Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i...

23
1 Today: DCDC additional topics Review voltage loop design Power MOSFET: another power semiconductor switch Emerging power semiconductor devices technologies Introduction to thermal management Conclusions

Transcript of Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i...

Page 1: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

1

Today: DCDC additional topics

Review voltage loop design

Power MOSFET: another power semiconductor switch

Emerging power semiconductor devices technologies

Introduction to thermal management

Conclusions

Page 2: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

2

Voltage control loop• Incorporating the inner current control loop• Voltage loop gain Tv• Compensator design Gcv

+

vbat

_

+

vbus

_

iLL

S1

S2

Q1 D1

Q2 D2

ibat

Ibus

vs

+vge1_

+vge2_

C

ic

c1

c2

PWM

Pulse-widthmodulator c1

c2

cDead-timeGciGcv

currentsensing

voltagesensing

H

RsiL

Rsiref

HVref

Hvbus

+

_

+_

vc

Page 3: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Voltage control loop: loop gain

3

GcvHvref

+

_Gi /Rs

vbus

H

Rsiref iL Gvi

Page 4: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

4

zi

zvio

ivL

busvi s

s

Gi

vGbusbat

1

1

ˆˆ

0ˆ ,0ˆ

bus

busvio I

VDG '

bus

busz I

VL

Df2'

21

bus

buszi V

IC

f 121

2.8 kHz

19 Hz

Same numerical example

dB 5.167.6

Page 5: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

-120

-100

-80

-60

-40

-20

0

Mag

nitu

de (

dB)

100

101

102

103

104

0

90

180

270

360

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Voltage‐loop compensator Gcv designStart from uncompensated loop gain, Gcv = 1

5

vis

iv GR

HGT 1uncomp,

ExampleConverter parametersfs = 20 kHzL = 150 HC = 500 FVM = 1Rs = 1 H = 1/100

DC operating point:Vbus = 500 VIbus = 30 AVbat = 200 VD = 1‐Vbat/Vbus = 0.6IL = Ibus/D’ = 75 A

)(log20 uncomp, jTv

)(uncomp, jTv

0

‐90

‐180

‐270

‐360

Pha

se (

deg)

Page 6: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Loop gain with Proportional‐Integral (PI) compensator

6

sKsG zv

pvcp1)(

5/cvzv ff

-60

-40

-20

0

20

40

60

Mag

nitu

de (

dB)

100

101

102

103

104

0

90

180

270

360

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Hz 200cvfo

m 77

0

‐90

‐180

‐270

‐360

Pha

se (

deg)

Page 7: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Closed‐loop response Gv with PI compensator

7

v

v

ref

busv T

TvvG

1ˆˆ

-60

-40

-20

0

20

40

60

Mag

nitu

de (

dB)

100

101

102

103

104

0

90

180

270

360

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

0

‐90

‐180

‐270

‐360

Pha

se (

deg)

Page 8: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Transient response

8

PID(s)

voltage-loopcompensator

Gcv

PID(s)

current-loopcompensator

Gci

Step

Scope

Inductor currentl imits

1/100

H

Duty cyclelimits

6

Bus voltagereference

250

Battery Voltage

ibus

Vbat

d

v bus

iL

Averaged Boost Converter Dynamic Model

Vbat iLv bus

d

‐30A to +30 step ibus(t) transient

Inductor(battery) 

current limits‐200A, +200A

Page 9: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

9

d

vbus

iL

Page 10: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

10

d

vbus

iL

Page 11: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Power MOSFETs

11

Textbook Section 4.2.2

Page 12: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

IGBT

12

MOSFET

MOSFET• No conductivity modulation via minority carrier injection• Faster switching, no current tailing, much smaller turn‐off switching losses• Turn‐on switching loss dominated by the body diode reverse recovery, usually worse Qrrand trr compared to separate diodes used with IGBTs

• On‐state conduction modeled by just a resistance (Ron); higher voltage rated device has longer n‐ region, and therefore higher on resistance

• At the rated current for a given device area, higher voltage drop and hence larger conduction losses

• Not competitive for voltage ratings exceeding 900 V• Device of choice in power electronics for low power levels up to 1‐10 kW, 100 kHz to MHz fs

vs

Page 13: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Emerging power semiconductor devices

13

Specific ON resistance [cm2]

VB = device breakdown voltageEc = critical electric field

Page 14: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

GaN Structures

14

Lateral device Vertical device

Page 15: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

15

• Reduced resistive voltage drops• Much reduced stored charge, very low current‐tail or reverse‐recovery related switching losses

• Capability of operation at increased junction temperature

Page 16: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Introduction to thermal management

16

IGBT moduleExample: Infineon FF150R12T41200V, 150A

1

2

3

4

5

6

7

123

45

67

Page 17: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Introduction to thermal management

17

Temperature rise = Power dissipation * Thermal resistance

Page 18: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Introduction to thermal management

18

Page 19: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Example: 2010 Prius converter and inverter assembly*

19

*Evaluation of the 2010 Toyota Prius Hybrid Electric Drive System, Oak Ridge National Lab 2011 report

27 kW DC‐DC converter, 60 kW inverter, 42 kW inverter130 kg, 16 liters

Page 20: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

20

Page 21: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

DC‐DC Conversion in Electric Drivetrains

21

Charger

Active balancing DC‐DC

Drivetrain DC‐DC

HV‐to‐LV DC‐DC

12V battery,Lights, Electronics, …

Applications:• Bidirectional drivetrain DC‐DC converter: power rating of the battery system (10’s of kW)• Auxiliary high‐voltage DC to low‐voltage DC (12V), several kW• Battery system active balancing: <10W per converter• Charger: 1 kW‐100 kW

Page 22: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Bidirectional Drivetrain DC‐DC Converter

22

• Introduction to efficient switched‐mode power conversion• Steady‐state analysis: inductor volt‐seconds balance, capacitor charge balance

• Power semiconductor components: IGBTs, MOSFETs, diodes• Modeling of losses• Thermal management• Control• Simulations

Reference: R.W.Erickson, D.Maksimovic, Fundamentals of Power Electronics, 2nd edition, Springer 2001. Available on‐line from campus network.Chapters 2, 3, 4, sections from Chapters 7, 8, 9, sections from Chapter 13

Page 23: Today: DCDC additional topicsecee.colorado.edu/~ecen5017/lectures/CU/L28_slides.pdfcv Hv ref + _ G i /R s v bus H R s i ... 19 Hz Same numerical example 6.7 16.5 dB-120-100-80-60-40-20

Next: AC motor drive subsystem

23

Charger

Active balancing DC‐DC

DrivetrainDC‐DC

HV‐to‐LV DC‐DC

12V battery,Lights, Electronics, …

• AC machine• Permanent‐magnet synchronous machine, induction machine• Operation, losses and efficiency and dynamic model

• 3‐phase DC‐to‐AC inverter• Operation, losses and efficiency, dynamic model

• Electric drive: control

+

Vbat

_

+

Vbus

_

AC motor drive