Torsional Vibration Analysis-basics

34
TORSIONAL VIBRATION ANALYSIS - BASICS Pranabesh De Choudhury, Ph.D., P.E. Pran RDA Consulting Inc. Greensburg, PA 15601

Transcript of Torsional Vibration Analysis-basics

Page 1: Torsional Vibration Analysis-basics

TORSIONAL VIBRATION ANALYSIS - BASICS

Pranabesh De Choudhury, Ph.D., P.E. Pran RDA Consulting Inc.

Greensburg, PA 15601

Page 2: Torsional Vibration Analysis-basics

OUTLINE • Basic Concepts • Torsional Analysis Procedure and Purpose • Simple Torsional Systems

Single Inertia Two Inertias Three Inertias

• Holzer Method – Method for the analysis of multi-inertia lumped-parameter systems. Applicable for free and forced vibrations, systems with or without damping.

• Geared Systems

© Pran RDA Consulting Inc.

Page 3: Torsional Vibration Analysis-basics

OUTLINE (Continued) • Torsional Modeling

Commonly Used Formulae For Torsional Modeling

Shaft Inertia Distribution Shaft Penetration Effect Effect of Fillet Radius

• Torsional Stress Calculations • Sample Output – Torsional Critical Speed Analysis • Typical Mode Shape Plots Using Excel • Comparison of Calculated Torsional Natural

Frequencies with Test Data • References

© Pran RDA Consulting Inc.

Page 4: Torsional Vibration Analysis-basics

BASIC CONCEPTS

• Torsional vibration is a periodic motion of elastic shafts with circular rotors (compressor impellers, turbine discs etc.) rigidly attached to the shafts.

• Torsional vibrations are controlled by the polar moments of inertias of attached rotors to the shafts and the torsional stiffness between the attached rotors.

• Number of oscillations per unit of time is defined as the torsional natural frequencies.

• Torsional vibrations are caused by various types of torsional excitations, e.g., gear imperfections, motor air gap torque during start up and short circuit, fluctuating torques in rotating machinery e.g., compressors and turbines.

© Pran RDA Consulting Inc.

Page 5: Torsional Vibration Analysis-basics

TORSIONAL ANALYSIS PROCEDURE AND PURPOSE

• Holzer method is widely used for accurate torsional critical speed analysis of turbo-machinery systems.

• The method is also used for steady state torsional response analysis around a torsional natural frequency having insufficient margin from any exciting frequency.

• Stress analysis is conducted from the results obtained from steady state response analysis to assure adequate design of torsional system.

• To perform a torsional analysis requires accurate modeling of torsional system.

• Determination of torsional critical speeds is necessary to assure adequate margins from exciting frequencies to avoid potential torsional vibration problems. The required margins are to be obtained to satisfy API 617 specifications.

© Pran RDA Consulting Inc.

Page 6: Torsional Vibration Analysis-basics

SINGLE INERTIA SYSTEM

J IS THE INERTIA (LB-IN-SEC2) K IS THE TORSIONAL STIFFNESS (LB-IN/RAD) EQUATION OF MOTION JŐ + Kθ =0 (NO DAMPING) SET θ = θ0 COS ω t SOLUTION -ω2 J θ0 + K θ0 = 0 ω = √K/J RAD./SEC. ω IS THE TORSIONAL NATURAL FREQUENCY

© Pran RDA Consulting Inc.

K

J

Page 7: Torsional Vibration Analysis-basics

TWO INERTIA SYSTEM

EQUATIONS OF MOTION: J1 Ő1 + K (θ1 - θ2) = 0 J2 Ő2 + K (θ2 - θ1) = 0 LET θ1 = θ01 ejωt AND θ2 = θ02 ejωt CHARACTERISTICS (K-ω2 J1) θ01 – K θ02 = 0 EQUATIONS - K θ01 + (K-ω2 J2) θ02 = 0 RESONANCE OCCURS WHEN THE SYSTEM DET = 0 DET = K - ω2 J1 -K = 0 -K K - ω2 J2 SOULTION ω = √ K(J1 + J2)/(J1 +J2) RAD./SEC. EXAMPLE PROBLEM (TURBINE – COMPRESSOR) J1 = 138.4824 LB.IN.SEC2 J2 =26.50472 LB.IN.SEC2 K = 3.8*10E6 LB.IN./RAD

CALCULATED TORSIONAL CRITICAL SPEED = 3944 CPM © Pran RDA Consulting Inc.

K

J2 J1

Page 8: Torsional Vibration Analysis-basics

THREE INERTIA SYSTEM

J1 Ő1 + K1 (θ1 - θ2) = 0 J2 Ő2 + K1 (θ2 - θ1) + K2 (θ2 - θ3) = 0 J3 Ő3 + K2 (θ3 - θ2) = 0 NOW WE HAVE A 3 x 3 SYSTEM DETERMINANT. THE SOLUTION IS OF THE FORM: aω4 + b ω 2 + c = 0 SOLUTION : ω 2 = [ -b +/- √ (b2 – 4 ac)] / 2a WHERE a = 1, b = - K1/J1 - K2 /J2 - (K1 + K2)/J2 c =(K1K2)/(J1 J2 J3)*(J1+J2+J3 ) NOTICE THAT TWO VALUES OF ω EXIST. THE FIRST CRITICAL SPEED AND THE SECOND. EXAMPLE PROBLEM (TURBINE – COUPLING - COMPRESSOR) J1 = 138.2064 LB.IN.SEC2 J2 =2.551244 LB.IN.SEC2 J3=25.22953 LB.IN.SEC2 K1 = 7.35*10E6 LB.IN./RAD K2 = 7.67*10E6 LB.IN./RAD CALCULATED FIRST TORSIONAL CRITICAL SPEED = 3975 CPM CALCULATED SECOND TORSIONAL CRITICAL SPEED = 23530 CPM. One can thus estimate torsional natural frequencies using these equations quickly. However to get accurate answers, different methods will be required.

© Pran RDA Consulting Inc.

K1

J3 J1 J2

K2

Page 9: Torsional Vibration Analysis-basics

‘N’ INERTIA SYSTEM (Holzer Method)

If the system considered, has N disks and ω Is a natural frequency then the sum of inertia torques given below must go to zero N Σ Ji θi ω2 =0 i=1 If the system considered has N disks and N-1 shafts then the angular displacements are given by j-1 θj = θi-1 - ω2 / K(j-1) Σ Ji θi ω2 j= 2,3,….. N i=1 ITERATIVE PROCEDURE IS FOLLOWED, ASSUMING DIFFERENT ω VALUES.

© Pran RDA Consulting Inc.

J1 J2 J3 J4 J5 J6 JN

K1 K2 K3 K5 KN

Page 10: Torsional Vibration Analysis-basics

GEARED SYSTEM

Page 11: Torsional Vibration Analysis-basics

MODELING PROCESS REQUIRES THE FOLLOWING

• System Description • Shaft Material Properties • Shaft Diameters and Section Lengths • Lumped Wr2 Values • Associated Damping • Gear Ratio(s) – If used in the System • Coupling Data • Driver/Motor Data • Driven Machine Data • Gear Data

© Pran RDA Consulting Inc.

Page 12: Torsional Vibration Analysis-basics

COMMONLY USED FORMULAE FOR TORSIONAL MODELING

Page 13: Torsional Vibration Analysis-basics

SHAFT INERTIA DISTRIBUTION

© Pran RDA Consulting Inc.

J1

J2

J3

J4

J1+J2

J3+ J4

½ KSHAFT

KSHAFT

NO SHAFT INERTIA

Page 14: Torsional Vibration Analysis-basics

SHAFT PENETRATION EFFECT

© Pran RDA Consulting Inc.

1/3 L 2/3 L

L

Page 15: Torsional Vibration Analysis-basics

EFFECT OF FILLET RADIUS ON TORSIONAL STIFFNESS

D1 = 10.0” r/R1 = 0.1 R1 = 5.0” D2/D1 = 1.5 D2 = 15.0” ∆L / D1 = 0.067 r= 0.5” ∆L = 0.67

© Pran RDA Consulting Inc.

Effect of Corner Fillet Radius on Torsional Stiffness

r/R1=0.0

r/R1=0.1

r/R1=0.2

r/R1=0.3

r/R1=0.4

r/R1=0.50

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3D2/D1

Equi

vale

nt L

engt

h of

Jun

ctio

n/D

ia. o

f Sm

alle

r Sha

ftD2

D1r

Page 16: Torsional Vibration Analysis-basics

TORSIONAL STRESS CALCULATIONS

• Unidirectional Stress is:

σR = (63025 x Hpt / RPM) x (Do/2) π (Do 4 – Di 4)/32 Where Hpt is the transmitted power

• Alternating Stress is: σP = (63025 x Hpr x Ap x Pct/RPM) x (Do/2) π (Do 4 – Di 4)/32 Hpr = Rated Power, Ap = Amplification factor Pct = Per cent of Rated Torque

• Allowable Vibratory Stress is: σA = f (σu , σR , σYP , Kts, C) Where: σu = Ultimate minimum tensile strength of shaft material Kts = Stress concentration factor C= Number of stress cycles σR = Unidirectional stress σYP = Yield point of the shaft end material in tension

• Safety Factor = σA / σP

© Pran RDA Consulting Inc.

Page 17: Torsional Vibration Analysis-basics

SAMPLE OUTPUT - TORSIONAL CRITICAL SPEED ANALYSIS

Copyright PRAN RDA Consulting Inc. CRITICAL SPEED SAMPLE PROBLEM PDC 4/30/12 NO. OF MAJOR INERTIAS = 12 ROTOR INPUT DATA: GEAR OUT DELTA INS. WR2VB GAMMA G STIFFNESS SR MAJ. CTRL. RATIO DIA. L DIA. *10E6 *10E6 1.000 2.76 1.80 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 1.000 4.72 6.60 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 1.000 0.00 0.00 0.00 10224.0 0.000 0.00000 0.00000 0.000 1 0 1.000 4.72 11.00 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 7.50 10.38 0.00 0.0 0.283 11.80000 0.00000 0.062 0 0 1.000 8.10 5.92 0.00 0.0 0.283 11.80000 0.00000 0.062 0 0 1.000 9.90 8.10 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 9.94 3.50 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 10.00 23.70 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 0.00 0.00 0.00 1338480.0 0.000 0.00000 0.00000 0.000 2 0 1.000 10.00 23.70 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 9.94 3.50 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 9.90 8.10 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 8.10 5.92 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 7.50 10.28 0.00 0.0 0.283 11.80000 0.00000 0.062 0 0 1.000 7.38 11.67 0.00 0.0 0.283 11.80000 0.00000 0.062 0 0 1.000 0.00 0.00 0.00 29744.5 0.000 0.00000 0.00000 0.000 3 0 1.000 0.00 0.00 0.00 0.0 0.000 0.00000 38.36070 0.000 0 0 1.000 0.00 0.00 0.00 94104.5 0.000 0.00000 0.00000 0.000 4 0 1.000 6.00 2.92 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 1.000 6.00 7.58 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 40.79 4.42 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 1.000 0.00 0.00 0.00 683178.9 0.000 0.00000 0.00000 0.000 5 0

Page 18: Torsional Vibration Analysis-basics

5.290 6.94 1.37 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 5.290 7.71 5.26 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 5.290 4.00 7.36 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 5.290 2.76 3.82 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 5.290 6.12 1.00 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 5.290 2.76 1.67 0.00 0.0 0.283 11.80000 0.00000 0.000 0 0 5.290 2.76 0.83 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 0.00 0.00 0.00 765.0 0.000 0.00000 0.00000 0.000 6 0 5.290 0.00 0.00 0.00 0.0 0.000 0.00000 14.20000 0.000 0 0 5.290 0.00 0.00 0.00 765.0 0.000 0.00000 0.00000 0.000 7 0 5.290 2.50 0.50 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 2.38 0.12 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.75 0.93 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.87 3.10 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 4.00 7.54 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 4.02 1.82 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 4.12 0.62 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 4.00 0.12 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 4.13 0.40 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 4.44 0.44 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 4.38 2.06 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 6.00 1.90 0.00 0.0 0.283 11.35000 0.00000 0.320 0 0 5.290 7.50 0.67 6.00 0.0 0.283 11.35000 0.00000 0.120 0 0 5.290 6.80 1.90 6.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 0.67 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 6.94 0.25 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 8.10 0.25 7.75 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 0.31 7.75 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 1.87 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 0.00 0.00 0.00 9587.0 0.000 0.00000 0.00000 0.000 8 0 5.290 7.50 1.87 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 4.83 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 12.82 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 0.00 0.00 0.00 5805.0 0.000 0.00000 0.00000 0.000 9 0 5.290 8.10 4.83 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 1.30 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 2.35 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 7.53 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0

Page 19: Torsional Vibration Analysis-basics

5.290 0.00 0.00 0.00 7625.0 0.000 0.00000 0.00000 0.000 10 0 5.290 8.10 2.35 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 1.53 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 2.44 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 8.07 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 0.00 0.00 0.00 7862.0 0.000 0.00000 0.00000 0.000 11 0 5.290 8.10 2.44 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 1.65 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 4.03 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 11.03 0.00 0.0 0.283 11.35000 0.00000 0.000 0 0 5.290 0.00 0.00 0.00 7071.0 0.000 0.00000 0.00000 0.000 12 2 5.290 8.10 4.03 7.50 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 2.67 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 9.10 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 7.50 0.11 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 6.94 0.25 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 0.11 7.75 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 0.25 7.75 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 8.10 1.24 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 6.80 1.90 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 4.38 2.06 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 4.44 0.44 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 4.13 0.40 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 4.00 0.12 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 4.12 0.62 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 4.02 1.82 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 4.00 4.68 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.74 1.46 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.19 0.74 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.16 1.00 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.00 0.12 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.12 1.50 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0 5.290 3.00 0.34 0.00 0.0 0.283 0.00000 0.00000 0.000 0 0

Page 20: Torsional Vibration Analysis-basics

STATION WR**2 STIFFNESS NO. LB. IN2 LB. IN./RAD. 1 0.104226538E+05 0.369885975E+08 2 0.136056027E+07 0.950963281E+08 3 0.312949252E+05 0.383607000E+08 4 0.943461467E+05 0.198015492E+09 5 0.104178066E+07 0.256980342E+09 6 0.226617983E+05 0.397374220E+09 7 0.251648469E+05 0.491568569E+09 8 0.314665269E+06 0.769598372E+10 9 0.197028549E+06 0.131078134E+11 10 0.240579570E+06 0.122258378E+11 11 0.253301194E+06 0.894492396E+10 12 0.263036660E+06 TORS. CRIT. SPEED (RPM) EXCITING FREQUENCIES (CPM) 1200.00 3600.00 6348.00 7200.00 SEPARATION MARGINS 0.9499993E+03 20.83 73.61 85.03 86.81 0.2712998E+04 126.08 24.64 57.26 62.32 0.9251993E+04 671.00 157.00 45.75 28.50 0.1121899E+05 834.92 211.64 76.73 55.82

Page 21: Torsional Vibration Analysis-basics

0.1267799E+05 956.50 252.17 99.72 76.08 0.2136698E+05 1680.58 493.53 236.59 196.76 0.2508798E+05 1990.67 596.89 295.21 248.44 0.4063397E+05 3286.16 1028.72 540.11 464.36 0.4235397E+05 3429.50 1076.50 567.20 488.25 THE NORMALIZED CRITICAL SPEED MODE SHAPES ARE CRITICAL SPEED NO. 1 0.9499993E+03 RPM STATION NO. NORMALIZED DEFLECTION 1 0.10000E+01 2 0.99278E+00 3 0.62578E+00 4 -0.29709E+00 5 -0.47224E+00 6 -0.55812E+00 7 -0.61284E+00 8 -0.61284E+00 9 -0.61498E+00 10 -0.61599E+00 11 -0.61677E+00 12 -0.61738E+00

Page 22: Torsional Vibration Analysis-basics

CRITICAL SPEED NO. 2 0.2712998E+04 RPM STATION NO. NORMALIZED DEFLECTION 1 0.11047E+00 2 0.10396E+00 3 -0.20959E+00 4 -0.95111E+00 5 -0.10000E+01 6 -0.18997E+00 7 0.33614E+00 8 0.33614E+00 9 0.36020E+00 10 0.37320E+00 11 0.38560E+00 12 0.40026E+00 CRITICAL SPEED NO. 3 0.9251993E+04 RPM STATION NO. NORMALIZED DEFLECTION 1 0.58545E-01 2 0.18427E-01 3 -0.63831E+00 4 -0.10000E+01 5 0.88617E-01 6 0.53805E-01 7 0.23830E-01 8 0.23830E-01 9 0.19724E-01 10 0.16591E-01 11 0.12439E-01

Page 23: Torsional Vibration Analysis-basics

12 0.59077E-02 CRITICAL SPEED NO. 4 0.1121899E+05 RPM STATION NO. NORMALIZED DEFLECTION 1 0.10000E+01 2 -0.75996E-02 3 -0.10720E-01 4 0.12817E-01 5 -0.44600E-02 6 0.46881E-01 7 0.70523E-01 8 0.70523E-01 9 0.60608E-01 10 0.51529E-01 11 0.38170E-01 12 0.16045E-01 CRITICAL SPEED NO. 5 0.1267799E+05 RPM STATION NO. NORMALIZED DEFLECTION 1 0.55728E-01 2 -0.15978E-01 3 0.10000E+01 4 -0.20666E+00 5 0.92054E-02 6 0.51321E-02 7 0.11615E-02 8 0.11615E-02 9 0.72227E-03

Page 24: Torsional Vibration Analysis-basics

10 0.41482E-03 11 0.47910E-04 12 -0.45977E-03 CRITICAL SPEED NO. 6 0.2136698E+05 RPM STATION NO. NORMALIZED DEFLECTION 1 0.11494E-05 2 -0.30515E-05 3 0.56158E-03 4 -0.39810E-02 5 0.19741E-01 6 -0.10000E+01 7 -0.91977E+00 8 -0.91977E+00 9 -0.38884E+00 10 -0.13090E-02 11 0.41452E+00 12 0.83061E+00 CRITICAL SPEED NO. 7 0.2508798E+05 RPM STATION NO. NORMALIZED DEFLECTION 1 0.16995E-06 2 -0.68638E-06 3 0.17458E-03 4 -0.19377E-02 5 0.14162E-01 6 -0.10000E+01 7 -0.63610E+00

Page 25: Torsional Vibration Analysis-basics

8 -0.63610E+00 9 -0.11505E+00 10 0.22179E+00 11 0.50489E+00 12 0.63618E+00 CRITICAL SPEED NO. 8 0.4063397E+05 RPM STATION NO. NORMALIZED DEFLECTION 1 0.59665E-09 2 -0.72897E-08 3 0.48820E-05 4 -0.16982E-03 5 0.35918E-02 6 -0.67653E+00 7 0.69344E+00 8 0.69344E+00 9 -0.67215E+00 10 -0.10000E+01 11 -0.42844E+00 12 0.92188E+00 CRITICAL SPEED NO. 9 0.4235397E+05 RPM STATION NO. NORMALIZED DEFLECTION 1 0.26282E-09 2 -0.35115E-08 3 0.25554E-05 4 -0.97344E-04 5 0.22470E-02

Page 26: Torsional Vibration Analysis-basics

6 -0.46018E+00 7 0.57823E+00 8 0.57823E+00 9 -0.66939E+00 10 -0.88912E+00 11 -0.23304E+00 12 0.10000E+01

Page 27: Torsional Vibration Analysis-basics

TYPICAL MODE SHAPE PLOTS USING MICROSOFT EXCEL

Critical Speed Mode Shape - Nc1= 950 CPM

-8.00E-01

-6.00E-01

-4.00E-01

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 2 4 6 8 10 12 14

Inertia Station Numbers

Nor

mal

ized

Def

lect

ions

Page 28: Torsional Vibration Analysis-basics

Critical Speed Mode Shape - Nc2=2713 CPM

-1.20E+00

-1.00E+00

-8.00E-01

-6.00E-01

-4.00E-01

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

0 2 4 6 8 10 12 14

Inertia Numbers

Nor

mal

ized

Def

lect

ions

Page 29: Torsional Vibration Analysis-basics

Comparison of Calculated Torsional Natural Frequencies with Test Data

System 1

© Pran RDA Consulting Inc.

Calculated Multimass

(54 4 inertia model

Percent difference

Test Data Per Cent Per Cent

crit. Spd. Inertia) model

Multimass Vs. Dev. of Test Dev. of Test

no. (CPM) (CPM) 4 inertia model HZ CPM

from Calculated

from Calculated

Multimass 4 inertia model

1 513 522 1.754385965 8.625 517.5 0.869565217 -0.869565217

2 797 808 1.380175659 13.75 825 3.393939394 2.060606061

3 2086 2073 -

0.623202301

Page 30: Torsional Vibration Analysis-basics

© Pran RDA Consulting Inc. © Pran RDA Consulting Inc.

Page 31: Torsional Vibration Analysis-basics

Comparison of Calculated Torsional Natural Frequencies with Test Data System 2

© Pran RDA Consulting Inc.

Calculated Multimass

(33 3 inertia model

Percent difference

Test Data Per Cent Per Cent

crit. Spd. Inertia) model

Multimass Vs. Dev. of Test Dev. of Test

no. (CPM) (CPM) 3 inertia model HZ CPM

from Calculated

from Calculated

Multimass 3 inertia model

1 689 695 0.870827286 11.5 690 0.144927536-

0.724637681

2 1418 1414 -

0.282087447 25 1500 5.466666667 5.733333333

Page 32: Torsional Vibration Analysis-basics

© Pran RDA Consulting Inc.

Page 33: Torsional Vibration Analysis-basics

References

• Thomson, W. T., Vibration Theory and Applications, Prentice Hall Inc., Englewood Cliffs, N.J., 1965.

• Den Hartog, J.P., Mechanical Vibrations, Dover Publications Inc., New York 1985 edition. (First published 1934)

• Tse, Francis S., Morse, Ivan E., Hinkle, Rolland T., Mechanical Vibrations, Allyn and Bacon, Inc., Boston, 1964.

• API Standard 617, Seventh Edition, July 2002. • A HANDBOOK ON TORSIONAL VIBRATION – The British

Internal Combustion Research Association (B.I.C.E.R.A) • Kirschbaum, H.S., “Transient Electrical Torques of Turbine

Generators During Short Circuits and Synchronizing”, Transactions Electrical Engineering, February 1945, Volume 64.

• Wahl, A.M., Kilgore, L.A., “ Transient Starting Torques in Induction Motors”, November, 1940, Transactions Electrical Engineering.

• Godwin, G.I., “The Nature of A.C. Machine Torques”, IEEE , 1976.

© Pran RDA Consulting Inc.

Page 34: Torsional Vibration Analysis-basics

References (Continued) • Pollard, E.I., “Torsional Response of Systems”, Transactions of

the ASME, July 1967. • Pollard, E.I., “Transient Torsional Vibration Due to Suddenly

Applied Torque”, Journal of Engineering for Industry, May 1972. • De Choudhury, P., “Torsional System Design Relative to

Synchronous Motor Start-Up with a Variable Frequency Power Supply System”, Proceedings of the International Conference on Rotordynamics, September, 1986.

• De Choudhury, P., “Aspects of Torsional System Design for Large Single Shaft Gas Turbine Drives with Variable Frequency Start Up Motor”, Proceedings of the Sixth International Conference on Rotordynamics, September, 2002.

• Milton, A. Miner, “Cumulative Fatigue Damage Analysis”, Journal of Applied Mechanics, September 1945.

© Pran RDA Consulting Inc.