Topological Insulators and the Quantum Spin Hall...

16
Topological Insulators and the Quantum Spin Hall Effect I. Introduction - Topological band theory and topological insulators II. Two Dimensions : Quantum Spin Hall Effect - Time reversal symmetry and edge states - Experiment: Transport in HgTe quantum Wells III. Three Dimensions : Topological Insulators - Topological Insulator Surface States - Experiment: Photoemission on Bi x Sb 1-x , Bi 2 Se 3 , Bi 2 Te 3 IV. Superconducting proximity effect, Majorana fermions - Majorana fermions - A route to topological quantum computing? Thanks to Gene Mele, Liang Fu , Jeffrey Teo Charles L. Kane, University of Pennsylvania

Transcript of Topological Insulators and the Quantum Spin Hall...

Page 1: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Topological Insulators

and the Quantum Spin Hall Effect

I. Introduction- Topological band theory and topological insulators

II. Two Dimensions : Quantum Spin Hall Effect- Time reversal symmetry and edge states

- Experiment: Transport in HgTe quantum Wells

III. Three Dimensions : Topological Insulators

- Topological Insulator Surface States

- Experiment: Photoemission on BixSb1-x, Bi2Se3, Bi2Te3

IV. Superconducting proximity effect, Majorana fermions- Majorana fermions

- A route to topological quantum computing?

Thanks to Gene Mele, Liang Fu, Jeffrey Teo

Charles L. Kane, University of Pennsylvania

Page 2: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

The Insulating State

The Integer Quantum Hall State

IQHE with zero net magnetic field

Graphene with a periodic magnetic field B(r) (Haldane PRL 1988)Band structure

B(r) = 0

Zero gap,

Dirac point

B(r) � 0

Energy gap

σxy = e2/h

Eg

k

Eg ~ 1 eV

e.g. Silicon

g cE ω= �E

2D Cyclotron Motion,

Landau Levels

σxy = e2/h

+ − + − + − +

+ − + − +

+ − + − + − +

Page 3: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Topological Band Theory

21( ) ( )

2 BZn d u u

iπ= ⋅ ∇ × ∇� k k

k k k

The distinction between a conventional insulator and the quantum Hall state

is a topological property of the manifold of occupied states

2| ( ) : ( ) Brillouin zone Hilbert spacek T�

Insulator : n = 0

IQHE state : σxy = n e2/h

The TKNN invariant can only change

when the energy gap goes to zero

Classified by the TKNN (or Chern) topological invariant (Thouless et al, 1984)

QHE staten=1

Vacuumn=0

Edge States at a domain wall Gapless Chiral Fermions

E

kKK’

EgHaldane Model

Page 4: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Topological Insulator : A New B=0 Phase 2D Time reversal invariant band structures have a Z2 topological invariant, ν ν ν ν = 0,1

ν=0 : Conventional Insulator ν=1 : Topological Insulator

Kramers degenerate at

time reversal invariant momenta

k* = −−−−k* + G

E

k*=0 k*=π/a

E

k*=0 k*=π/a

Edge States

1. Sz conserved : independent spin Chern integers : (due to time reversal) n n↑ ↓

= −

ν is a property of bulk bandstructure. Easiest to compute if there is extra symmetry:

, mod 2nν

↑ ↓=

2. Inversion (P) Symmetry : determined by Parity of occupied 2D Bloch states at Γ1,2,3,4

( ) ( ) ( )

( ) 1

n i n i n i

n i

P ψ ξ ψ

ξ

Γ = Γ Γ

Γ = ±

Γ4 Γ3

Γ1 Γ2

4

2

1

( 1) ( )n i

i n

υ ξ=

− = Γ∏∏Bulk BrillouinZone

Quantum spin Hall Effect :J� J�

E

Page 5: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Two dimensions : Quantum Spin Hall Insulator

Theory: Bernevig, Hughes and Zhang, Science ’06

Experiement: Konig et al. Science ‘07

HgTe

HgxCd1-xTe

HgxCd1-xTed

d < 6.3 nm

Normal band orderd > 6.3 nm:

Inverted band order

Conventional Insulator QSH Insulator

E

k

E

II. HgCdTe quantum wells

I. Graphene

• Intrinsic spin orbit interaction

� small (~10mK-1K) band gap

• Sz conserved : “| Haldane model |2”

• Edge states : G = 2 e2/h

Kane, Mele PRL ‘05

0 π/a 2π/a

� �

Eg

Γ6 ~ s

Γ8 ~ p Γ6 ~ s

Γ8 ~ pNormal

Inverted

G ~ 2e2/h in QSHI

Page 6: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

3D Topological InsulatorsThere are 4 surface Dirac Points due to Kramers degeneracy

Surface Brillouin Zone

2D Dirac Point

E

k=Λa k=Λb

E

k=Λa k=Λb

ν0 = 1 : Strong Topological Insulator

Fermi circle encloses odd number of Dirac points

Topological Metal

ν0 = 0 : Weak Topological Insulator

Fermi circle encloses even number of Dirac points

Related to layered 2D QSHI

OR

Λ4

Λ1 Λ2

Λ3

EF

How do the Dirac points connect? Determined

by 4 bulk Z2 topological invariants ν0 ; (ν1ν2ν3)

(ν1ν2ν3) : Miller indices for stacking direction

Determine location of surface Dirac Points

kx

ky

Page 7: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Bi1-xSbx

Theory: Predict Bi1-xSbx is a topological insulator by exploiting

inversion symmetry of pure Bi, Sb (Fu,Kane PRL’07)

Experiment: ARPES (Hsieh et al. Nature ’08)

• Bi1-x Sbx is a Strong Topological

Insulator ν0;(ν1,ν2,ν3) = 1;(111)

• 5 surface state bands cross EF

between Γ and M

ARPES Experiment : Y. Xia et al., Nature Phys. (2009).

Band Theory : H. Zhang et. al, Nature Phys. (2009).Bi2 Se3

• ν0;(ν1,ν2,ν3) = 1;(000) : Band inversion at Γ

• Energy gap: ∆ ~ .3 eV : A room temperaturetopological insulator

• Simple surface state structure :Similar to graphene, except only a single Dirac point

EF

Page 8: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Unique Properties of Surface States

Spin polarized Fermi circle (points)

• “Half” an ordinary 2DEG (1DEG)• Spin and velocity correlated

- Charge Current ~ Spin Density

- Spin Current ~ Charge Density

1D Edge States of QSHI

• Elastic backscattering forbidden• No 1D Anderson localization• Weak interactions irrelevant

2D Surface States of STI

• π Berry’s phase

• Weak antilocalization• Impossible to localize (Klein paradox)

Exotic States when broken symmetry leads to surface energy gap:

k

E

k

E

EF

EF

Page 9: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Proximity Effects : Open energy gap at surface

0( v )H iψ σ µ ψ= − ∇ −

���

† † *ψ ψ ψ ψ↑ ↓ ↑ ↓

∆ + ∆

µDirac Surface States :

Protected by Symmetry

1. Magnetic : (Broken Time Reversal Symmetry)

• Orbital Magnetic field :

• Zeeman magnetic field :

• Half Integer quantized Hall effect :

2. Superconducting : (Broken U(1) Gauge Symmetry)

proximity induced

superconductivity

p p eA→ −†

zMψ σ ψ

21

( )2

xy

en

hσ = +

• S-wave superconductor

• Resembles spinless p+ip superconductor

• Supports Majorana fermion excitations

Fu,Kane PRL 07Qi, Hughes, Zhang PRB (08)

Fu,Kane PRL 08

M. �

T.I.

S.C.

T.I.

Page 10: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Majorana Fermion

• Particle = Antiparticle : γ = γ†

• Real part of Dirac fermion : γ = Ψ+Ψ†; Ψ = γ1+i γ2 “half” an ordinary fermion

• Mod 2 number conservation / Z2 Gauge symmetry : γ � ± γ

Potential Hosts :

Particle Physics :

• Neutrino (maybe) Allows neutrinoless double β-decay

Condensed matter physics : Possible due to pair condensation

• Quasiparticles in fractional Quantum Hall effect at ν=5/2• h/4e vortices in p-wave superconductor Sr2RuO4

• s-wave superconductor / Topological Insulator

Current Status : NOT OBSERVED

† †0Ψ Ψ ≠

Page 11: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Majorana Fermions and

Topological Quantum Computation

• 2 separated Majoranas = 1 fermion : Ψ = γ1+i γ2

2 degenerate states (full or empty)

1 qubit

• 2N separated Majoranas = N qubits

• Quantum information stored non locally

Immune to local sources decoherence

• Adiabatic “braiding” performs unitary operations

Kitaev, 2003

a ab bUψ ψ→

Non-Abelian Statistics

Page 12: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Majorana Bound States on Topological Insulators

SC

h/2e

1. h/2e vortex in 2D superconducting state

2. Superconductor-magnet interface at edge of 2D QSHI

Quasiparticle Bound state at E=0 Majorana Fermion γ0 “Half a State”

TI

0

−∆

E

0 0γ γ=

E Eγ γ− =

S.C.M

QSHI

Egap =2|m|

Domain wall bound state γ0

m<0

m>0

| | | |S Mm = ∆ − ∆

Page 13: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

1D Majorana Fermions on Topological Insulators

2. S-TI-S Josephson Junction

SC

TI

SC

φ = πφ ≠ π

SCM

1. 1D Chiral Majorana mode at superconductor-magnet interface

TI

kx

E

k kγ γ −= : “Half” a 1D chiral Dirac fermion

Fv x

H i γ γ= − ∂�

φ 0

Gapless non-chiral Majorana fermion for phase difference φ = π

( ) cos( / 2)Fv L x L R x R L R

H i iγ γ γ γ φ γ γ= − ∂ − ∂ + ∆�

Page 14: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Manipulation of Majorana FermionsControl phases of S-TI-S Junctions

φ1φ2

0

Majorana

present+

Tri-Junction :A storage register for Majoranas

Create

A pair of Majorana bound

states can be created from

the vacuum in a well defined

state |0>.

Braid

A single Majorana can be

moved between junctions.

Allows braiding of multiple

Majoranas

Measure

Fuse a pair of Majoranas.

States |0,1> distinguished by

• presence of quasiparticle.

• supercurrent across line

junction

E

φ−π

00

1E

φ−π

E

φ−π

0

0

0

0

0

0

0

Page 15: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

A Z2 Interferometer for Majorana Fermions

A Signature for Neutral Majorana Fermions Probed with Charge Transport

2

hN

eΦ =

e e

e h

γ1

γ2

γ1

γ2 −γ2

N even

N odd

1 2

1 2

c i

c i

γ γ

γ γ

= −

= +

• Chiral electrons on magnetic domain wall split

into a pair of chiral Majorana fermions

• “Z2 Aharonov Bohm phase” converts an

electron into a hole

• dID/dVs changes sign when N is odd.

Fu and Kane, PRL ‘09Akhmerov, Nilsson, Beenakker, PRL ‘09

Page 16: Topological Insulators and the Quantum Spin Hall Effectinfo.ifpan.edu.pl/spintech5/presentations/kane_spintech5.pdf · 2009. 8. 7. · The Insulating State The Integer Quantum Hall

Conclusion

• A new electronic phase of matter has been predicted and observed

- 2D : Quantum spin Hall insulator in HgCdTe QW’s- 3D : Strong topological insulator in Bi1-xSbx , Bi2Se3, Bi2Te3

• Superconductor/Topological Insulator structures host Majorana Fermions

- A Platform for Topological Quantum Computation

• Experimental Challenges

- Charge and Spin transport Measurements on topological insulators- Superconducting structures :

- Create, Detect Majorana bound states- Magnetic structures :

- Create chiral edge states, chiral Majorana edge states- Majorana interferometer

• Theoretical Challenges

- Further manifestations of Majorana fermions and non-Abelian states- Effects of disorder and interactions on surface states