isolating transformers. The following product was referred to for basic technical data of the IT isolating transformers::

    Bender productTypes: ES710 / 3150 - 8000 U: 230 V / 230 V, 1-phase

    The primary- and secondary-side specification values from the Bender datasheet are summed up to build the R values. By entering the short-circuit voltage uk, the X values are determined as follows:

    SUuZ k

    2⋅= (1)

    22 RZX −= (2)

    Step

    1

    Add the equivalent impedance

    An IT isolating transformer is added bymeans of the equivalent impedance fromthe library for distribution board circuits(Figure 1).

    Step

    2

    Enter the R and X values

    To obtain an equivalent impedance, the resistances and reactances of the isola-ting transformers for the positive phase-sequence system and the two zero phase-sequence systems (phase-N andphase-PE) must be entered (Figure 2).

    Since these are 1-phase transformers (230 / 230 V),

    • U = 230 V and• zero phase-sequence data =

    positive phase sequence data

    is specified.

    Regional hospital Feldkirch,Austria

    Figure 1: Adding the equivalent impedance

    Figure 2: Entering resistances and re-actances for the equivalent impedance

    The installed 1-phase cable length between protection device and IT transformer must be doubled in the standard version of SIMARIS design, because the equivalent impedance is entered as a 3-phase system in the distribution circuit of the calculation. The cable length must also be doubled in the SIMARIS design „pro-fessional“ version, when the setting „symmetrical“ is selected for load flow calculations. If „asymmetrical“ is selected, the single cable length has to be used.

  • 4

    Technical Series Edition 1

    4

    If a different product is used, all technical data such as impedances, cable cross-sections,backup fuses, etc. must be verified and adapted if necessary!

    i The option „Impedances short-circuit relevant“ (see Figure 2) must be selected, to take into accout the attentuation of the short-circuit currents through the transformer.

    The option „Impedances voltage drop relevant“ must be de-activated, because the volta-ge-drop is compensated by the transfor-mer ratio.

    This data basis supplies the following R and X values for Bender transformers:

    S in VA R in mW X in mW

    3150 485 136

    4000 245 312

    5000 195 250

    6300 150 202

    8000 120 158

    Step

    3

    Figure 3: Cable cross-sections and backupfuses for IT isolating transformers

    Define the cross-sections of feeder cables and backup fuses

    The maximum cable cross-section and backup fuse specifications for IT isolating transfor-mers according to the datasheet are adopted from Bender (Figure 3).

    Enter loads

    Please note the following when entering loads:

    • Only 1-pole loads may be entered• Each load must be assigned to the same phase of the IT isolating transformer, e.g. all

    loads to L1• All switching devices must manually be selected as 2-pole devices• Warnings regarding RCD for loads connected downstream of IT isolating transformers

    are to be ignored, since SIMARIS design uses the pre-set TN-S network for evaluation

    i

    Step

    4

  • 5

    Technical Series Edition 1

    3. Saving as Favourite

    This simulation of IT isolation transfor-mers by means of subdistribution boards with equivalent impedances can also be saved as Favourite.After the “equivalent impedance“ circuit has been selected, the IT isolating trans-former and all its outgoing feeders can be saved as Favourite either from the con-text menu (right mouse button) or the “Tools” menu on the menu bar (Figure 4).

    This way users can save relevant IT isola-ting transformers with model feeders as Favourites in SIMARIS design. The Favou-rites section thus makes them available to all projects (Figure 5).

    Figure 4: Context menu of the subdistribution board with equiva-lent impedance and input dialog for saving as Favourite

    Figure 5: Example of distribution boardsfavourites for IT isolating transformers

    Hospital da Luz,Lissabon, Portugal

    Enclosed please find the SIMARIS design model network with IT isolating transformers and Technical Datasheet on IT isolating transformers made by Bender and the corre-sponding model favourites (.sdt).

    i

    Our model favourites for distribution boards with IT isolating transformers can be integrated into SIMARIS design from the menu bar using Tools > Favorites > Import favorites. To do so, you have to save the “IT-Isolating_Transformer_2020.sdt“ file enclosed with the document on your computer.

  • Published by Siemens AG

    Smart Infrastructure Distribution Systems

    Mozartstr. 31 c 91052 Erlangen Germany

    E-Mail: [email protected]

    For the U.S. published by Siemens Industry Inc.

    100 Technology Drive Alpharetta, GA 30005 United States

    05/20

    © Siemens 2020

    Subject to change without notice and errors excepted.

    The information given in this document only contains gen-eral descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further develop-ment of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

    All product designations may be trademarks or other rights of Siemens AG, its affiliated companies or other companies whose use by third parties for their own purposes could violate the rights of the respective owner.

  • ES710_D00109_05_D_XXEN/12.2017

    Isolating transformer ES710Single-phase isolating transformers for the design of medical IT systems

    Also available as energy-efficient Green Line (GL) edition

  • 2 ES710_D00109_05_D_XXEN/12.2017

    Isolating transformer ES710

    ES710

    Device features• Built-in temperature sensors acc. to

    DIN 44081 (120 °C)

    • Screen winding with brought-out insulated connection terminal

    • Insulated mounting angles

    • Degree of protection, IP00 (open design)

    • Degree of protection, IP23 (with enclosure)

    • Protection class I

    • Protection class II (option: encapsulated version)

    • Reinforced insulation

    • Classification of insulation: ta40/B

    • Connections: screw terminals

    • Noise level < 35 dB (A) (no-load and nominal load)

    • Vector group: IiO

    • Inrush current IE GL version < 8 x În

    Approvals

    VDE test mark for all ES710/3150…ES710/10000 and ES…GL types, ES…SK2, ES…SN-GL are not VDE certified,

    Application and descriptionThe transformers of the ES710 series have reinforced insulation and comply with the requirements of IEC 61558-1/DIN EN 61558-1 (VDE 0570-1) and IEC 61558-2-15/DIN EN 61558-2-15 (VDE 0570-2-15).

    In addition, the transformers comply with the requirements of IEC 60364-7-710/DIN VDE 0100-710 (VDE 0100-710) for IT systems in medical locations. The windings are galvanically isolated. In order to minimize electrical interferences, an electrostatic screen is installed between the primary and secondary winding the lead out of which is connected to an insulated terminal for connection to the equipotential bonding.

    The fixing angles are isolated from the transformer core in order to guarantee an isolated installation to comply with the requirements of DIN VDE 0100-710 (VDE 0100-710), para. 710.512.1.6.2).

    The transformers are available for horizontal and vertical installation. Protection against corrosion is guaranteed by a complete resin impregnation.

    The transformers are designed for use in dry locations. Transformers of the SK2 series are completely encapsulated and fulfil the requirements of protection class II.

    Frequency/ratingsThe transformers are designed for rated frequencies of 50…60 Hz. The values specified in the chapter “Technical data” refer to a maximum ambient temperature of 40 °C and a rated frequency of 50 Hz.

    Temperature riseFree air circulation must be ensured. An ambient temperature exceeding 40 °C will reduce the rated power. For temperature monitoring, a PTC thermistor is placed on each transformer leg and the leads are connected to the terminals.

    EnclosureAppropriate steel sheet enclosures, degree of protection IP 23, are available for all standard types of isolating transformers.

    Rated powerAccording to DIN VDE 0100-710 (VDE 0100-710), the rated power of the transformer shall not be less than 3.15 kVA and shall not exceed 8 kVA.

    Overload protectionWhen isolating transformers are used to form a medical IT system in accordance with para. 710.512.1.6.2 of DIN VDE 0100-710 (VDE 0100-710), overload protection is not permitted. In this case, short-circuit protection is required. That means, emphasis is focused on the availability of the power supply; it is therefore essential to avoid discon-nection on the occurrence of transient overload. The protection of isolating transformers against overload and overtemperature can be realized by using monitoring devices in accordance with para. 710.531.3.1. The appropriate fuses for short-circuit protection can be selected from the table “Technical data”.

    StandardsES710 isolating transformers comply with the device standards and the regulations for installation: DIN EN 61558-1 (VDE 570-1), IEC 61558-1, DIN VDE 0100-710 (VDE 0100-710), DIN EN 61558-2-15 (VDE 0570-2-15), IEC 61558-2-15, IEC 60364-7-710.

    Hazard warning: When performing installation work in the environment of the transformer, it has to

    be ensured that the insulation coordination of the transformer is not influenced in a negative way.

    For example, no ferromagnetic and conductive metal swarf may fall down close to the transformer. This can interfere with the function and the dielectric properties, especially after being turned on. The environment of the transformer must be kept free from such particles during the entire operating time and controls must be carried out at regular intervals.

    Single-phase isolating transformers for the design of medical IT systems

  • ES710_D00109_05_D_XXEN/12.2017 3

    ES: single-phase isolating transformerDS: three-phase isolating transformerNominal power

    Type series without = standardK = terminals on topLG = horizontal positionSK2 = encapsulation according to protection class IIS = terminals on top side endS-GL = terminals front side (energy e�cient)SN-GL = terminals front side, low type of construction (energy e�cient)

    Isolating transformer ES710

    Nameplate

    Wiring diagramFE FE

    Terminal diagramStandard, K series, LG series, SK2 series S series, S-GL series, SN-GL series

    Connection properties

    Type Input terminals flexible/rigid Screen winding

    flexible/rigid Control terminals

    flexible/rigidControl terminals for

    protection class II flexible/rigid

    Output terminals flexible/rigid

    ES710/3150 16/25 mm² 16/25 mm² 4/6 mm² 2.5/4 mm² 16/25 mm²ES710/4000 16/25 mm² 16/25 mm² 4/6 mm² 2.5/4 mm² 16/25 mm²ES710/5000 16/25 mm² 16/25 mm² 4/6 mm² 2.5/4 mm² 16/25 mm²ES710/6300 16/25 mm² 16/25 mm² 4/6 mm² 2.5/4 mm² 16/25 mm²ES710/8000 16/25 mm² 16/25 mm² 4/6 mm² 2.5/4 mm² 16/25 mm²ES710/10000 35/35 mm² 35/35 mm² 4/6 mm² 2.5/4 mm² 35/35 mm²

  • 4 ES710_D00109_05_D_XXEN/12.2017

    Isolating transformer ES710

    Dimension diagram/type of construction

    Standard Dimension B is the depth incl. terminals

    K series LG series SN-GL series

    SK2 series S series Dimension E is the depth incl. terminals

    E

    C

    DA

    F

    G

    AB

    C

    D

    E

    H

    F

    G

  • ES710_D00109_05_D_XXEN/12.2017 5

    Isolating transformer ES710

    Ordering information

    Dimensions (mm) Cu weight (kg)

    Weight (kg)

    Core U/I Type Art. No.A B C D E F G H

    GL se

    ries

    240 230 325 200 180 145 11 x 28 15 49 180/93 ES710/3150-GL B92090001280 200 370 240 150 115 11 x 28 24 59 210/63 ES710/4000-GL B92090002280 210 370 240 160 125 11 x 28 25 61 210/73 ES710/5000-GL B92090003280 225 370 240 175 140 11 x 28 26 65 210/88 ES710/6300-GL B92090004280 240 370 240 190 155 11 x 28 27 74 210/103 ES710/8000-GL B92090005280 255 370 240 205 170 11 x 28 33 85 210/120 ES710/10000-GL B92090006

    S-GL

    serie

    s

    280 180 370 240 290 145 11 x 28 15 49 180/93 ES710/3150S-GL B92090061280 150 420 240 290 115 11 x 28 24 59 210/63 ES710/4000S-GL B92090062280 160 420 240 290 125 11 x 28 25 61 210/73 ES710/5000S-GL B92090063280 175 420 240 290 140 11 x 28 26 65 210/88 ES710/6300S-GL B92090064280 190 420 240 290 155 11 x 28 27 74 210/103 ES710/8000S-GL B92090065280 205 420 240 290 170 11 x 28 33 85 210/120 ES710/10000S-GL B92090066

    SN-G

    L ser

    ies

    280 180 370 240 290 145 11 x 28 15 49 180/93 ES710/3150SN-GL B92090121280 150 370 240 320 115 11 x 28 24 59 210/63 ES710/4000SN-GL B92090122280 160 370 240 320 125 11 x 28 25 61 210/73 ES710/5000SN-GL B92090123280 175 370 240 320 140 11 x 28 26 65 210/88 ES710/6300SN-GL B92090124280 190 370 240 320 155 11 x 28 27 74 210/103 ES710/8000SN-GL B92090125280 205 375 240 325 170 11 x 28 33 85 210/120 ES710/10000SN-GL B92090126

    Stan

    dard

    240 230 325 200 180 145 11 x 28 15 49 180/93 ES710/3150 B924211280 200 370 240 150 115 11 x 28 24 59 210/63 ES710/4000 B924212280 210 370 240 160 125 11 x 28 25 61 210/73 ES710/5000 B924213280 225 370 240 175 140 11 x 28 26 65 210/88 ES710/6300 B924214280 240 370 240 190 155 11 x 28 27 74 210/103 ES710/8000 B924215320 260 420 270 200 160 13 x 35 39 85 240/83 ES710/10000 B924216

    K se

    ries

    240 360 200 180 145 11 x 28 15 49 180/93 ES710/3150K B924221280 420 240 150 115 11 x 28 24 59 210/63 ES710/4000K B924222280 420 240 160 125 11 x 28 25 61 210/73 ES710/5000K B924223280 420 240 175 140 11 x 28 26 65 210/88 ES710/6300K B924224280 420 240 190 155 11 x 28 27 74 210/103 ES710/8000K B924225320 480 270 200 160 13 x 35 39 85 240/83 ES710/10000K B924226

    LG se

    ries

    230 235 320 204 240 9 x 14 15 49 180/93 ES710/3150LG B924231260 210 365 234 280 9 x 14 24 59 210/63 ES710/4000LG B924232260 220 365 234 280 9 x 14 25 61 210/73 ES710/5000LG B924233260 235 365 234 280 9 x 14 26 65 210/88 ES710/6300LG B924234260 250 365 234 280 9 x 14 27 74 210/103 ES710/8000LG B924235294 240 410 264 320 13 x 20 39 85 240/83 ES710/10000LG B924236

    SK2 s

    erie

    s

    380 200 450 350 270 150 11 x 16 15 69 180/93 ES710/3150SK2 B924241380 190 500 350 310 150 11 x 16 24 75 210/63 ES710/4000SK2 B924242380 200 500 350 310 160 11 x 16 25 77 210/73 ES710/5000SK2 B924243380 215 500 350 310 175 11 x 16 26 86 210/88 ES710/6300SK2 B924244380 230 500 350 310 190 11 x 16 27 90 210/103 ES710/8000SK2 B924245410 240 560 380 350 200 11 x 16 39 105 240/83 ES710/10000SK2 B924246

    S ser

    ies

    280 180 370 240 290 145 11 x 28 15 49 180/93 ES710/3150S B924261280 150 420 240 290 115 11 x 28 24 59 210/63 ES710/4000S B924262280 160 420 240 290 125 11 x 28 25 61 210/73 ES710/5000S B924263280 175 420 240 290 140 11 x 28 26 65 210/88 ES710/6300S B924264280 190 420 240 290 155 11 x 28 27 74 210/103 ES710/8000S B924265320 200 440 270 330 160 13 x 35 39 85 240/83 ES710/10000S B924266

  • 6 ES710_D00109_05_D_XXEN/12.2017

    Technical data

    Type ES710/3150 ES710/4000 ES710/5000 ES710/6300 ES710/8000 ES710/10000

    Power/voltages/currentsRated power 3150 VA 4000 VA 5000 VA 6300 VA 8000 VA 10000 VARated frequency 50…60 Hz 50…60 Hz 50…60 Hz 50…60 Hz 50…60 Hz 50…60 HzRated input voltage AC 230 V AC 230 V AC 230 V AC 230 V AC 230 V AC 230 VRated input current 14.2 A 18 A 22.5 A 28.5 A 36 A 45.3 ARated output voltage AC 230/115 V AC 230/115 V AC 230/115 V AC 230/115 V AC 230/115 V AC 230/115 VRated output current 13.7 A 17.4 A 21.7 A 27.4 A 34.7 A 43.5 AInrush current IE < 12 x În < 12 x În < 12 x În < 12 x În < 12 x În < 12 x ÎnInrush current IE GL version < 8 x În < 8 x În < 8 x În < 8 x În < 8 x În < 8 x ÎnLeakage current ≤ 0.5 mA ≤ 0.5 mA ≤ 0.5 mA ≤ 0.5 mA ≤ 0.5 mA ≤ 0.5 mANo-load input current i0 ≤ 3 % ≤ 3 % ≤ 3 % ≤ 3 % ≤ 3 % ≤ 3 %No-load input current i0 GL version ≤ 2 % ≤ 2 % ≤ 2 % ≤ 2 % ≤ 2% ≤ 2%No-load output voltage U0 ≤ 236 V ≤ 234 V ≤ 234 V ≤ 235 V ≤ 233 V ≤ 233 VShort-circuit voltage Uk ≤ 3 % ≤ 3 % ≤ 3 % ≤ 3 % ≤ 3 % ≤ 3 %

    Environmental conditionsAmbient temperature ≤ 40 °C ≤ 40 °C ≤ 40 °C ≤ 40 °C ≤ 40 °C ≤ 40 °CNo-load temperature rise ≤ 20 °C ≤ 23 °C ≤ 26 °C ≤ 23 °C ≤ 35 °C ≤ 37 °CFull-load temperature rise ≤ 69 °C ≤ 48 °C ≤ 62 °C ≤ 65 °C ≤ 70 °C ≤ 70 °CNoise level (under no-load conditions and nominal load) ≤ 35 dB(A) ≤ 35 dB(A) ≤ 35 dB(A) ≤ 35 dB(A) ≤ 35 dB(A) ≤ 35 dB(A)

    OtherInsulation classification ta40/B ta40/B ta40/B ta40/B ta40/B ta40/BDegree of protection IP00 IP00 IP00 IP00 IP00 IP00Protection class I/II* I/II* I/II* I/II* I/II* I/II*Core U/I 180/93 210/63 210/73 210/88 210/103 240/83Core U/I GL version 180/93 210/63 210/73 210/88 210/103 210/120Recommended use when used in accordance with DIN VDE 0100-710 25 A gL/gG 35 A gL/gG 50 A gL/gG 50 A gL/gG 63 A gL/gG 80 A gL/gGRecommended use when used in accordance with DIN VDE 0100-710 GL version 25 A gL/gG 25 A gL/gG 35 A gL/gG 50 A gL/gG 50 A gL/gG 63 A gL/gGInduction 0.86 T 0.94 T 1.00 T 1.05 T 1.05 T 1.05 TRprimary ±5 % 0.255 Ω 0.135 Ω 0.100 Ω 0.080 Ω 0.064 Ω 0.050 Ω (-GL 0,054)Rsecondary ±5 % 0.230 Ω 0.110 Ω 0.095 Ω 0.070 Ω 0.056 Ω 0.036 Ω (-GL 0,045)Efficiency 95 % 96 % 96 % 96 % 96 % 96 %

    Loss at 20…22 ° C ambient temperatureFe loss (iron loss) < 55 W < 60 W < 80 W < 105 W < 110 W < 150 WFe loss (iron loss) GL version < 18 W < 20 W < 26 W < 33 W < 38 W < 42 WCu loss (copper loss) < 90 W < 80 W < 100 W < 125 W < 165 W < 190 WCu loss (copper loss) GL version < 90 W < 80 W < 100 W < 125 W < 165 W < 205 W

    Heat dissipation loss at 40 ° C ambient temperature and 100 % continuous loadHeat dissipation loss < 165 W < 160 W < 202 W < 265 W < 320 W < 380 WHeat dissipation loss GL version < 125 W < 115 W < 140 W < 185 W < 230 W < 270 W

    * Option: completely encapsulated version Energy efficient version GL = Green Line

  • ES710_D00109_05_D_XXEN/12.2017 7

    Green Line transformer (energy efficient version) – High degree of energy saving over the life time (16 years AfA) (German AfA table for deprecation of wear and tear)

    This general illustration is based on calculations of the transformer’s energy consumption while energy costs remained constant at 13.4 ct/kWh (source: first energy) for 16 years. The wide variety of bandwidths result from the different transformer capacities.

    Afa = Deprecation of wear and tear

    = Standard version

    = GL version (Green Line)

    n = A higher purchase price of approx. 15-20%

    ● = ROI (Return on Investment) after about 1-3 years

    Pur

    chas

    e pr

    ice

    + en

    ergy

    con

    sum

    ptio

    n E

    UR

    Useful life – years

  • Bender GmbH & Co. KGP.O. Box 1161 • 35301 Gruenberg • GermanyLondorfer Strasse 65 • 35305 Gruenberg • GermanyTel.: +49 6401 807-0 • Fax: +49 6401 807-259E-Mail: [email protected] • www.bender.de

    ES71

    0_D

    0010

    9_05

    _D_X

    XEN

    / 12

    .201

    7 / p

    df /

    © B

    ende

    r Gm

    bH &

    Co.

    KG

    , Ger

    man

    y –

    Subj

    ect t

    o ch

    ange

    ! The

    spe

    cifie

    d st

    anda

    rds

    take

    into

    acc

    ount

    the

    editi

    on v

    alid

    unt

    il 12

    .201

    7 un

    less

    oth

    erw

    ise

    indi

    cate

    d.

    BENDER Group

    Isolating transformer enclosure

    ESDS0107Sheet steel enclosure in vertical position for single-phase transformers of the series ES710/3150 to ES710/10000.

    Enclosure • Sheet steel, varnished in RAL 7032

    • Degree of protection IP 23

    • Bore holes for cable entry

    • The enclosures of the transformers (standard(GL) version), transformer sizes of 3.15 to 10 kVA, are provided with fixing holes intended for easy retrofitting at any time.

    • The sheet steel enclosure ESDS701 is only suitable for the -LG series for hanging mounting.

    A

    B

    D

    E F

    Ordering information enclosure

    Dimensions (mm)Weight (kg) Version Type Art. No.

    A B C D E F G H I430 380 500 385 420 450 M10 ø 37,5 ø 20,5 16 floor mounting ESDS0107-1 B924673350 300 315 550 580 18 hanging mounting ESDS710 B924741

    IT-iso-transformer_2020_V10_single.pod

    ¬í��sr�,com.siemens.simaris.design.model.ElecProjectæ¾J�=Þ�D���L�mDefaultst�?Lcom/siemens/simaris/design/Project/Knoten/Verwaltung/CVorgabe;L��mEnergyCalculationTypet�6Lcom/siemens/simaris/enc/kernel/EnergyCalculationType;L�mIDfactoryt�-Lcom/siemens/simaris/design/model/IDRegistry;L��mNetst��Ljava/util/List;L��mProjectt��LCommon/Stammdaten/CProject;L�mStateMngrt�HLcom/siemens/simaris/design/Project/Knoten/Einspeisung/SourceSwitchMngr;xpsr�=com.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabe��–›F^Ÿs��Z��mSPcommunicationZ��mVDropOnlyLVL��mDefaultsConnectionMVt�ZLcom/siemens/simaris/design/Project/Knoten/Verwaltung/Mittelspannung/CVorgabeVerbindungMS;L��mDefaultsSourceMVt�[Lcom/siemens/simaris/design/Project/Knoten/Verwaltung/Mittelspannung/CVorgabeEinspeisungMS;L��mEnergyCalcTypet��Ljava/lang/String;L��mFrequencyConverterBuildTypeq�~��L�$mFrequencyConverterInstallationPlaceq�~��L��mFrequencyConverterLineEmcTypeq�~��L� mFrequencyConverterOutputEmcTypeq�~��L��mInstallPlaceMoveConsq�~��L��mInstallationPlaceq�~��L��mSumVoltageDropReferencet�FLcom/siemens/simaris/design/model/calculation/SumVoltageDropReference;L��mSurgeProtectiont�LLcom/siemens/simaris/design/Project/Geraete/protection/SurgeProtection$Type;xr�Bcom.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabeBasic¾=—Ÿ7ý\'���xr�Fcom.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabeAllgemein.2¡V{ý�!���L��m_Paramst�:Lcom/siemens/simaris/design/Globals/Component/CParamTable;xpsr�8com.siemens.simaris.design.Globals.Component.CParamTable��®ê�oîÇ���xr��java.util.Hashtable�»�%!Jä¸���F�loadFactorI�thresholdxp?@�����ƒw����¯���{t� ID_VorgabeVerbrMehrBelastungsartt�,pod_combo_Verbraucher_BelastungsArt_induktivt��ID_VorgabeSumLoadBelastungsartt�,pod_combo_Verbraucher_BelastungsArt_induktivt�#ID_VorgabeMotor_StartClassFrequencyt��pod_combo_Motor_Class10t��ID_VorgabeSumLoadNominalLoadsr��java.lang.Double€³ÂJ)kû����D��valuexr��java.lang.Number†¬•��”à‹���xp@ë�4�ᛑt�"ID_Default_SurgeProtectionFuseTypet�6pod_combo_Schalter_Auswahl_SicherungsLasttrennschaltert��ID_VorgabeVerbrMehrNennSpannungsq�~��@y������t�#ID_VorgabeVerbrMehrNennWirkleistungsq�~��@¹û�9Àëît� ID_VorgabeAnzahlParallelSchienensr��java.lang.Integer�â ¤÷�‡8���I��valuexq�~������t�$ID_VorgabeVerbrMehrAusnutzungsFaktorsq�~��?ð������t��ID_VorgabeBezeichnungNSTSSt�$pod_combo_BezeichnungVerteiler_NSTSSt�&ID_VorgabeVerbrKondStufenEingeschaltetsq�~�&����t��ID_VorgabeTSpannungsfallsq�~�&���7t�$ID_VorgabeVerbrAllgAusnutzungsFaktorsq�~��?ð������t��ID_MotorStartTypet��pod_combo_motor_type_directt��ID_VorgabeVerbrMehrNennStromsq�~��@)������t��ID_VorgabeBezeichnungNSUVt�#pod_combo_BezeichnungVerteiler_NSUVt��ID_VorgabeKabelQuerschnittMinsq�~��?ø������t��ID_VorgabeMotor_NennSpannungsq�~��@y������t��ID_VorgabeSpannungsfallsq�~��@�������t��ID_VorgabeVerbrKondNennSpannungsq�~��@y������t�&ID_VorgabeMotor_AusnutzungsFaktor_softsq�~��?ð������t��ID_iSelDimModusCircToCircsq�~�&����t� ID_VorgabeVerbrAllgBelastungsartt�,pod_combo_Verbraucher_BelastungsArt_induktivt��ID_VorgabeFrequenzsq�~�&���2t��ID_VorgabeBezeichnungNSTSEt�$pod_combo_BezeichnungVerteiler_NSTSEt��ID_MotorConfVoltagesq�~��@y������t��ID_VorgabeMotor_Efficiencysq�~��?ìÌÌÌÌÌÍt��ID_VorgabeTUmgebungGeraetsq�~�&���-t��ID_VorgabeAnzahlParallelKabelsq�~�&����t��ID_VorgabeSelektivitaetsr��java.lang.BooleanÍ r€Õœúî���Z��valuexp�t��ID_Vorgabe_MotorCircuitt��pod_motorstartert�$ID_VorgabeMotor_StartCurrentRel_softsq�~��@�������t��ID_VorgabeBeruerungsSpannungsq�~�&����t�ID_FrequenzNSsq�~�&���2t��ID_VorgabeNormBezeichnungq�~�'t��ID_VorgabeMaxVoltageDropsq�~��@ ������t��ID_VorgabeBezeichnungNSTTt�#pod_combo_BezeichnungVerteiler_NSTTt��ID_VorgabeTminIKmaxsq�~�&����t��ID_VorgabeBezeichnungNSTSt�#pod_combo_BezeichnungVerteiler_NSTSt��ID_VorgabeBezeichnungNSGIDt�"pod_combo_BezeichnungVerteiler_GIDt��ID_VorgabeFiSchutzBeiMCB_Grundq�~�Tt��ID_iSelKurzUndUeberq�~�Ct��ID_DefaultDisconnectorDesignt�)pod_combo_LasttrennschalterMitSich_Leistet��ID_VorgabeAuswahlGeraetet��pod_combo_AuswahlGeraete_Icut��ID_VorgabeMotor_StartClass_softt��pod_combo_Motor_Class10t��ID_VorgabeVerbrAllgCosPhisq�~��?é™™™™™št��ID_VorgabeMotor_AnzahlPhasent��pod_combo_AnzahlPhasen_3t�"ID_VorgabeMotor_StartClass_reverset��pod_combo_Motor_Class10t��ID_VorgabeBezeichnungNSHVt�#pod_combo_BezeichnungVerteiler_NSHVt�'ID_VorgabeVerbindung_ReducedQuerschnittq�~�Tt��ID_VorgabeVerbrAllgNennStromsq�~��@Y������t��ID_VorgabeRealVoltageFactorsq�~��?ðfffffft��ID_VorgabeKabelQuerschnittMaxsq�~��@n������t��ID_VorgabeGAusloeserBeiACBsq�~�S�t��ID_VorgabeMotor_SourceFactor_ydsq�~��?ð������t��ID_VorgabeVerbrKondAnzahlStufensq�~�&���t��ID_VorgabeCmaxNSsq�~��?ñ™™™™™št��ID_VorgabeMotor_SourceFactorsq�~��?ð������t�"ID_VorgabeVerbrKondVerlustleistungsq�~��@(������t�)ID_VorgabeMotor_AusnutzungsFaktor_reversesq�~��?ð������t��ID_MotorOverloadRelaisTypet�$pod_combo_motor_overload_relais_nonet��ID_VorgabeVerbindung_DS_Auswahlt�$pod_combo_Verbindung_Auswahl_Schienet��ID_VorgabeFiSchutzBeiSichq�~�€t��ID_VorgabeSelAbstandsq�~��?ð������t��ID_VorgabeCminNSsq�~��?ìÌÌÌÌÌÍt�#ID_VorgabeVerbindung_LeiterMaterialt�&pod_combo_Verbindung_LeiterMaterial_Cut��ID_VorgabeSumLoadCosPhisq�~��?é™™™™™št�"ID_VorgabeMotor_StartCurrentRel_ydsq�~��@�������t��ID_VorgabeTSpannungsfallBusbarq�~�/t� ID_iSelEvaluationModusCircToCircq�~�Ct��ID_VorgabeMotor_StartCurrentRelsq�~��@�������t�"ID_VorgabeVerbraucher_AnzahlPhasent��pod_combo_AnzahlPhasen_3PlusNt�$ID_VorgabeMotor_SourceFactor_reversesq�~��?ð������t�$ID_VorgabeSammelSchiene_AnzahlPhasent��pod_combo_AnzahlPhasen_3PlusNt��ID_VorgabeMotor_RToX_statsq�~��?¹™™™™™št�#ID_VorgabeVerbrAllgNennWirkleistungsq�~��@ë�4�ᛑt��ID_VorgabeMotor_StartClass_ydt��pod_combo_Motor_Class10t��ID_RefVorgabeMSsr�Ncom.siemens.simaris.design.Project.Knoten.Verwaltung.Mittelspannung.CVorgabeMS„`š|8!�c���L��m_VorgabeEinspeisungMSq�~�L��m_VorgabeVerbindungMSq�~�xq�~��psr�Ycom.siemens.simaris.design.Project.Knoten.Verwaltung.Mittelspannung.CVorgabeEinspeisungMS3$ù�ïRÔ*��D��mNominalVoltageMVI��m_Index_SternPunktBehandlungD��m_R0zuX0maxD��m_R0zuX0minD��m_Z0zuZ1maxD��m_Z0zuZ1minD��m_dErdKurzSchlussStromD��m_dErdSchlussRestStromD��m_dKapazitiverErdSchlussStromL�mSchaltGruppeq�~��xq�~��sq�~��?@������w��������t� ID_EinspKurzschlussLeistungMinMSsq�~��@Y������t��ID_VorgabeCminMSsq�~��?ð������t��ID_EinspNennSpannungMSsq�~��@È�����t��ID_EinspR1_X1maxMSsq�~��?É™™™™™št� ID_EinspKurzschlussLeistungMaxMSsq�~��@o@�����t��ID_VorgabeCmaxMSsq�~��?ñ™™™™™št��ID_EinspR1_X1minMSsq�~��?É™™™™™šx������������?ð������?ð������?ð������?ð������?ð������?ø������@I������t��Dyn5sr�Xcom.siemens.simaris.design.Project.Knoten.Verwaltung.Mittelspannung.CVorgabeVerbindungMSexTs�”Ї���I��m_Index_AnordnungI��m_Index_VerbindungArtD��m_dQuerschnittD��m_dQuerschnittMaxD��m_dQuerschnittMinxq�~��p��������@9������@@�����@9������t��ID_VorgabeBezeichnungNSGSt�!pod_combo_BezeichnungVerteiler_GSt��ID_VorgabeSchalter_Auswahlt�,pod_combo_Schalter_Auswahl_Leistungsschaltert�&ID_VorgabeVerbrKondStufenBlindLeistungsq�~��@Øj�����t��ID_VorgabeSpannungsfallMotorsq�~��@�������t��ID_MotorConfPossibleq�~�€t��ID_VorgabeBezeichnungMSHVt�#pod_combo_BezeichnungVerteiler_MSHVt�$ID_VorgabeMotor_AusnutzungsFaktor_ydsq�~��?ð������t�(ID_VorgabeMotor_AusnutzungsFaktor_directsq�~��?ð������t��ID_VorgabeVerbrMehrCosPhisq�~��?é™™™™™št� ID_VorgabeVerbrMehr_AnzahlPhasent��pod_combo_AnzahlPhasen_1t��ID_MotorRelationTypet��pod_combo_motor_mapping_type_1t��ID_VorgabeSumLoadNominalCurrentsq�~��@Y������t��ID_RCDbyFuse_Grundq�~�Tt�+ID_VorgabeMotor_AusnutzungsFaktor_frequencysq�~��?ð������t��ID_VorgabeI2Defaultsq�~��?÷333333t��ID_VorgabeKabelFgesTUmgebungsq�~�&����t��ID_VorgabeTAbschaltBusbarsq�~�&���Pt��ID_VorgabeMotor_CosPhisq�~��?é™™™™™št�!ID_VorgabeMotor_AusnutzungsFaktorsq�~��?ð������t��ID_VorgabeVerbindung_Auswahlt�"pod_combo_Verbindung_Auswahl_Kabelt��ID_VorgabeFiSchutzBeiMCBq�~�€t�(ID_VorgabeMotor_StartCurrentRelFrequencysq�~��@�������t�&ID_VorgabeMotor_StartCurrentRel_directsq�~��@�������t��ID_VorgabeTAbschaltq�~�ât�%ID_VorgabeMotor_SourceFactorFrequencysq�~��?ð������t��ID_VorgabeTminIKmaxBusbarq�~�ct��ID_VorgabeGAusloeserBeiMCCBq�~�€t�!ID_VorgabeMotor_StartClass_directt��pod_combo_Motor_Class10t��ID_VorgabeMotor_StartClasst��pod_combo_Motor_Class10t��ID_VorgabeVerbrAllgNennSpannungsq�~��@y������t�'ID_VorgabeMotor_StartCurrentRel_reversesq�~��@�������t��ID_VorgabeVerbindung_Anordnungt� pod_combo_VA_Kabeltyp_mehradriget��ID_VorgabeMotor_RToX_dynsq�~��?ÚáG®�zát��ID_NennSpannungNSsq�~�&����t��ID_Vorgabe_RequestedPolzahlq�~�Ct��ID_iSelDimTargetq�~�Ct��ID_MotorBuildTypet�"pod_combo_motor_build_without_fuset��ID_VorgabeDiBausteinBeiMCCBq�~�Tt�!ID_VorgabeMotor_SourceFactor_softsq�~��?û333333t��ID_VorgabeVerbrKondFrequenzsq�~��@I������t� ID_VorgabeMotor_NennWirkleistungsq�~��@ÍL�����t�$ID_VorgabeVerbindung_IsolierMaterialt�*pod_combo_Verbindung_IsolierMaterial_PVC70t��ID_VorgabeIcmFaktorsq�~��@�������t��ID_VorgabeVerbindung_VerlegeArtt�!pod_combo_Verbindung_Verlegeart_Ct�#ID_VorgabeMotor_SourceFactor_directsq�~��?ð������x��q�~�Âq�~�°t��PHASE_SPECIFICt��sd_fused_frequency_convertert��sd_fc_distributedt��sd_emc_type_withoutq�~��t��pod_interiort��pod_interior~r�Dcom.siemens.simaris.design.model.calculation.SumVoltageDropReference�����������xr��java.lang.Enum�����������xpt��VDROP_SECONDARY~r�Jcom.siemens.simaris.design.Project.Geraete.protection.SurgeProtection$Type�����������xq�~��t��NONE_SPD~r�4com.siemens.simaris.enc.kernel.EnergyCalculationType�����������xq�~��t��PHASE_SPECIFICsr�+com.siemens.simaris.design.model.IDRegistryƶ®�›�/¹���I��mDistributionIDI�mElementIDI��mNetIDxp���,��������sr�&java.util.Collections$SynchronizedList”cïãƒD�|���L��listq�~��xr�,java.util.Collections$SynchronizedCollection*aøMœ™µ���L��ct��Ljava/util/Collection;L��mutext��Ljava/lang/Object;xpsr��java.util.ArrayListx�Ò�™Ça����I��sizexp����w�����sr�(com.siemens.simaris.design.model.ElecNet¨[���¬ùÌ���D��mCmaxLVD��mCmaxMVD��mCminLVD��mCminMVD�mFrequencyI��mIDI��mIndexNetSystemI��mNetIDD��mR0zuX0maxMSD��mR0zuX0minMSD��mR1zuX1maxMSD��mR1zuX1minMSD�mSscMVmaxD�mSscMVminD��mVoltageFactorD��mZ0zuZ1maxMSD��mZ0zuZ1minMSL��mConnectionSetsq�~��L��mDefaultNameq�~��L��mNameq�~��L��mNodesq�~��L��mSlackNodeMVt�-Lcom/siemens/simaris/design/model/ElecSource;L��mStrIDq�~��L��mUnomLVt�(Lcom/siemens/simaris/enc/model/IVoltage;L��mUnomMVq�~�/L��mVDropGettert�@Lcom/siemens/simaris/design/model/calculation/VoltageDropGetter;L�mVDropRefq�~��xp?ñ™™™™™š?ñ™™™™™š?ìÌÌÌÌÌÍ?ð������@I������������������?ð������?ð������?É™™™™™š?É™™™™™š@o@�����@Y������?ðffffff?ð������?ð������sr�&java.util.Collections$UnmodifiableListü�%1µìŽ����L��listq�~��xr�,java.util.Collections$UnmodifiableCollection�B�€Ë^÷����L��cq�~�(xpsq�~�+����w�����sr�:com.siemens.simaris.design.model.TransformerConnectionLineËLcom/siemens/simaris/design/model/TransformerDeviceConnection;xr�2com.siemens.simaris.design.model.ElecConnectionSetkøë*�5ÒÆ���xr�/com.siemens.simaris.design.model.ElecConnectionÐc"�pg ����I�mConnectionIDI��mCopyIDI��mNetSystemIndexD�mRaOnlyITD�mReOnlyTTI��mRequestedNetSystemIndexI��mSelDimModeCircToCircI�mSelDimTargetD��mSelDistanceI��mSelKurzUndUeberL��mCircuitTypet�.Lcom/siemens/simaris/design/model/CircuitType;L��mConnectiont�:Lcom/siemens/simaris/design/model/IDimableImpedanceHolder;L��mDefaultNameq�~��L�mFixImpedancet�DLcom/siemens/simaris/design/Project/Geraete/Verbindung/FixImpedance;L��mInnerConnSubnetPos0t�>Lcom/siemens/simaris/design/Berechnung/Kernel/InnerConnSubnet;L��mInnerConnSubnetPos1q�~�>L�mMcbSelectiont�8Lcom/siemens/simaris/design/Project/Knoten/McbSelection;L��mNameq�~��L��mOVPU0t�NLcom/siemens/simaris/design/Project/Geraete/protection/OvervoltProtectionUnit;L��mOVPU1q�~�@L��mSeparateProtectiont�BLcom/siemens/simaris/design/Project/Knoten/SeparateProtectionType;L��mSourcet�+Lcom/siemens/simaris/design/model/ElecNode;L��mStrIDq�~��L��mSwitchingDevice0t�6Lcom/siemens/simaris/design/model/device/SwitchDevice;L��mSwitchingDevice1q�~�CL��mTargetq�~�BL��mTargetDistributiont�ELcom/siemens/simaris/design/Project/Geraete/Verteiler/CVerteilerAllg;xr�.com.siemens.simaris.enc.model.impl.EConnectionC!¼��º¨+���I��mIDL��mDifferenceVoltageq�~�/L�mLFcurrentt�,Lcom/siemens/simaris/enc/model/ILoadCurrent;L��mSourcet�*Lcom/siemens/simaris/enc/model/impl/ENode;L��mTargetq�~�GL�mZloadFlowt�*Lcom/siemens/simaris/enc/model/IImpedance;L��mZmaxq�~�HL��mZminq�~�Hxp����sr�*com.siemens.simaris.enc.model.impl.Voltage0�Ü^bQó±���L��mUlinesNt�-Lorg/apache/commons/math3/linear/FieldVector;L��mUsymq�~�Kxpsr�0org.apache.commons.math3.linear.ArrayFieldVectorj#Ñy 'FŠ���[��datat�([Lorg/apache/commons/math3/FieldElement;L��fieldt� Lorg/apache/commons/math3/Field;xpur�+[Lorg.apache.commons.math3.complex.Complex;2[/(�Ç›æ���xp����sr�(org.apache.commons.math3.complex.Complexª�“ò·[�ô���D�imaginaryD��realxp����������������q�~�Tq�~�Tsr�-org.apache.commons.math3.complex.ComplexFieldªì“�[®OÂ���xpsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsr�.com.siemens.simaris.enc.model.impl.LoadCurrentEj4…\áÐ����L��mIlinesq�~�KL��mIsymq�~�KL��mPhasest�+Lcom/siemens/simaris/enc/model/impl/EPhase;xpsq�~�Muq�~�Q����q�~�Tsq�~�S€���������������sq�~�S��������€�������q�~�Vsq�~�Muq�~�Q����sq�~�S����������������sq�~�S����������������sq�~�S����������������q�~�V~r�)com.siemens.simaris.enc.model.impl.EPhase�����������xq�~��t��L1L2L3ppppp��������ÿÿÿÿ����������������ÿÿÿÿ��������?ð����������~r�,com.siemens.simaris.design.model.CircuitType�����������xq�~��t��TRANSFORMER_MV_LVpt��NSHV 1.1ppp~r�6com.siemens.simaris.design.Project.Knoten.McbSelection�����������xq�~��t��ICNt�LVMD NPS.1pp~r�@com.siemens.simaris.design.Project.Knoten.SeparateProtectionType�����������xq�~��t��SP_NONEpt��1.1pppsr�Ccom.siemens.simaris.design.Project.Geraete.Verteiler.CVerteilerAllg�ärwˆÞf���Z��mHasGroupRCDZ��m_bL1Z��m_bL2Z��m_bL3L��mSeparateProtectionq�~�Axr�:com.siemens.simaris.design.Project.Geraete.CloneableDevice/®�—±������xr�2com.siemens.simaris.design.Project.Geraete.CDeviceiÕšÛ§9yd���L��mUserdefinedNameq�~��L��m_Paramsq�~��xppsq�~��?@������w���������t��ID_ZielVerNennLeistungsq�~����������t��ID_Bezeichnungt��t�ID_Netzsystemsq�~�&����t�!ID_ZielVerGleichZeitigkeitsFaktorsq�~��?ð������t��ID_Spannungsfallsq�~��@�������t�ID_Polzahlsq�~�&����x����q�~�qsr�6com.siemens.simaris.design.model.TransformerConnectionèIÉ>ˆbˆø���Z��mPrimaryL��mTransformerConnectionLinet�com.siemens.simaris.design.Project.Geraete.Verbindung.CKabelMS��PÌÚ»Æ����D�m_Inominalxr�@com.siemens.simaris.design.Project.Geraete.Verbindung.CKabelAllg¢ÚQ™Ð…Ëx���xr�Ecom.siemens.simaris.design.Project.Geraete.Verbindung.CVerbindungAllg’�@2›÷a����Z��mBuildingTransitionL��mFireProtectiont�FLcom/siemens/simaris/design/Project/Geraete/Verbindung/FireProtection;L��mFireProtectionClasst�VLcom/siemens/simaris/design/Project/Geraete/Verbindung/FireProtection$ProtectionClass;xq�~�ut�MV-C/L 1.1sq�~��?@�����!w����-���!t��ID_MS_iAnordnungsq�~�&����t��ID_KabelAllg_IndexAnordnungq�~�Ct��ID_KEY_Polzahlt��pod_combo_AnzahlPhasen_1t��ID_KabelAllg_EinhalbPENq�~�Tt�#ID_VerbindAllg_Querschnitt_n_Leitersq�~��?ø������t��ID_VerbindAllg_Laengesq�~��@$������t�(ID_VerbindAllg_Querschnitt_aussen_Leitersq�~��?ø������t��ID_Kabel_AnzahlParallelerLeiterq�~�'t��ID_VerbindAllg_Theta_minsq�~��@4������t��ID_MS_Kabel_dx1sq�~��?ÈÎp:û~‘t��ID_MS_Kabel_dx0sq�~��ø������t��ID_MS_dUmrechnungsfaktorsq�~��?ð������t��ID_VerbindMS_ProfixTrafosr�=com.siemens.simaris.design.Project.Geraete.Hauptgeraet.CTrafo2‹ÊA-iã×���xr�Ccom.siemens.simaris.design.Project.Geraete.Hauptgeraet.CHauptGeraetèð¼ø�–|a���D�mFrequencyD�mInfeedFactorxq�~�upsq�~��?@�����'w����5���%t�ID_MS_dIn2sq�~����������t��ID_TrafoFreiNennLeistungsq�~��@ƒ°�����t��ID_Schalter_AutoDimsq�~�S�t��ID_TrafoVerhaeltnisX0zuX1sq�~��?îfffffft��ID_TrafoFreiIsolationt��key_isolation_dryt��ID_TrafoAusfuehrungt��GEAFOLt��ID_TrafoUnterSpannungsq�~��@y������t�%ID_TrafoFreiBemessKurzSchlussSpannungsq�~��@�������t��ID_MS_dIk3F3sq�~��@‚ñ¾�Ô\it��ID_MS_dIk1minF3sq�~��?Ô/Ãëéµçt��ID_TrafoMLFBt��4GB58443DY001AA0t��ID_MS_dIk1minF2sq�~��?ð������t��ID_VorgabeCmaxNSsq�~��?ñ™™™™™št��ID_TrafoNennLeistungq�~�¾t��ID_TrafoFrequenzsq�~��@I������t��ID_TrafoOberSpannungsq�~��@È�����t��ID_TrafoFreiAusfuehrungq�~�Æt�ID_Netzsystemsq�~�&����t��ID_TrafoKurzSchlussVerlustsq�~��@¼ �����t��ID_KnotenAutoDimFlagsq�~�S�t��ID_MS_dIk3maxF1sq�~��@,Þ�\±OÝt��ID_Knotentypsq�~�&���¸t��ID_TrafoKeyBemessungsAuswahlt�.pod_combo_Trafo_BemessungsAuswahlListe_SIEMENSt��ID_Bezeichnungt�Trafo 1.1t�ID_Polzahlsq�~�&����t��ID_TrafoVerhaeltnisR0zuR1sq�~��?ð������t��ID_TrafoLeerlaufVerlustsq�~��?õë…�¸Qìt��ID_MS_dIk2minF3sq�~��?à¬@/øYÛt��ID_MS_dIk2minF2sq�~��@�ï˜�Ò7³t�!ID_TrafoBemessKurzSchlussSpannungq�~�Êt��ID_TrafoFreiLeerlaufVerlustq�~�ît��ID_KnotenNotYetDimsq�~�S�t��ID_MS_dIk1maxF1sq�~��?ð������t��ID_TrafoFreeTypsq�~�S�t��ID_HauptGerManufacturerTypt��t��ID_TrafoSchaltGruppet��Dyn5t��ID_TrafoFreiKurzSchlussVerlustq�~�Þx����������������t��ID_MS_Kabel_dr1sq�~��?á7KƧïžt��ID_MS_Kabel_dr0sq�~��ø������t��ID_MS_iBemessungsspannungsq�~�&����t� ID_VerbindAllg_NotYetDimensionedsq�~�S�t��ID_KabelAllg_VerlegeArtt��podMS_combo_Verbindung_Luftt�ID_Polzahlq�~�Ct��ID_MS_dNennFrequenzsq�~��@I������t��ID_VerbindAllg_Theta_maxsq�~��@T������t��ID_MS_iKabelTypsq�~�&����t�ID_Netzsystemq�~�Ct�!ID_KabelAllg_IndexIsolierMaterialq�~�Ct�"ID_VerbindAllg_IndexLeiterMaterialq�~�Ct��ID_MS_iKabelbauartsq�~�&����t��ID_Bezeichnungt�MS-K/L 1.1t��ID_KabelAllg_UmrechnungsFaktorsq�~��?ð������t��ID_VerbindAllgWireMaterialt�&pod_combo_Verbindung_LeiterMaterial_Cut��ID_MS_iQuerschnittsq�~�&����t�$ID_VerbindAllg_Querschnitt_pe_Leitersq�~��?ø������t��ID_VerbindAllg_TypNrsq�~�&����t��ID_Schalter_AutoDimsq�~�S�x�pp@m`�����q�~�kpsr�m�1ÿö³���Z�mUncuttedD��valIcuL�cutOffCurrentt�?Lcom/siemens/simaris/tripchar/model/curve/ICharacteristicCurve;L��letThroughEnergyq�~�ÊL�reverseMapt��Ljava/util/Map;L�tripUnitsq�~�Ëxp�@êÛ�����sr�2com.siemens.simaris.tripchar.model.curve.BaseCurveÍ?¤Õ�MJ{���Z�mProtected[��mPointst�6[Lcom/siemens/simaris/tripchar/model/curve/CurvePoint;xp�ur�6[Lcom.siemens.simaris.tripchar.model.curve.CurvePoint;D†�êZ8˜Q���xp����sr�:com.siemens.simaris.tripchar.model.curve.CurvePoint$DoublefÏQWöûº���D��xD��yxr�3com.siemens.simaris.tripchar.model.curve.CurvePointyùXQI×ðY���L�mPartTypet�>Lcom/siemens/simaris/tripchar/model/curve/CurvePoint$PartType;L��mTagsq�~�Ëxppp?ð������?ö žf;Ísq�~�Òpp?ð��������������sq�~�Òpp@$��������������sq�~�Òpp@$������@,HÆ��Àsq�~�ÒppA�O€����Aå F\kxsq�~�Í�uq�~�Ð����sq�~�Òpp@�@�����@ßÓ€����sq�~�Òpp@³ˆ�����A(Ý0����sq�~�Òpp@È�����APIUÀ���sq�~�Òpp@È�����AHÝ0����sq�~�Òpp@Óˆ�����Aqj( ���sq�~�Òpp@Óˆ�����ApIU°���sq�~�Òpp@èj�����A�Ýl���sq�~�Òpp@èj�����A›5Þ´���sq�~�Òpp@øj�����A½Ýk���sq�~�ÒppA�O€����AѽHmÀ��sq�~�ÒppA�!íæâÆ�AßúBR‚úýsr��java.util.HashMap��ÚÁÃ�`Ñ���F�loadFactorI�thresholdxp?@������w���������sr�;com.siemens.simaris.tripchar.model.tripunitold.BaseTripUnit@MyR†Eä…���Z��mCurrentLockedZ��mGroupLockedZ��mTimeLockedL��tripUnitt�9Lcom/siemens/simaris/tripchar/model/tripunitold/TripUnit;xp���sr�7com.siemens.simaris.tripchar.model.tripunitold.TripUnitœú#pÖ�?ž���Z��mDisengageableZ��mEngagedZ�mFullRangeL��mActiveCharacteristict�¦Œ�«cZ����xp���@—p�����@¡0�����@§p�����@¯@�����@·p�����@¿@�����@È�����@Çp�����@å|�����q�~�ýsr�2com.siemens.simaris.tripchar.model.curve.CurveDataÔ¦�p^o$����D��mMinYD��mOffsetYD��mToleranceX[��mIntermediatePointsq�~�Îxp����������������?ð������uq�~�Ð����sq�~�Ò~r�com.siemens.simaris.tripchar.model.constant.ProtectiveFunction�����������xq�~��t��Isq�~�é���sq�~�ì���~q�~�ït��I2tt�;com.siemens.simaris.tripchar.model.tripunitold.LPartBuildersq�~�óq�~�öw�����q�~��sq�~�÷@�@�����@$������sq�~�û�uq�~�þ���@y������@| �����@@�����@�0�����@‚À�����@„P�����@…à�����@‰������@Œ �����@�@�����q�~� sq�~��?Â�\(õÂ���������?ð������uq�~�Ð����sq�~�Ò~q�~��t��PART_Lp?ðÌÌÌÌÌÍ@¼ �����sq�~�Òq�~�%p?ðÌÌÌÌÌÍ@:�XÐü‡Psq�~�Òq�~�%p@e6fffff?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~��?Ñ7KƧïž��������?ð������uq�~�Ð����sq�~�Òq�~�%p?ó333333@¼ �����sq�~�Òq�~�%p?ó333333@9������sq�~�Òq�~�%p@g·\(õÂ�?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~�ç?@������w���������xsq�~�û�uq�~�þ���@�������@�������@�������@ ������@$������@,������@1������@5������@9������@>������~q�~�ït��I4tsq�~�÷@y������?ð������sq�~�û�uq�~�þ���@y������@| �����@@�����@�0�����@‚À�����@„P�����@…à�����@‰������@Œ �����@�@�����q�~�6sq�~��?Â�\(õÂ���������?ð������uq�~�Ð����sq�~�Òq�~�%p?ðÌÌÌÌÌÍ@¼ �����sq�~�Òq�~�%p?ðÌÌÌÌÌÍ@ƒýÞ��ûzsq�~�Òq�~�%p@=±ë…�¸R?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~��?Ñ7KƧïž��������?ð������uq�~�Ð����sq�~�Òq�~�%p?ó333333@¼ �����sq�~�Òq�~�%p?ó333333@ƒˆ�����sq�~�Òq�~�%p@@Þ¸Që…�?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~�ç?@������w���������xsq�~�û�uq�~�þ����?ð������@�������@�������@�������@�������xsq�~�óq�~��w�����xsq�~�óq�~��w�����~q�~��t��Irsq�~��@�@�����x~q�~��t��Lsq�~�é���sq�~�ì���~q�~�ït��STDt�;com.siemens.simaris.tripchar.model.tripunitold.SPartBuildersq�~�óq�~�öw�����q�~�Psq�~�÷@¯@�����?Ù™™™™™šsq�~�û�uq�~�þ���@“ˆ�����@—p�����@Ÿ@�����@£ˆ�����@§p�����@¯@�����@·p�����@¿@�����@È�����@Çp�����q�~�Usq�~��������������������������uq�~�Ð����sq�~�Ò~q�~��t��PART_Sp?¹™™™™™š?ð������sq�~�Òq�~�Zp@øj�����?ð������sq�~�Òq�~�Zp@øj�����?ð������sq�~����������?©™™™™™š��������uq�~�Ð����sq�~�Òq�~�Zp?¾¸Që…�¸?ñ™™™™™šsq�~�Òq�~�Zp@øj�����?ñ™™™™™šsq�~�Òq�~�Zp@øj�����?ñ™™™™™šsq�~�ç?@������w���������xsq�~�û�uq�~�þ����?”záG®�{?¹™™™™™š?É™™™™™š?Ó333333?Ù™™™™™šq�~��sq�~�÷@“ˆ�����?¹™™™™™šsq�~�û�uq�~�þ���@“ˆ�����@—p�����@Ÿ@�����@£ˆ�����@§p�����@¯@�����@·p�����@¿@�����@È�����@Çp�����q�~�gsq�~��������������������������uq�~�Ð����sq�~�Òq�~�Zp?¹™™™™™š@Ì �����sq�~�Òq�~�Zp@(������?ð������sq�~�Òq�~�Zp@øj�����?ð������sq�~����������?©™™™™™š��������uq�~�Ð����sq�~�Òq�~�Zp?¾¸Që…�¸@Îð�����sq�~�Òq�~�Zp@,ÌÌÌÌÌÍ?ñ™™™™™šsq�~�Òq�~�Zp@øj�����?ñ™™™™™šsq�~�ç?@������w���������xsq�~�û�uq�~�þ����?¹™™™™™š?É™™™™™š?Ó333333?Ù™™™™™šxsq�~�óq�~��w�����xsq�~�óq�~��w�����~q�~��t��Isdsq�~��@�@�����x~q�~��t��Sxsq�~�óvq�~��w�����q�~�Lq�~��q�~�{q�~�Nq�~��q�~�ëxt��ID_Schalter_NotYetDimensionedq�~�¡t��ID_Schalter_MLFBt��t��ID_Schalter_TypKeyt�,pod_combo_Schalter_Auswahl_Leistungsschaltert��ID_Schalter_Preissq�~����������t��ID_Bezeichnungt��LS 1.1t��ID_Schalter_FiSchutzBeiMCBq�~�Ÿt��ID_Schalter_AutoDimq�~�¡x��psr�?com.siemens.simaris.design.Project.Geraete.Schalter.CurvesProxy�¢¶Š3îìz���D�mISelShortD�mIselOverI��mNonSelectedVisibilityI��mTypNrZ��mValidForSelectivityL��mDescq�~��L��mSelectivityDevicet�BLcom/siemens/simaris/design/tools/tripchar/api/ISelectivityDevice;L�mSliderDataIdt�;Lcom/siemens/simaris/design/tools/tripchar/data/SliderData;L�mSliderDataIgq�~�ŒL�mSliderDataIiq�~�ŒL�mSliderDataIrq�~�ŒL�mSliderDataTdq�~�ŒL�mSliderDataTgq�~�ŒL�mSliderDataTiq�~�ŒL�mSliderDataTrq�~�ŒL��mString2ForHeaderBlockq�~��L��mString3ForHeaderBlockq�~��L��mTrippingCurvet�ûŒr’£���xr�Acom.siemens.simaris.design.Project.Geraete.Hauptgeraet.CGeneratoréI4ÍôÎ;���Z�mFullPowerD�mPmechFreeD�mUmaxGenoD�mUnomGenoL�mPowerTypet�,Lcom/siemens/simaris/design/model/PowerType;L�mProducerq�~��L��mS_LFq�~�������ppt�UEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / max.t��AAEZ02020102pp����q�~±sq�~�˜��?ð����������t��Tppt�cEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / Memory zuschaltbart��AAEZ02020106pp����sq�~�Ÿ�Dsq�~�˜��?ð����������t�1;2;3;4;5ppt�XEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**4t-Kennlinie / Stufungt��AAEZ020202040000pp����q�~¶sq�~�˜��?ð����������t��Stppt�cEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**4t-Kennlinie / Faktor der Stufungt��AAEZ020202050000pp����q�~¶sq�~�˜��?ð����������sq�~��?ð������ppt�XEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**4t-Kennlinie / minimalt��AAEZ020202060000pp����q�~±sq�~�˜��?ð����������sq�~��@�������ppt�XEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**4t-Kennlinie / maximalt��AAEZ020202070000pp����q�~±sq�~�˜��?ð����������t��sppt�WEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**4t-Kennlinie / Faktort��AAEZ020202080000pp����q�~¶sq�~�˜��?ð����������q�~éppt�=Einstellbereich / Ãœberlastfunktion L / Umschaltbar I**4tI**2t��AAEZ020600000000pp����q�~ìsq�~�˜��?ð����������t��Fppt�7Einstellbereich / Ãœberlastfunktion L / Ausschaltbar IRt��AAEZ020700000000pp����q�~ìsq�~�˜��?ð����������t��1,25;1,5;2;2,5;3;4;6;8;10;12ppt�eEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / I**2t (ein) / Stufungt��AAEZ06010105pp����q�~¶sq�~�˜��?ð����������t��Stppt�pEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / I**2t (ein) / Faktor der Stufungt��AAEZ06010106pp����q�~¶sq�~�˜��?ð����������t��x Inppt�dEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / I**2t (ein) / Faktort��AAEZ06010104pp����q�~¶sq�~�˜��?ð����������sq�~��?ô������ppt�bEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / I**2t (ein) / min.t��AAEZ06010102pp����q�~±sq�~�˜��?ð����������sq�~��@(������ppt�bEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / I**2t (ein) / max.t��AAEZ06010103pp����q�~±sq�~�˜��?ð����������q�~éppt��Isd - Ein/Ausschaltbart��AAEZ06010201pp����q�~ìsq�~�˜��?ð����������t��1,25;1,5;2;2,5;3;4;6;8;10;12ppt�gEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / Stufungt��AAEZ06010205pp����q�~¶sq�~�˜��?ð����������t��Stppt�rEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / Faktor der Stufungt��AAEZ06010206pp����q�~¶sq�~�˜��?ð����������t��x Inppt�fEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / Faktort��AAEZ06010204pp����q�~¶sq�~�˜��?ð����������sq�~��?ô������ppt�dEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / min.t��AAEZ06010202pp����q�~±sq�~�˜��?ð����������sq�~��@(������ppt�dEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / max.t��AAEZ06010203pp����q�~±sq�~�˜��?ð����������t��0,1;0,2;0,3;0,4ppt�iEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (ein) / Stufungt��AAEZ06020105pp����q�~¶sq�~�˜��?ð����������t��Stppt�tEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (ein) / Faktor der Stufungt��AAEZ06020106pp����q�~¶sq�~�˜��?ð����������t��sppt�hEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (ein) / Faktort��AAEZ06020104pp����q�~¶sq�~�˜��?ð����������sq�~��?¹™™™™™šppt�fEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (ein) / min.t��AAEZ06020102pp����q�~±sq�~�˜��?ð����������sq�~��?Ù™™™™™šppt�fEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (ein) / max.t��AAEZ06020103pp����q�~±sq�~�˜��?ð����������t��0,02;0,1;0,2;0,3;0,4ppt�iEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / Stufungt��AAEZ06020205pp����q�~¶sq�~�˜��?ð����������t��Stppt�tEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / Faktor der Stufungt��AAEZ06020206pp����q�~¶sq�~�˜��?ð����������t��sppt�hEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / Faktort��AAEZ06020204pp����q�~¶sq�~�˜��?ð����������sq�~��?”záG®�{ppt�fEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / min.t��AAEZ06020202pp����q�~±sq�~�˜��?ð����������sq�~��?Ù™™™™™šppt�fEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / max.t��AAEZ06020203pp����q�~±sq�~�˜��?ð����������q�~éppt�LEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Ein/Ausschaltbart��AAEZ060400000000pp����q�~ìsq�~�˜��?ð����������q�~éppt��Ii - Ein/Ausschaltbart��AAEZ07010000pp����q�~ìsq�~�˜��?ð����������sq�~��?ø������ppt�REinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / minimalt��AAEZ07020100pp����q�~±sq�~�˜��?ð����������sq�~��@F������ppt�REinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / maximalt��AAEZ07020200pp����q�~±sq�~�˜��?ð����������t��1,5;2,2;3;4;6;8;10;12;44ppt�REinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / Stufungt��AAEZ07020400pp����q�~¶sq�~�˜��?ð����������t��Stppt�]Einstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / Faktor der Stufungt��AAEZ07020500pp����q�~¶sq�~�˜��?ð����������t��x Inppt�QEinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / Faktort��AAEZ07020300pp����q�~¶sq�~�˜��?ð����������q�~��ppt�BEinstellbereich / Erdschlussfunktion G / Ig -Funktion ausschaltbart��AAEZ080100000000pp����q�~ìsq�~�˜��?ð����������pppt�]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (ein) / Stufungt��AAEZ08030104pp����q�~¶sq�~�˜��?ð����������pppt�hEinstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (ein) / Faktor der Stufungt��AAEZ08030105pp����q�~¶sq�~�˜��?ð����������pppt�\Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (ein) / Faktort��AAEZ08030103pp����q�~¶sq�~�˜��?ð����������pppt�]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (ein) / minimalt��AAEZ08030101pp����q�~±sq�~�˜��?ð����������pppt�]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (ein) / maximalt��AAEZ08030102pp����q�~±sq�~�˜��?ð����������pppt�]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / Stufungt��AAEZ08030204pp����q�~¶sq�~�˜��?ð����������pppt�hEinstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / Faktor der Stufungt��AAEZ08030205pp����q�~¶sq�~�˜��?ð����������pppt�\Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / Faktort��AAEZ08030203pp����q�~¶sq�~�˜��?ð����������pppt�]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / minimalt��AAEZ08030201pp����q�~±sq�~�˜��?ð����������pppt�]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / maximalt��AAEZ08030202pp����q�~±sq�~�˜��?ð����������pppt�aEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (ein) / Stufungt��AAEZ08050104pp����q�~¶sq�~�˜��?ð����������pppt�lEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (ein) / Faktor der Stufungt��AAEZ08050105pp����q�~¶sq�~�˜��?ð����������pppt�`Einstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (ein) / Faktort��AAEZ08050103pp����q�~¶sq�~�˜��?ð����������pppt�aEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (ein) / minimalt��AAEZ08050101pp����q�~±sq�~�˜��?ð����������pppt�aEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (ein) / maximalt��AAEZ08050102pp����q�~±sq�~�˜��?ð����������pppt�aEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / Stufungt��AAEZ08050204pp����q�~¶sq�~�˜��?ð����������pppt�lEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / Faktor der Stufungt��AAEZ08050205pp����q�~¶sq�~�˜��?ð����������pppt�`Einstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / Faktort��AAEZ08050203pp����q�~¶sq�~�˜��?ð����������pppt�aEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / minimalt��AAEZ08050201pp����q�~±sq�~�˜��?ð����������pppt�aEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / maximalt��AAEZ08050202pp����q�~±sq�~�˜��?ð����������t�FESTEINBAUppt�Einbauartt��AAFM00000000pp���nq�~»sq�~�˜��?ð����������t��OHNEppt��1. Hilfsauslösert��AAIJ00000000pp���ðq�~»sq�~�˜��?ð����������t��OHNEppt��2. Hilfsauslösert��AAIN00000000pp���úq�~»sq�~�˜��?ð����������t��ETU45Bppt��Ãœberstromauslösert��AAJZ01000000pp���Fq�~»sq�~�˜��?ð����������sq�~��@…������ppt�$Bemessungsbetriebsspannung Ue / max.t��AALC050000000000t��Vt��041000����q�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Bemessungsisolationsspannung Uit��AALG000000000000t��Vt��041000����q�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Zulässige Belastungt��AAMZ14000000t��At��041700���nq�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Bemessungsstrom In / bei 40 Celt��AAMZ370000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Bemessungsstrom In / bei 50 Celt��AAMZ380000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Bemessungsstrom Int��AAMZ00000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Bemessungsstrom In / bei 55 Celt��AAMZ750000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Bemessungsstrom In / bei 60 Celt��AAMZ760000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@�@�����ppt��Bemessungsstrom In / bei 70 Celt��AAMZ780000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@K€�����ppt�!Kurzschlussausschaltvermögen Icut��ABDC00000000t��kAt��041705���Zq�~±sq�~�˜��?ð����������pppt�9Bemessungsgrenzkurzschlussausschaltvermögen Icu / 1000 Vt��ABDC120000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@êÛ�����ppt�8Bemessungsgrenzkurzschlussausschaltvermögen Icu / 415 Vt��ABDC170000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@êÛ�����ppt�8Bemessungsgrenzkurzschlussausschaltvermögen Icu / 500 Vt��ABDC190000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@ä‚�����ppt�8Bemessungsgrenzkurzschlussausschaltvermögen Icu / 690 Vt��ABDC200000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@^@�����ppt��Icmt��ABDP00000000t��kAt��041705����q�~±sq�~�˜��?ð����������pppt�4Bemessungskurzschlusseinschaltvermögen Icm / 1000 Vt��ABDP040000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@ýŠ€����ppt�3Bemessungskurzschlusseinschaltvermögen Icm / 415 Vt��ABDP090000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@ýŠ€����ppt�3Bemessungskurzschlusseinschaltvermögen Icm / 500 Vt��ABDP110000000000t��At��041700����q�~±sq�~�˜��?ð����������sq�~��@õ|�����ppt�3Bemessungskurzschlusseinschaltvermögen Icm / 690 Vt��ABDP120000000000t��At��041700����q�~±sq�~�˜��?ð����������t��LSINppt��Schutzfunktionent��ABHS02000000pp���sq�~�8���¬sq�~�2q�~�Aq�~�Asq�~�2q�~�Aq�~�Apq�~��sq�~�2q�~�Aq�~�Asq�~�2q�~�Aq�~�A�����ÿÿÿÿ�ÿÿÿÿÿÿÿÿq�~�Ppppppq�~�|q�~��q�~�Êsq�~�+����w�����sq�~�Ó���sq�~�Jsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Ysq�~�Muq�~�Q����q�~�Tsq�~�S€���������������sq�~�S��������€�������q�~�Vsq�~�Muq�~�Q����sq�~�S����������������sq�~�S����������������sq�~�S����������������q�~�Vq�~�fpppppÿÿÿÿ����ÿÿÿÿ����������������ÿÿÿÿ��������?ð����������q�~�Üpppppq�~�mpppq�~�qpppppp@�������q�~>q�~�åpq�~ssq�~�Ó���®sq�~�Jsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Ysq�~�Muq�~�Q����q�~�Tsq�~�S€���������������sq�~�S��������€�������q�~�Vsq�~�Muq�~�Q����sq�~�S����������������sq�~�S����������������sq�~�S����������������q�~�Vq�~�fpppppÿÿÿÿ����ÿÿÿÿ����������������ÿÿÿÿ��������?ð����������q�~�Üpppppq�~�mpppq�~�qpppppp@�������q�~>pq�~spxsq�~�+����w�����q�~‰xsq�~�+����w�����q�~yxsq�~�$���§sq�~�Jsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Ysq�~�Muq�~�Q����q�~�Tsq�~�S€���������������sq�~�S��������€�������q�~�Vsq�~�Muq�~�Q����sq�~�S����������������sq�~�S����������������sq�~�S����������������q�~�Vq�~�fpppppÿÿÿÿ����ÿÿÿÿ����������������ÿÿÿÿ��������?ð����������q�~�Üpppppq�~�mpppq�~�qppppppq�~>sq�~�8���¨sq�~�2q�~�Aq�~�Asq�~�2q�~�Aq�~�Apq�~��sq�~�2q�~�Aq�~�Asq�~�2q�~�Aq�~�A�����ÿÿÿÿ�ÿÿÿÿÿÿÿÿq�~�Ppppppq�~�|q�~��q�~�sq�~�+����w�����sq�~�Ó���©sq�~�Jsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Ysq�~�Muq�~�Q����q�~�Tsq�~�S€���������������sq�~�S��������€�������q�~�Vsq�~�Muq�~�Q����sq�~�S����������������sq�~�S����������������sq�~�S����������������q�~�Vq�~�fpppppÿÿÿÿ����ÿÿÿÿ����������������ÿÿÿÿ��������?ð����������q�~�Üpppppq�~�mpppq�~�qpppppp@�������q�~>ppq�~«sq�~�Ó���ªsq�~�Jsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Muq�~�Q����q�~�Tq�~�Tq�~�Tq�~�Vsq�~�Ysq�~�Muq�~�Q����q�~�Tsq�~�S€���������������sq�~�S��������€�������q�~�Vsq�~�Muq�~�Q����sq�~�S����������������sq�~�S����������������sq�~�S����������������q�~�Vq�~�fpppppÿÿÿÿ����ÿÿÿÿ����������������ÿÿÿÿ��������?ð����������q�~�Üpppppq�~�mpppq�~�qpppppp@�������q�~>q�~�åq�~«pxsq�~�+����w�����q�~Áxsq�~�+����w�����q�~±xq�~�mt��Coupling 1.1A.1ppq�~�qq�~�Êt��2.3sq�~��sq�~�“t��CB 2.3asq�~��?@�����!w����-���!t� ID_Schalter_PositionImStromkreissq�~�&����t��ID_Schalter_NetzSystemIndexq�~��t��ID_Schalter_FiSchutzBeiSichq�~�Ÿt� ID_Schalter_FiSchutzBeiMCB_Grundq�~�¡t��ID_Schalter_bRCDselektivitaetq�~�£t��ID_Schalter_GAusloeserBeiACBq�~�Ÿt��ID_Schalter_NumberOfPolesq�~�¦t��ID_dISelDynsq�~��@¿@�����t��ID_Schalter_Unsq�~��@y������t��ID_dTSelShortCirsq�~��ø������t��ID_RCDbyFuse_Grundq�~�¡t�%ID_LtsSchalter_SchutzRelaisStromGrosssq�~����������t�#ID_Schalter_DiBausteinBeiMCCB_Grundq�~�¡t��ID_LtsSchalter_hasI2tsq�~�S�t��ID_LtsSchalter_BelastungsStromsq�~����������t�$ID_LtsSchalter_SchutzRelaisZeitGrosssq�~��?¹™™™™™št��ID_LtsSchalter_AusloeserTypt��LSINt� ID_LtsSchalter_SchutzRelaisStromsq�~����������t��ID_LtsSchalter_SchutzRelaisZeitsq�~����������t��ID_FI_hasToHavesq�~�S�t��ID_Switch_iMultiplyq�~�~t��ID_Schalter_Typt��Leistungsschaltert��ID_dTSelOverloadsq�~��ø������t��ID_Schalter_TypNrsq�~�&����t��ID_Schalter_GAusloeserBeiMCCBq�~�Ÿt��ID_ProtectiveDevicesq�~�É�@êÛ�����sq�~�Í�uq�~�Ð����sq�~�Òpp?ð������?ö žf;Ísq�~�Òpp?ð��������������sq�~�Òpp@$��������������sq�~�Òpp@$������@,HÆ��Àsq�~�ÒppA�O€����Aå F\kxsq�~�Í�uq�~�Ð����sq�~�Òpp@�@�����@ßÓ€����sq�~�Òpp@³ˆ�����A(Ý0����sq�~�Òpp@È�����APIUÀ���sq�~�Òpp@È�����AHÝ0����sq�~�Òpp@Óˆ�����Aqj( ���sq�~�Òpp@Óˆ�����ApIU°���sq�~�Òpp@èj�����A�Ýl���sq�~�Òpp@èj�����A›5Þ´���sq�~�Òpp@øj�����A½Ýk���sq�~�ÒppA�O€����AѽHmÀ��sq�~�ÒppA�!íæâÆ�AßúBR‚úýsq�~�ç?@������w���������sq�~�é���sq�~�ì���q�~�Pt�;com.siemens.simaris.tripchar.model.tripunitold.SPartBuildersq�~�óq�~�öw�����q�~�Psq�~�÷@¯@�����?É™™™™™šsq�~�û�uq�~�þ���@“ˆ�����@—p�����@Ÿ@�����@£ˆ�����@§p�����@¯@�����@·p�����@¿@�����@È�����@Çp�����q�~��sq�~��������������������������uq�~�Ð����sq�~�Òq�~�Zp?¹™™™™™š?ð������sq�~�Òq�~�Zp@øj�����?ð������sq�~�Òq�~�Zp@øj�����?ð������sq�~����������?©™™™™™š��������uq�~�Ð����sq�~�Òq�~�Zp?¾¸Që…�¸?ñ™™™™™šsq�~�Òq�~�Zp@øj�����?ñ™™™™™šsq�~�Òq�~�Zp@øj�����?ñ™™™™™šsq�~�ç?@������w���������xsq�~�û�uq�~�þ����?”záG®�{?¹™™™™™š?É™™™™™š?Ó333333?Ù™™™™™šq�~��sq�~�÷@“ˆ�����?¹™™™™™šsq�~�û�uq�~�þ���@“ˆ�����@—p�����@Ÿ@�����@£ˆ�����@§p�����@¯@�����@·p�����@¿@�����@È�����@Çp�����q�~�-sq�~��������������������������uq�~�Ð����sq�~�Òq�~�Zp?¹™™™™™š@Ì �����sq�~�Òq�~�Zp@(������?ð������sq�~�Òq�~�Zp@øj�����?ð������sq�~����������?©™™™™™š��������uq�~�Ð����sq�~�Òq�~�Zp?¾¸Që…�¸@Îð�����sq�~�Òq�~�Zp@,ÌÌÌÌÌÍ?ñ™™™™™šsq�~�Òq�~�Zp@øj�����?ñ™™™™™šsq�~�ç?@������w���������xsq�~�û�uq�~�þ����?¹™™™™™š?É™™™™™š?Ó333333?Ù™™™™™šxsq�~�óq�~��w�����xsq�~�óq�~��w�����q�~�xsq�~��@�@�����xq�~�{sq�~�é���sq�~�ì���q�~��t�;com.siemens.simaris.tripchar.model.tripunitold.LPartBuildersq�~�óq�~�öw�����q�~��sq�~�÷@�@�����@$������sq�~�û�uq�~�þ���@y������@| �����@@�����@�0�����@‚À�����@„P�����@…à�����@‰������@Œ �����@�@�����q�~�Dsq�~��?Â�\(õÂ���������?ð������uq�~�Ð����sq�~�Òq�~�%p?ðÌÌÌÌÌÍ@¼ �����sq�~�Òq�~�%p?ðÌÌÌÌÌÍ@:�XÐü‡Psq�~�Òq�~�%p@e6fffff?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~��?Ñ7KƧïž��������?ð������uq�~�Ð����sq�~�Òq�~�%p?ó333333@¼ �����sq�~�Òq�~�%p?ó333333@9������sq�~�Òq�~�%p@g·\(õÂ�?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~�ç?@������w���������xsq�~�û�uq�~�þ���@�������@�������@�������@ ������@$������@,������@1������@5������@9������@>������q�~�3sq�~�÷@y������?ð������sq�~�û�uq�~�þ���@y������@| �����@@�����@�0�����@‚À�����@„P�����@…à�����@‰������@Œ �����@�@�����q�~�Vsq�~��?Â�\(õÂ���������?ð������uq�~�Ð����sq�~�Òq�~�%p?ðÌÌÌÌÌÍ@¼ �����sq�~�Òq�~�%p?ðÌÌÌÌÌÍ@ƒýÞ��ûzsq�~�Òq�~�%p@=±ë…�¸R?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~��?Ñ7KƧïž��������?ð������uq�~�Ð����sq�~�Òq�~�%p?ó333333@¼ �����sq�~�Òq�~�%p?ó333333@ƒˆ�����sq�~�Òq�~�%p@@Þ¸Që…�?PbMÒñ©üsq�~�Òq�~�%p@øj�����?PbMÒñ©üsq�~�ç?@������w���������xsq�~�û�uq�~�þ����?ð������@�������@�������@�������@�������xsq�~�óq�~��w�����xsq�~�óq�~��w�����q�~�Isq�~��@�@�����xq�~�Lsq�~�é���sq�~�ì���q�~�ðt�;com.siemens.simaris.tripchar.model.tripunitold.IPartBuildersq�~�óq�~�öw�����q�~�ðsq�~�÷@å|�����?ð������sq�~�û�uq�~�þ���@—p�����@¡0�����@§p�����@¯@�����@·p�����@¿@�����@È�����@Çp�����@å|�����q�~�osq�~������������������?ð������uq�~�Ð����sq�~�Òq�~��p?ð������?PbMÒñ©üsq�~�Òq�~��p@D������?PbMÒñ©üsq�~�Òq�~��p@øj�����?PbMÒñ©üsq�~������������������?ó333333uq�~�Ð����sq�~�Òq�~��p?ó333333?¡hr° Äœsq�~�Òq�~��p@4������?¡hr° Äœsq�~�Òq�~��p@øj�����?¡hr° Äœsq�~�ç?@������w���������xpxsq�~�óq�~��w�����xsq�~�óq�~��w�����q�~��sq�~��@�@�����xq�~��xsq�~�óq�~�~w�����q�~�Lq�~�?q�~�{q�~��q�~��q�~�jxt��ID_Schalter_NotYetDimensionedsq�~�S�t��ID_Schalter_MLFBt��t��ID_Schalter_TypKeyt�,pod_combo_Schalter_Auswahl_Leistungsschaltert��ID_Schalter_Preissq�~����������t��ID_Bezeichnungt��LS 2.3t��ID_Schalter_FiSchutzBeiMCBq�~�Ÿt��ID_Schalter_AutoDimq�~�¡x��psq�~�Šø������ø���������������q�~×q�~Öppppppppt��3WL11102EB611AA2/LSINppsq�~��sq�~�”����sq�~�+����w�����xsq�~�+���‚w����‚sq�~�˜��?ð����������sq�~��@�������ppt��Polzahlt��AAAC00000000pp����sq�~�Ÿ�Nsq�~�˜��?ð����������t��Ippt�Baugrößet��AAAM050000000000pp���2sq�~�Ÿ�Tsq�~�˜��?ð����������t��MIT HILFSSTROMSCHALTER 2S + 2Öppt��Hilfsstromschaltert��AAAY00000000pp���æsq�~�Ÿ�Ssq�~�˜��?ð����������t�"HANDANTRIEB MIT MECHANISCHEM ABRUFppt��Antriebt��AACT00000000pp���Œq�~� sq�~�˜��?ð����������t�*0,4;0,45;0,5;0,55;0,6;0,65;0,7;0,8;0,9;1,0ppt�BEinstellbereich / Ãœberlastfunktion L / Einstellstrom IR / Stufungt��AAEZ02010400pp����q�~�›sq�~�˜��?ð����������t��Stppt�MEinstellbereich / Ãœberlastfunktion L / Einstellstrom IR / Faktor der Stufungt��AAEZ02010500pp����q�~�›sq�~�˜��?ð����������t��x Inppt�AEinstellbereich / Ãœberlastfunktion L / Einstellstrom IR / Faktort��AAEZ02010300pp����q�~�›sq�~�˜��?ð����������sq�~��?Ù™™™™™šppt�?Einstellbereich / Ãœberlastfunktion L / Einstellstrom IR / min.t��AAEZ02010100pp����q�~�–sq�~�˜��?ð����������sq�~��?ð������ppt�?Einstellbereich / Ãœberlastfunktion L / Einstellstrom IR / max.t��AAEZ02010200pp����q�~�–sq�~�˜��?ð����������t��2,0;3,5;5,5;8;10;14;17;21;25;30ppt�XEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / Stufungt��AAEZ02020104pp����q�~�›sq�~�˜��?ð����������t��Stppt�cEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / Faktor der Stufungt��AAEZ02020105pp����q�~�›sq�~�˜��?ð����������t��sppt�WEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / Faktort��AAEZ02020103pp����q�~�›sq�~�˜��?ð����������sq�~��@�������ppt�UEinstellbere