Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

189
Tomohisa Takimi (TIFR) cf) Jain-Minwalla-Sharma-T.T-Wadia-Yokoyama [arXiv:1301.6169] T.T [arXiv:1304.3725] July 22 nd 2013 @ Nagoya University

Transcript of Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Page 1: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Tomohisa Takimi (TIFR)

cf) Jain-Minwalla-Sharma-T.T-Wadia-Yokoyama [arXiv:1301.6169] T.T [arXiv:1304.3725]

July 22nd 2013 @ Nagoya University

Page 2: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3d Chern-Simons matter theories with (bi-)fundamental representation

Parity Vasiliev higher spin theory in or AdS4 another higher spin theory

1-1 Non-SUSY AdS/CFT

Non-SUSY AdS/CFT correspondence

Non-gauged version → [Sezgin-Sundell 2002, Klebanov-Polyakov 2002]

CS gaugedn `→ [Gaiotto-Yin, Aharony-Bergman-Jafferis-Maldacena 08],

[Minwalla-Narayanan-Sharma-Umesh-Yin 11], [Giombi-Minwalla-Prakash-

Trivedi-Wadia-Yin 11] [ Aharony-Gur-Ari-Yacoby 11]

Page 3: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3d Chern-Simons matter theories with (bi-)fundamental representation

1-1 Non-SUSY AdS/CFT

Higher spin sym. may work to resolve the UV divergence even in the presence of the derivative couplings

A clue for the quantum gravity ?

Parity Vasiliev higher spin theory in or AdS4 another higher spin theory

Non-SUSY AdS/CFT correspondence

Page 4: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Phase structure of the Parity Vasiliev higher spin theory or some another higher spin theory

Our interest

Phase structure of CS matter theories

Deconfinement phase transition in YM theories

Gravitational phase transition with Black hole nucleation

[Cf) Based on Witten 1998]

More familiar,

Easier to analyze

Page 5: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Our interest

Phase structure of CS matter theories

Deconfinement phase transition in YM theories

Gravitational phase transition with Black hole nucleation

[Cf) Based on Witten 1998]

We have worked on the phase structure of the CS matter theory

Some clue for the phase structure

Phase structure of the Parity Vasiliev higher spin theory or some another higher spin theory

Page 6: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Let us study

the phase structure of CS matter theories

(Sorry I will not talk about Vasiliev theory)

T.T [arXiv:1304.3725]

[Jain-Minwalla-Sharma-T.T-Wadia-Yokoyama [arXiv:1301.6169]]

Page 7: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 8: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

To see the property of the phase structure of the CS matter theory, it is instructive to compare with the Gross-Witten-Wadia phase transition in 2 dimensional YM theory on the lattice.

Page 9: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) Phase structure of 2d YM on the lattice

(2) Phase structure of CS theory

Page 10: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 11: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Path integration (Free energy) is represented by the unitary matrix model

2-1 Path integration of 2d YM lattice at large N

Page 12: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

2-1 Path integration of 2d YM lattice at large N

Path integration (Free energy) is represented by the unitary matrix model

In large N, this is obtained by the saddle point equation.

Minimizing

Free energy ↔ Configuration

Configuration → determined set of eigenvalues

Page 13: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

In the large N

Eigenvalue density

configuration is governed by ρ(α)

α

………………………………………

Page 14: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

In the large N

Eigenvalue density

configuration is governed by ρ(α)

α

………………………………………

ρ(α) ↔ Configuration ↔Free energy

Let us focus on ρ(α)

Page 15: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

In the large N

Eigenvalue density

Saddle point eq. In terms of ρ

Page 16: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Minimized when

Attracting Force between eigenvalues,

stronger in the higher temperature

α

:Indicate the location of the eigenvalues

Page 17: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Minimized when

Repulsive Force between eigenvalues,

stronger in the lower temperature

Vandermond determinant

α

:Indicate the location of the eigenvalues

Page 18: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Attractive Force v.s Repulsive Force

Page 19: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

temperature

Eigenvalue density

function ρ(α) w.r.t to

temperature

Start to clump

Page 20: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

temperature

Support of ρ(α) all over the domain, no zero point

Support of ρ(α) in a part of the domain, there are zero points

Page 21: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

temperature

Support of ρ(α) all over the domain, no zero point

Support of ρ(α) in a part of the domain, there are zero points

Phase transition

Page 22: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

temperature

Support of ρ(α) all over the domain, no zero point

Support of ρ(α) in a part of the domain, there are zero points

Phase transition

Lower gap phase

No gap phase

Page 23: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 24: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

[Jain-Minwalla-Sharma-T.T-Wadia-Yokoyama

[arXiv:1301.6169]]

Page 25: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

In

[Jain-Minwalla-Sharma-T.T-Wadia-Yokoyama [arXiv:1301.6169]]

We give a prescription to investigate

In

T.T [arXiv:1304.3725]

We have investigate the phase structure of

the CS matter theory with the prescription.

Page 26: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Starting from the path integration formula,

Performing the matter integration

Effective potential depending on gauge fields

Page 27: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Form of

Effective action is composed of and the holonomy

:Gauge fields along S2

Gauge fixing

Temperature

Page 28: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Form of

0

1

Mass dimension

Page 29: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Order of T in

O(T2) O(T0) O(Tn) (n > 0)

Depending only on holonomy

Page 30: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Order (N1)

(1) No propagating degree of freedom of gauge fields (2) Matter is in the fundamental representation.

In Large N

Page 31: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Order (N1)

Vandermond determinant contributes as order (N2)

(We will see the Vandermond determinant later)

In Large N

Phase transition

by the competition of

Seff v.s Vandermonde

Relatively very small

Page 32: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Order (N1)

Vandermond determinant contributes as order (N2)

(We will see the Vandermond determinant later)

Phase transition can occur only when the temperature T is very high T2 ~ N1

Page 33: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Phase transition can occur only when the temperature T is very high T2 ~ N1

Leading O(N2)! Next Leading

Page 34: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

The effective action only depends on the holonomy along the thermal direction.

Page 35: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-1-1 Expansion of the effective action

We can easily apply the method in Blau-Thompson

Nucl.Phys. B408 (1993) 345-390.

to calculate the partition function for every CS matter theory uniformly.

Page 36: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-1-2 Blau Thompson method

Gauge fixing 1. A 2. Diagonalizing A3

Page 37: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-1-2 Blau Thompson method

Gauge fixing 1. A 2. Diagonalizing A3

Field contents:

1. Off diagonal components of A1α, A2α 2. Off diagonal components of ghost pair A. Diagonal components of A1d, A2d

Page 38: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-1-2 Blau Thompson method

Gauge fixing 1. A 2. Diagonalizing A3

Field contents:

1. Off diagonal components of A1α, A2α 2. Off diagonal components of ghost pair A. Diagonal components of A1d, A2d

Integrate these first

Page 39: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Field contents: 1. Off diagonal components of A1α, A2α 2. Off diagonal components of ghost pair A. Diagonal components of A1d, A2d

Integrate these first

Page 40: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Euler number of S2 = 2

Quantized momentum along thermal circle x3

Power of the determinant = (# of 0-form(ghost)) – ½ (# of 1-form (gauge field)) = ½( (# of 2-form) + (# of 0-form) – (# of 1-form)) = ½ (Euler number of S2)

Page 41: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 42: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Field contents: 1. Off diagonal components of A1α, A2α 2. Off diagonal components of ghost pair A. Diagonal components of A1d, A2d

Page 43: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Field contents: 1. Off diagonal components of A1α, A2α 2. Off diagonal components of ghost pair A. Diagonal components of A1d, A2d

(i). Massive KK momentum modes

(ii).Massless KK momentum modes

Page 44: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

KK massive modes along thermal circle

just the constant (ignored)

Page 45: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 46: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

By fixing the residual gauge by

We can see

Integration of KK massless modes along thermal circle

Page 47: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

By fixing the residual gauge by

We can see

Integration of KK massless modes along thermal circle

Page 48: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

By fixing the residual gauge by

We can see

Integration of KK massless modes along thermal circle

Monopole,

Integer

Page 49: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 50: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Partition function of the 2d YM on the lattice

(By Gross-Witten-Wadia)

Analogous

Page 51: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Difference ??

(1) Additional parameter

(CS level)

(2) Sum of the monopole

Page 52: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Sum of the monopole

Delta function shows up

Page 53: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Sum of the monopole

Delta function shows up

α is restricted to the Discretized value

Page 54: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

α

α is restricted to the Discretized value

Page 55: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

With the effect of the monopole

(1) Each is skewed with comb

α is restricted to the Discretized value

α

Page 56: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

With the effect of the monopole α is restricted to the Discretized value

(2) Due to vandermond determinant

Eigenvalues cannot coincide

(1) Each is skewed with comb

α

Page 57: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

With the effect of the monopole α is restricted to the Discretized value

(1) Each is skewed with comb

α

Each steak can skew only one

Within distance only one

Page 58: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

With the effect of the monopole

(1) Each is skewed with sinking comb

α

Within distance only one

Eigenvalue density is saturated from above !

Page 59: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 60: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

α

:Indicate the location of the eigenvalues

Page 61: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

α

:Indicate the location of the eigenvalues

(1) Due to vandermond determinant

Eigenvalues cannot coincides

Page 62: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

α

:Indicate the location of the eigenvalues

(1) Due to vandermond determinant

Eigenvalues cannot coincides

(2) But two of can close to each other as much as possible

No saturation of the eigenvalue density from above

Page 63: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 64: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Page 65: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

Page 66: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

Page 67: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

Page 68: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

Page 69: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

New phase transition !

Page 70: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

New phase transition !

If λ is big

Page 71: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

New phase transition !

If λ is big

Page 72: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Behavior of eigenvalue density ρ(α)

Phase transition

New phase transition !

If λ is big

Page 73: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

On the other hand in YM, there is no such saturation.

Phase transition

Page 74: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 75: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Lower gap

YM phase structure

no gap

Page 76: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

CS phase structure

New phases

(by saturation)

Page 77: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

CS phase structure

New phases

(by saturation)

New phases in the Vasiliev’s theory ?

Page 78: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 79: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-2. Actual CS matter theories

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Gravity side

Page 80: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

[T.T 2013]

Page 81: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Regular → There are no coupling other than gauge coupling

Page 82: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Integrate the matter fields,

Summing over the diagram including fermion,

[Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin, 2011]

Page 83: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Integrate the matter fields,

Summing over the diagram including fermion,

Effective potential

Page 84: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Thermal mass

Page 85: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-3-1. Action of the RF theory

Equation determining the

Gap equation

Derived by extremizing w.r.t.

Derived also from

Page 86: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Free energy density

Page 87: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Free energy density

Page 88: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Free energy density

In large N, the free energy is obtained by the extremizing the above ( the saddle point equation.)

Page 89: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

By solving these equations we obtain the

Eigenvalue density and we can see the phase structure.

Page 90: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

In No gap phase

In lower gap phase

Page 91: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Upper gap phase

Two gap phase

Page 92: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-3-4. Phase structure of RF theory

Page 93: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

[T.T 2013]

Page 94: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-4-1. Action of the CB theory

Page 95: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-4-1. Action of the CB theory

`C” is a field dynamical field variable.

(Source field with respect to bilinear )

CS gauged version of the U(N) Wilson Fisher theory.

(Here after obtaining the free energy in terms of “C”, and we will

Integrate the C at last and we obtain the form of the free energy.

Page 96: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-4-1. Action of the CB theory

Integrate the matter fields,

Summing over the diagram including scalar boson

[Jain, Trivedi, Wadia, Yokoyama, 2012]

[Aharony, Giombi, Gur-Ari, Maldacena, Yacoby, 2012]

Page 97: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-4-1. Action of the CB theory

Effective potential

Page 98: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-4-1. Action of the CB theory

Page 99: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Equation determining the

Gap equation

Derived by extremizing w.r.t.

3-4-1. Action of the CB theory

Obtained also by

Page 100: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-4-2. Calculation of Free energy

Free energy density

In large N, the free energy is obtained by the extremizing the above ( the saddle point equation.)

Page 101: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

By solving these equations we obtain the

Eigenvalue density and we can discuss the phase transition.

Page 102: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

In No gap phase

In Lower gap phase

Page 103: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Upper gap phase

Two gap phase

Page 104: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

3-4-4 Phase structure of CB theory

Page 105: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 106: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-1 AdS-CFT-CFT triality

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Gravity side Level “k” Chern-Simons matter theories with fundamental representation

Page 107: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-1 AdS-CFT-CFT triality

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual ? Gravity side

Page 108: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-1 AdS-CFT-CFT triality

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual ? Gravity side

We need to establish this duality.

Page 109: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-1 AdS-CFT-CFT triality

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual ? Gravity side

There are former works which tried to show it but they did not succeed

Page 110: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-1 AdS-CFT-CFT triality

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual ? Gravity side

There are former works which tried to show it but they did not succeed

Because they neglect the new phase caused by the holonomy and the linear coupling to magnetic fields in S2

Page 111: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-1 AdS-CFT-CFT triality

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual ? Gravity side

There are former works which tried to show it but they did not succeed

Because they neglect the contribution of new phases caused by the holonomy and the linear coupling to magnetic fields in S2

We have taken into account it, and succeeded

Page 112: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-1 AdS-CFT-CFT triality

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual Gravity side

Level-rank duality in the pure CS theory

Page 113: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-2 Free energy of CS matter theory in terms of pure CS theory.

Expectation value in the pure U(N) level k Chern-Simons theory.

Page 114: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Any expectation value in the pure U(N) level k Chern-Simons theory

written by polynomial of tr(U) (trace in fundamental rep.)

through the character expansion

with Schur polynomial

Page 115: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

Page 116: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

Row

Column

In young table, row and column is flipped

Page 117: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

Schur polynomial

Row

Column

In young table, row and column is flipped

Page 118: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

In Current CS matter theory,

Page 119: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

In Current CS matter theory,

Zcs in critical boson Zcs in regular fermion

Page 120: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

In Current CS matter theory,

Zcs in critical boson Zcs in regular fermion

CFT-CFT duality in CS side

Realized by the interpolation

Page 121: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

Page 122: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

n

n

Page 123: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) pure CS theory

Level k U(k-N) pure CS theory

Duality relationship in terms of eigenvalue density

n

n

Page 124: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

[T.T 2013]

Page 125: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(k-N)

RF theory

Level k U(N)

CB theory

4-4-1 duality relationship

Relationship between eigenvalue density

With

Page 126: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-4-1 duality relationship

Let us confirm

Equivalent to

Page 127: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-4-1 duality relationship

Let us confirm

Page 128: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-4-1 duality relationship

Let us confirm

Page 129: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-4-1 duality relationship

Let us confirm

Lower gap Upper gap

Page 130: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-4-1 duality relationship

Let us confirm

Presence of the upper limit plays crucial role for the duality !!

Page 131: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-4-1 duality relationship

Let us confirm this phase by phase

Page 132: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-2 Relationships between phases

RF CB

Page 133: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-2 Relationships between phases

(1) (1)

RF CB

Page 134: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-2 Relationships between phases

(1) (1)

RF CB

(2)

(2)

Page 135: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-2 Relationships between phases

(1) (1)

RF CB

(2)

(2)

(3)

(3)

Page 136: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

4-4-2 Relationships between phases

(1) (1)

RF CB

(2)

(2)

(3)

(3)

(4) (4)

Page 137: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) Duality between no gap phases

Eiganvalue densities

gap equation

Dual!

Dual!

Page 138: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) Duality between no gap phases

gap equation

Dual!

Dual!

Duality is confirmed !!

Eiganvalue densities

Page 139: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) (1)

RF CB

OK!

Page 140: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(2) Duality between lower gap phase of RF theory and the upper gap phase of CB theory

In this case, not only the saddle point and gap equation, there is also a relationship between the the domain of the lower gap (zero point of the eigenvalue in the lower gap phase in RF) and the domain of the saturated plate (Upper gap in CB)

Page 141: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(2) Duality between lower gap phase of RF theory and the upper gap phase of CB theory

There is another equation relating to the

For RF theory in the lower gap phase,

For CB theory in the upper gap phase,

We will call these as the domain equation.

Page 142: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(2) Duality between lower gap phase of RF theory and the upper gap phase of CB theory

For RF theory in the lower gap phase,

For CB theory in the upper gap phase,

0

Condition of the phase transition from no gap to upper gap

π

Condition of the phase transition from no gap to lower gap

Page 143: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Let us check the duality of domain equations

Dual!

Page 144: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Eigenvalue density

Dual!

gap equation

Dual!

Page 145: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Dual!

gap equation

Dual!

Duality is confirmed !!

Eigenvalue density

Page 146: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) (1)

RF CB

(2)

(2)

Dual!

Page 147: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(3) Duality between lower gap phase of CB theory and the upper gap phase of RF theory

In this case, not only the saddle point and gap equation, there is also a relationship between the the domain of the lower gap (zero point of the eigenvalue in the lower gap phase in CB) and the domain of the saturated plate (Upper gap in RF)

Page 148: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(3) Duality between lower gap phase of CB theory and the upper gap phase of RF theory

For CB theory in the lower gap phase, w.r.t.

For RF theory in the upper gap phase, w.r.t.

The domain equations w.r.t

Page 149: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(3) Duality between lower gap phase of CB theory and the upper gap phase of RF theory

For CB theory in the lower gap phase, w.r.t.

For RF theory in the upper gap phase, w.r.t.

The domain equations w.r.t

In a certain limit these becomes the Conditions of the phase transition from the no gap

phase to lower or upper gap phase

Page 150: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Let us check the duality of domain equations

Dual!

Page 151: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Eigenvalue density

Dual!

gap equation

Dual!

Page 152: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Eigenvalue density

Dual!

gap equation

Dual!

Duality is confirmed !!

Page 153: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) (1)

RF CB

(2)

(2)

(3)

(3)

Dual !

Page 154: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(4) Duality between Two gap phases

In this case, there are two domain equations for both regular fermion and the critical boson, since there are two gap region in both theories,

Page 155: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(4) Duality between Two gap phases

For RF theory in the two gap phase, w.r.t.

π

Condition of the phase transition from upper gap to two gap

0

Condition of the phase transition from lower gap to two gap

Domain equation in upper gap

π

Domain equation in lower gap

0

Page 156: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

For CB theory in the two gap phase, w.r.t.

(4) Duality between Two gap phases

π

Condition of the phase

transition from upper to two

0 Condition of the phase

transition from lower to two

Domain equation in upper gap

π

Domain equation in lower gap

0

Page 157: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Duality of domain equations

R.F

C.B

Dual !

Page 158: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Duality of domain equations

Dual !

R.F

C.B

Page 159: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Duality of eigenvalue density is confirmed directly as

Page 160: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

and

Page 161: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Duality of gap equation

Page 162: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Duality of gap equation

Duality is confirmed !!

Page 163: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) (1)

RF CB

(2)

(2)

(3)

(3)

(4) (4)

Dual !

Page 164: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) (1)

RF CB

(2)

(2)

(3)

(3)

(4) (4)

All pairs (1)~(4) are dual !

Page 165: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) (1)

RF CB

(2)

(2)

(3)

(3)

(4) (4)

How about between boundaries ?

Page 166: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

(1) (1)

RF CB

(2)

(2)

(3)

(3)

(4) (4)

How about between boundaries ?

We have already confirmed

①Duality between the domain equations

②The map

③I have also checked the map between the boundary as

Page 167: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Relationship between Free energy

By substituting the eigenvalue density, we can confirm the duality of the Free energy as

Duality is completely confirmed !

Page 168: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Level k U(N) CB theory

Level k U(k-N) RF theory

We have confirmed the duality !

Page 169: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 170: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

This theory has the same number of supercharge as the N=1 4d SUSY theory.

Hence checking the Seiberg-like duality is interesting.

Page 171: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

The action is

Page 172: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

The eigenvalue density has the form of the summation of the ones of RF and CB

(No gap, lower gap, upper gap, two gap phase eigenvalues are described by the sum)

Same kind of phase transition with upper limit of the eigenvalue density.

Page 173: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Reflect the self duality

Page 174: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

N=2 SUSY ‘t Hooft

coupling λ with temperature ζ

N=2 SUSY ‘t Hooft

coupling 1-λ with temperature λζ/(1-λ)

We have confirmed the duality (Because we have confirmed the

duality between RF and CB)

5-2 Self-duality under the level-rank duality (Seiberg-like)

Page 175: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Reflect the self duality

5-2-1 Duality between phases

Page 176: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

dual

[Giveon-Kutasov 2008]

N=2 SUSY Level k U(Nc) Nf fundamental flavor

N=2 SUSY Level -k

U(k+Nf -Nc)

Nf fundamental flavor with

Nf ×Nf meson operator Mij

Page 177: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

dual

[Giveon-Kutasov 2008]

N=2 SUSY Level k U(Nc) Nf fundamental flavor

N=2 SUSY Level -k

U(k+Nf -Nc)

Nf fundamental flavor with

Nf ×Nf meson operator Mij

If we reinterpret the

N’f=k+Nf , it resemble to Seiberg-duality

Page 178: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

[Giveon-Kutasov 2008]

N=2 SUSY Level k U(Nc) Nf fundamental flavor

N=2 SUSY Level -k

U(k+Nf -Nc)

Nf fundamental flavor with

Nf ×Nf meson operator Mij

In our analysis, k >> Nf, Nc >> Nf,

and based on λ= Nc /k, adding Nf is negligible in our analysis.

Page 179: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

[Giveon-Kutasov 2008]

N=2 SUSY Level k U(Nc) Nf fundamental flavor

N=2 SUSY Level -k

U(k+Nf -Nc)

Nf fundamental flavor with

Nf ×Nf meson operator Mij

N=2 SUSY ‘t Hooft

coupling λ with temperature ζ

N=2 SUSY ‘t Hooft

coupling 1-λ with temperature λζ/(1-λ)

Would be

Page 180: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Aharony duality. [Aharony 1997]

N=2 SUSY U(Nc) Nf fundamental flavor

gauge theory without

CS termmatter

N=2 SUSY U(Nf -Nc) gauge theory with Nf fundamental flavor with

Nf ×Nf meson operator Mij ,

With additional singlet with V+,- in supepotential

Page 181: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Giveon Kutasov can be derived from Aharony duality. [Kapustin-Willet-Yaakov 2010]

We can understand the Aharony duality by the brane configuation composed by NS5, NS5, Nc D3-brane and Nf D5-brane, from the context of Aharony duality, if we replace the k D5-brane by (1,k) 5-brane which is the bound state with the NS5-brane, it becomes the context of Giveon-Kutasov duality. (k+N f

is preserved under this treatment.)

Page 182: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

Aharony duality can be derived from the 4d Seiberg-duality as shown by [Aharony-Razamat-

Seiberg-Willet 2013]

(1) dimensional reduction

(2) With suitable modification of the superpotential by monopole operators.

Relates to the 4d Seiberg-duality.

Page 183: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp
Page 184: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

CS matter theory →Information of the Quantum gravity ?

Study of the Phase structure is meaningful.

We have investigated the phase structure of the CS matter theory

Page 185: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

CS matter theory on S1×S2

(1) Holonomy along the S1 Linearly couple to the Magnetic flux on S2

(2) Non-Propagating D.O.F of gauge fields

New salient phases show up

→ New interesting information of the QG ?

Page 186: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

We confirmed the CFT-CFT duality.

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual Gravity side

Level-rank duality in the pure CS theory

Page 187: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

We confirmed the CFT-CFT duality.

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual Gravity side

Upper limit of the eigenvalue density plyas crucial role

Page 188: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

We confirmed the CFT-CFT duality.

Parity Vasiliev’s gravity theory

Chern-Simons side

CS theory coupled to regular fermions

CS theory coupled to critical bosons

Dual Gravity side

Anyon ?? (Connecting the fermion and boson)

Page 189: Tomohisa Takimi (TIFR) - math.nagoya-u.ac.jp

This would be 3d version of the Seiberg-duality -> Non –SUSY extension ?? (Private communication to Adi Armoni, thanks)