Tom Junk - SFU Department of Statistics and Actuarial...

16
Banff Challenge 2 Tom Junk Fermilab BIRS Sta6s6cs in HEP Workshop July 2010 1 Tom Junk Banff Challenge 2

Transcript of Tom Junk - SFU Department of Statistics and Actuarial...

Page 1: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

BanffChallenge2

TomJunkFermilab

BIRSSta6s6csinHEPWorkshopJuly2010

1TomJunkBanffChallenge2

Page 2: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 2

CommonStandardsofEvidence

Physicistsliketotalkabouthowmany“sigma”aresultcorrespondstoandgenerallyhavelessfeelforp‐values.

Thenumberof“sigma”iscalleda“z‐value”andisjustatransla6onofap‐valueusingtheintegralofonetailofaGaussian

Double_tzvalue=‐TMath::NormQuan6le(Double_tpvalue)

1σ⇒15.9%

Tip:mostphysiciststalkaboutp‐valuesnowbuthardlyusethetermz‐value

Folklore:95%CL‐‐goodforexclusion3σ:“evidence”5σ:“observa6on”Someargueforamoresubjec6vescale.

pvalue =1− erf zvalue / 2( )( )

2z-value (σ) p-value

1.0 0.159

2.0 0.0228

3.0 0.00135

4.0 3.17E-5

5.0 2.87E-7

Page 3: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

BanffChallenge2Problem#1–StackedplotshownHEP‐style

3TomJunkBanffChallenge2

• Observeddatashownaspointswithsqrt(n)errorbars(yes,theconven6on’scrazybutthat’sthewaywedoit.)• Signalpredic6onshownstackedontopofthebackgroundpredic6on.UsefulbecausewecancomparethethedatawithH0andH1withjustoneplot.

DiscriminantVariable

Even

ts

nbackground=10000nsignal=210ndata=9815

Page 4: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 4

−2lnQ ≡ LLR ≡ −2ln L(data | s+ b, ˆ θ )

L(data |b, ˆ ˆ θ )

Problem1,nosystema6cuncertainty1MillionsimulatedexperimentsforH0and1MillionsimulatedexperimentsforH1

Nuisanceparametersalwaysattheirnominalvalues

p‐value=5.95x10‐4z‐value=3.24‐2lnQobs=1.98

hatsdon’tmaierheresincethere’snofit.

Page 5: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 5

−2lnQ ≡ LLR ≡ −2ln L(data | s+ b, ˆ θ )

L(data |b, ˆ ˆ θ )

Problem1,withsystema6cuncertainty1MillionsimulatedexperimentsforH0and1MillionsimulatedexperimentsforH1

p‐value=1.91x10‐5z‐value=4.11‐2lnQobs=‐15.43

nowdotwofitspersimulatedexperiment‐‐fitforallnuisanceparameters,rateandshape

Eachpseudoexperimentgetsrandomlyfluctuatednuisanceparameters(“prior‐predic6veensemble”)

Page 6: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 6

ATricktoUseonly1MSimulatedH0Experiments

• Fitthedistribu6onof‐2lnQ(H0)toasumoftwoGaussians–canintegratethatanaly6callywitherf’s.• Needtocheckfitquality.Arealjobwouldbetoes6matetheuncertainty(extrapola6onuncertaintyifneedbe).• Forarealdiscoveryofapar6cle,we’djustusetheneededCPU.Maybethefiiergetsstuckoncein1x107experiments–needtoknowthat.

ThesumoftwoGaussiansisagoodapproxima6onherebutapooroneiftheproblemismorediscrete–onebin,forexample,orlotsoflows/bbinsandoneveryhighs/bbinwithjustafewexpectedeventsinit.

Page 7: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 7

AProblemwithProblem#2

DiscriminantVariable

Even

ts

nbackground=10000nsignal=200ndata=98439209dataeventsinthevisiblepartofthehistogram

634observedeventsoutof9843areintheupperoverflowbin(!)(~6.44%ofthem)Backgroundtemplatemodelsthis.

IdiscouragetheuseofROOT’sover‐andunderflowbinsforseveralreasons:

1)Theyarenot(usually)ploied.Hardtovalidatethemifyoucannotseethem2)TheyarenotincludedinTH1::Integral()orinfSumwwhendumped.Soscalingbydividingbytheintegralandmul6plyingbythedesiredyieldwon’tgetitright.

rootaccumulatesentriesbeyondthehistogramedgesinunderflowandoverflowbins,andtreatsthemasspecialbins(why?)Sugges6ontoallstudents:constrainallselecteddatatobeinvisiblebins(maxandmin). Problems1and3havenoentriesinthe

underfloworoverflowbins.

SoIsolvedaproblemthatisslightlydifferentandpossiblymoreinstruc6ve.

Page 8: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 8

Problem2

−2lnQ ≡ LLR ≡ −2ln L(data | s+ b, ˆ θ )

L(data |b, ˆ ˆ θ )

Nosystema6cs:‐2lnQ=17.46z‐value=0.20p‐value=0.42

Withsystema6cs:‐2lnQ=‐17.33z‐value=4.1p‐value=1.75x10‐5

DiscriminantVariable

Even

ts

GOFnotevaluatedwithoutsystema6cs–preiypoorthough.Showsthattheno‐systema6csinterpreta6onisincorrect.

nbackground=10000nsignal=200ndata=9843

Page 9: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 9

Problem2’sFit

Notperfectonthetail,probablyjustneedtorunmorepseudoexperiments

Page 10: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 10TomJunkBanffChallenge2 10

Problem3

−2lnQ ≡ LLR ≡ −2ln L(data | s+ b, ˆ θ )

L(data |b, ˆ ˆ θ )

Nosystema6cs:‐2lnQ=‐43.1z‐value=7.3p‐value=1.4x10‐13

Withsystema6cs:‐2lnQ=‐21.2z‐value=4.44p‐value=4.5x10‐6

DiscriminantVariable

Even

ts

nbackground=80nsignal=72ndata=134

Page 11: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 11

CombiningProblems1+2+3Jointfits–correlatedsystema6cuncertain6esinarealproblem.Wearetoldtodecorrelatethenuisanceparametersbetweenchannels.

Nosystema6cs:

‐2lnQcomb=‐2lnQ1‐2lnQ2‐2lnQ3

Withsystema6cs–spoiledabitbythedifferentfits,ifnuisanceparametersarecorrelated.Inthiscasethesumrules6llworksbecausealldataandallnuisanceparametersareindependent.

GOFispoorforbothhypotheses–seeprob.2.Largesensi6vity.Nosystema6cscanruleoutbothH0andH1.

Nosystema6cs:‐2lnQ=‐23.7z‐value=7.0p‐value=1.2x10‐12

Withsystema6cs:‐2lnQ=‐53.96z‐value=7.5p‐value=3.6x10‐14

Page 12: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 12

Combina6onSignificancesareaBitofanExtrapola6onwithjust1MSimulatedOutcomes

Page 13: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 13

Es6matesofSensi6vity• Well,1Millionsimulatedexperimentsisn’tenough–canget1Millionmoreincombina6onbyaddingthe‐2lnQ’sfrom1,2,and3’stogether.

• Wilks’sTheoremprobablyisagoodapproxima6onheretoo.

• Importancesamplingcouldbeusedtoimproveprecisionintails

• Fordiscovery,we’duserealCPUasthesysteam6cswillbecorrelatedandtheremaybeasinglebinaddingadiscretecomponenttoit.

• Ourfavoritesensi6vityes6mate:pmed,signalisthemedianexpectedp‐valueassumingasignalispresent.1Mpseudoexperimentsnotquiteenough.

• Astand‐in:the“o‐value”(namedbytheCDFKarlsruhesingletopteam,butwe’duseditbefore.

• Medianscanbeusedinsteadofmeans,andtheσ’sareRMS’softhe‐2lnQdistribu6on.

o − value =−2lnQ bkg − −2lnQ s+b( )

σ bkg2 +σ s+b

2

Page 14: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 14

o − value =−2lnQ bkg − −2lnQ s+b( )

σ bkg2 +σ s+b

2

Problem <‐2lnQ>b RMSb <‐2lnQ>s+b RMSs+b o‐value

1nosyst 41.9 12.3 ‐46.3 14.3 4.7

2nosyst 19.1 8.6 ‐20.0 9.1 3.1

3nosyst 49.5 11.9 ‐68.9 19.5 5.2

123nosyst 110.6 19.1 ‐135.2 25.8 7.6

1syst 21.2 8.9 ‐28.1 13.5 3.0

2syst 12.8 6.6 ‐16.7 9.3 2.6

3syst 21.6 9.5 ‐25.6 12.2 3.0

123syst 55.5 14.6 ‐70.3 20.5 5.0

Toagoodapproxima6on,o‐valuesaddinquadratureforthecombina6on.Trueforthisproblem,butnottrueingeneral.

Page 15: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 15

BackupMaterial

Page 16: Tom Junk - SFU Department of Statistics and Actuarial Sciencelockhart/richard/banff2010/junk_bc2.pdf · Tom Junk Banff Challenge 2 2 Common Standards of Evidence Physicists like

TomJunkBanffChallenge2 16

Fitting Nuisance Parameters to Reduce Sensitivity to Mismodeling

Means of PDF’s of -2lnQ very sensitive to background rate estimation.

Still some sensitivity in PDF’s residual due to prob. of each outcome varies with bg estimate.