to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen...

11
2/21/2020 1 ENGS 41 SUSTAINABILITY and NATURAL RESOURCE MANAGEMENT Benoit CushmanRoisin 1921 February 2020 Return to the Environment: Pollution (Source: Lynch, Chapter 6) Environment Human Activities Sustainability here And sustainability here, too Questions: 1. Can a waste or residue be dumped into the environment? 2. If yes, how much is enough? What is the assimilative capacity of the environmental medium? 3. What about accidental releases? Concept: Carrying capacity Concept: Assimilative capacity Waste or residue dumped into the environment is a “resource in reverse.”

Transcript of to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen...

Page 1: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

1

ENGS 41

SUSTAINABILITY and NATURAL RESOURCE MANAGEMENT

Benoit Cushman‐Roisin

19‐21 February 2020

Return to the Environment: Pollution(Source: Lynch, Chapter 6)

Environment

HumanActivities

Sustainabilityhere 

And sustainabilityhere, too

Questions:1.  Can a waste or residue be dumped into the environment?2.  If yes, how much is enough?  

What is the assimilative capacity of the environmental medium?3.  What about accidental releases?

Concept:Carrying capacity

Concept:Assimilative capacity

Waste or residue dumped into the environment is a “resource in reverse.”

Page 2: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

2

(cartoon floating on the web without attribution)

A minor point – A matter of definition:

A contaminant is a material that wouldn’t be there naturally, regardless of whether it causes  harm or not.

A pollutant is a material that causes harm, regardless of whether it is natural or not.

Carbon dioxide (CO2) is neither a contaminant (it is naturally occurring) or a pollutant (it causes no direct harm).

Carbon dioxide is a greenhouse gas!

Also:

Page 3: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

3

Environmental medium:Airshed, watershed, 

or land area

Qin Qout

L R

Loading Removal

Volume  V

Mass of material  M

Budget for the material:

Budget for the medium:

dML R

dt

in out

dVQ Q

dt

Define the concentration:

' '

in outQ QM dC L RC C

V dt V V VL R aC

Dilution for a > 0

Important concepts:

Residence time:

Accumulated concentrationrelative to loading:

volume= a time

volume / time

V

Q

Restrict attention to medium in steady state (= unchanging in time): 

0 0in out

dVQ Q Q a

dt

concentration mass / volume time = =

loading mass / time volumeLynch

CA

L

Advective export: mass removed mass volume removed ×

time volume time

out

R

CQ CQ

This is Lynch’s definition of assimilative capacity.

Page 4: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

4

dC L RaC

dt V V

volume insteady state

R CQ

'dC L Q C

C Ldt V V

At equilibrium (dC/dt = 0):  ' 0 '

/ 1Lynch

C L V LL C L

V Q Q

C L QA

L L Q

If there is a maximum concentration allowed by regulation, say Cmax, then:

maxmax max max .

LC L C Q

Q

There is a maximum tolerable loading.

V

Q with              residence time

Cushman‐Roisin’s definition of assimilative capacity:

The assimilative capacity of a fluid medium with respect to a particular pollutant is the maximum loading of that pollutant that preserves the integrity of the system, in steady state.

Integrity of the system is said to be preserved as long as the pollutant’s concentration remains below a threshold value specified by regulations based on scientific studies in the field and in the laboratory.

Thus, the assimilative capacity is the answer to the question:

max max ?C C L

Page 5: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

5

out

dML KVC QC

dt

Mass budget of pollutant

In steady state at max loading

max max0 ( )L KV Q C

max max max( ) (1 )L KV Q C K QC Assimilative capacity:

Assimilative capacity increases with 

‐ Faster transformation rate (higher decay constant K),

‐ Longer residence time ,‐ Stronger flushing rate Q, and 

‐ Higher tolerance of the system (higher value of Cmax).

Transformation and sequestration:

Oftentimes, the contaminant or pollutant is not passive.

While it is in the environment, it may ‐ be degraded into something else (transformation), or‐ be consumed by something (sequestration).

Examples

Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3). 

Some carbon dioxide is sequestered by vegetation through photosynthesis.

S

T

L

R

out

dML R T S

dtL CQ kM G

dBG

dt

in which

B

Page 6: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

6

Effect of transformation(Section 6.1.2)

'

1'

out

dML CQ kM

dt

dC CL kC

dt

L k C

Solution:

1'

( ) 1 for ( 0) 01

k tLC t e C t

k

Ultimate steady state: ( )1 1

L LC

kk

flushing

decay

If transformation saturates at high concentration values, then the rate of transformation is made to level off to some finite value

'1 / h

dC C CL k

dt C C

[Note: Textbook defines                    , rather unnecessary.]0 hT kC

Ultimate steady state: '1 / h

C CL k C

C C

1h

h h

LC C C

kC C C L k C

Asymptotic behaviors:

Page 7: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

7

Steady state value C(∞) as a function of the loading per volume L’

For algebraic saturation

For exponential saturation

Effect of sequestration(Section 6.1.3)

1'

1

out

dML CQ kM G

dt

dCL C kC G

dt V

dB BG gB

dt K

with 

If growth becomes limited by availability of the material being sequestered

1B

G gB MK

new factor

Ex. Trees need carbon to grow; no carbon, no trees.

Page 8: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

8

Carbon scenarios:       (Section 6.2)

The material is CO2, and the biomass sequestering it is vegetation on the surface of the earth.

Case 1:Initially, B = 0.  It grows.Eventually, B is harvested at MSY.The biomass is eventually burned and CO2 returned to the atmosphere.

Case 2:Same but with initial B that is removed and burned before desired biomass crop is planted and grown.

Case 3:Same as Case 2 but with CO2 from burning biomass not returned to the atmosphere.

CO2

biomass

energy generated by burning biomass

CO2

CO2

biomass

biomass

energy 

energy 

Multiple loading:       (Section 6.4)

Assume a linear relationship between the several loadings (L1 and L2) and the concentrations (Cwater, Cpark, Chabitat) at various points of concern. 

1 21

1 22

1 2

water w w

park p p

habitat h h

C a aL

C a aL

C a a

park

habitat

intake for water supply

Loading 2

Loading 1

Page 9: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

9

1

2

2 0

2 1

1 3

water

park

habitat

CL

CL

C

Numerical example:

with current loadings L1 = 2 and L2 = 1 (of same contaminant). 

2 0 42

2 1 51

1 3 5

water

park

habitat

C

C

C

If regulations require:

3, 2, 2,water park habitatC C C

then regulations are violated, and the loadings must be reduced.

Question: Reduce which loading by how much?

Cost of loading reduction:1 1 2 2(2 ) (1 )Z c L c L

Minimization of total cost Z is identical to maximizing1 1 2 2'Z c L c L

ci = cost of reducing Liby one unit

This is an optimization problem amenable to linear programming:

Find the variables

that maximize

under the constraints:

1 1 2 2'Z c L c L

1 2

1 2

0, 0

2, 1

3, 2, 2water park habitat

L L

L L

C C C

non‐negative loadings

loadings not larger than they are now

to meet regulations

1 2,L L

Page 10: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

10

Solution

1

2

c

c

0 1/3 2C                        B                                ASolution point as function of relative cost

Dissolved oxygen depletion in streams:       (Section 6.3)

Define: BOD = Biochemical Oxygen Demand = waste that consumes oxygenDO = Dissolved Oxygen, 0 DO DOs

d

d r s

dBODk BOD

dtdDO

k BOD k DO DOdt

BOD decays by action of bacteria

DO decays by metabolic action of same bacteriaand DO regenerates by re‐aeration through surface

maximum deficit(worst time) at

1ln d

peakd r r

kt

k k k

Note time delay from release.Bacterial decay takes time.

In a stream, time becomes distance from point of release.

Page 11: to the Environment: Pollution - Dartmouth Collegecushman/courses/engs41/Pollution.pdf · Nitrogen oxide (NO2) in the air may combine with water vapor (H2O) to form nitric acid (HNO3).

2/21/2020

11

Dissolved oxygen cannot go negative.When DO approaches zero, bacteria slow down their activity, to the point of no bacterial activity as DO reaches zero.

= BOD

= DOs – DO

DOs

/0 1 refDO DO

d dk k e Take decay rate, no longer constant, as:

A progressive path toward a sustainable industrial system

naive

improvement causing conflict between industrialists and environmentalists

with increasing cooperation between various stakeholders

ideal situation