TimingisEverything:Exploring …Digital+Assets/... · Basic(Biology(of(the(Fly! •...

1
Timing is Everything: Exploring Phenological Mismatch between Goldenrod and its Gall Fly Ellery Cunan, Thomas Powell, and Arthur Weis, Department of Ecology and EvoluDonary Biology, University of Toronto INTRODUCTION Climate Change and Phenological Mismatching Many insect species are more successful when they a4ack host plants during specific stages in growth. If insect and host plant species respond differently to climate warming, phenological mismatch could alter insect survival. We studied impacts of phenological mismatch by experimentally manipulaAng the emergence Ame of the goldenrod gall fly (Eurosta solidaginis), which a4acks late goldenrod (Solidago al/simma). Basic Biology of the Fly The gall fly larva induces a gall (a tumorlike growth) on goldenrod stems, where it is is supplied with food and and protected from the elements. The mother fly oviposits an egg into the plant bud in June. Mothers live <5 days. The egg hatches days later, aJer which the larva bore into the stem. A sphereshaped gall forms as a result. The gall reaches final size (1230 mm) in late July/ early August. The larva overwinters in the gall, pupates and emerges as a fly in the following May. Plant Flowering Time, Gall Size and Fly Mortality Galls stop growing just before the plants start flowering. Larvae in small galls are prone to a4ach by a parasitoid wasp, Eurytoma gigantea, which drills into the gall to lay its egg. Larvae in large galls are prone to a4ack by Downy Woodpeckers Fig. 1. Adult Eurosta fly Fig. 2. Dissected gall w/ fly pupa QUESTIONS 1. How does final gall size affect fly survival? 2. How does Aming of oviposiAon and plant flowering affect final gall size? METHODS This study was done at the Koffler ScienAfic Reserve, King City, Ontario Gall size and survival We determined the relaAonship between gall size and a4ack rates by parasitoids and woodpeckers in the 2012 generaAon. 400 overwintering galls were collected, their diameters measured, and then dissected to determine larval fate. Emergence phenology and gall size We extended the range emergence Ames for the 2013 generaAon using arAficial warming and refrigeraAon. Trays of warmed, refrigerated and unmanipulated galls were placed in the field. Flies oviposited upon emergence. Goldenrod buds were checked daily for oviposiAon scars and then monitored for gall inducAon. Gall diameters were measured twice a week. RESULTS 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Rate (%) Gall Size (mm) Rate of PredaAon by Birds Rate of ParasiAsm by E. gigantea Fig. 3 Small galls were prone to parasitoid a4ack, large galls were to woodpecker a4ack. y = 0.58x + 17284.73 R² = 0.25 10Jun 15Jun 20Jun 25Jun 30Jun 5Jul 10Jul 15Jul 20Jul 25Jul 30Jul 26May 28May 30May 1Jun 3Jun 5Jun 7Jun 9Jun 11Jun 13Jun 15Jun Gall InducDon Date OviposiDon Date Fig. 4 Delaying oviposiAon by 1 day caused more than a 1/2 day delay in gall inducAon. y = 0.31x + 12910.40 R² = 0.15 0 5 10 15 20 25 30 10Jun 15Jun 20Jun 25Jun 30Jun 5Jul 10Jul 15Jul 20Jul Gall Diameter (mm) Gall InducDon Date Galls that Start Late, End Small Fig. 5 Delaying gall inducAon by 1 day caused a 1/3 mm decrease in final diameter. DISCUSSION and IMPLICATIONS The manipulaAon extended the range in emergence Ames to over 4 weeks, compared to the typical 2.5 weeks. Earlyinduced galls were larger, while later inducAon resulted in smaller size (see Fig 3). Based on parasiAsm and predaAon rates on the 2012 generaAon, 2013 galls produced in the middle of the observed inducAon period should have the highest survival rates. Survival data will be taken next Spring. In future decades, increases in mean April/May temperatures, could lead to earlier fly emergence, increasing mean gall size, and therefore decrease parasiAsm, while increasing bird predaAon. However, effects of increased temperature on the host plant could either intensify or mute its response to the inducAon sAmulus from the larva. A shiJing plant response could come through changes in spring emergence or in August flowering Ame. NEXT STEPS? There are plans in place to extend the experiment by collecAng data on the goldenrod plants that have been planted in the heaAng arrays located on the reserve. KSR has one of a handful of heaAng arrays on the conAnent designed to simulate temperatures predicted for a half century from now. It would be interesAng to see just how drasAc the changes are to flowering seasons and life history of the goldenrod as a result of higher than normal temperatures, and what the implicaAons are to gall size and rates of gall survival. REFERENCES 1. Weis, A., Abrahamson, W., & Andersen, M. (1992). Variable selecAon on Eurosta’s gall size, I: the extent and nature of variaAon in phenotypic selecAon. Evolu/on. 46(6), 16741697. 2. Weis, A., Wolfe, C., & Gorman., W. (1989). Genotypic variaAon and integraAon in histological features of the goldenrod ball gall. American Journal of Botany. 76(10). 15411550. 3. Bode, R., Tripi, J., & Heath, J. (2013). Goldenrod guidebook: a primer on herbivorous species commonly found on Solidago spp. (1 st ed.). Ithaca, NY: Cornell. 4. Tooke, F., & Ba4ey, N. (2010). Temperate flowering phenology. Journal of Experimental Botany, 61(11), 28532862. ACKNOWLEDGMENTS A huge thank you goes out to the staff and other researching students at KSR who have lent me a hand or given me advice during different points in my project. Special thanks are due to Dr. Powell and Dr. Weis for guiding me through my research experience and for teaching me with a great deal of paAence. Thanks are also in order for the University of Toronto’s Centre for Global Change Science for organizing this opportunity for me.

Transcript of TimingisEverything:Exploring …Digital+Assets/... · Basic(Biology(of(the(Fly! •...

Page 1: TimingisEverything:Exploring …Digital+Assets/... · Basic(Biology(of(the(Fly! • The!gall!fly!larvainduces!a gall&(atumorFlike!growth)!on! goldenrod!stems,!where!itis!is!supplied!with!food!and!and!

Timing  is  Everything:  Exploring  Phenological  Mismatch  between  Goldenrod  and  its  Gall  Fly  

                           Ellery  Cunan,  Thomas  Powell,  and  Arthur  Weis,  Department  of  Ecology  and  EvoluDonary  Biology,  University  of  Toronto  

INTRODUCTION  Climate  Change  and  Phenological  Mismatching  •  Many  insect  species  are  more  successful  when  they  a4ack  host  

plants  during  specific  stages  in  growth.    •  If  insect  and  host  plant  species  respond  differently  to  climate  

warming,  phenological  mismatch  could  alter  insect  survival.      •  We  studied  impacts  of  phenological  mismatch  by  experimentally  

manipulaAng  the  emergence  Ame  of  the  goldenrod  gall  fly  (Eurosta  solidaginis),  which  a4acks  late  goldenrod  (Solidago  al/simma).    

Basic  Biology  of  the  Fly  •  The  gall  fly  larva  induces  a  gall  (a  tumor-­‐like  growth)  on  

goldenrod  stems,  where  it  is  is  supplied  with  food  and  and  protected  from  the  elements.  

•  The  mother  fly  oviposits  an  egg  into  the  plant  bud  in  June.  Mothers  live  <5  days.    

•  The  egg  hatches  days  later,  aJer  which  the  larva  bore  into  the  stem.    A  sphere-­‐shaped  gall  forms  as  a  result.  

•  The  gall  reaches  final  size  (12-­‐30  mm)  in  late  July/  early  August.    •  The  larva  over-­‐winters  in  the  gall,  pupates  and  emerges  as  a  fly  in  

the  following  May.    

Plant  Flowering  Time,  Gall  Size  and  Fly  Mortality  •  Galls  stop  growing  just  before  the  plants  start  flowering.  •  Larvae  in  small  galls  are  prone  to  a4ach  by  a  parasitoid  wasp,  

Eurytoma  gigantea,  which  drills  into  the  gall  to  lay  its  egg.      •   Larvae  in  large  galls  are  prone  to  a4ack  by  Downy  Woodpeckers  

Fig.  1.  Adult  Eurosta  fly   Fig.  2.  Dissected  gall  w/  fly  pupa  

QUESTIONS  1.  How  does  final  gall  size  affect  fly  survival?    2.  How  does  Aming  of  oviposiAon  and  plant  flowering  

affect  final  gall  size?  

METHODS  This  study  was  done  at  the  Koffler  ScienAfic  Reserve,  King  City,  Ontario    Gall  size  and  survival  •  We  determined  the  relaAonship  between  gall  size  and  a4ack  rates  by  parasitoids  and  

woodpeckers  in  the  2012  generaAon.      •  400  over-­‐wintering  galls  were  collected,  their  diameters  measured,  and  then  dissected  to  

determine  larval  fate.    Emergence  phenology  and  gall  size  •  We  extended  the  range  emergence  Ames  for  the  2013  generaAon  using  arAficial  warming  

and  refrigeraAon.    •  Trays  of  warmed,  refrigerated  and  unmanipulated  galls  were  placed  in  the  field.  Flies  

oviposited  upon  emergence.    •  Goldenrod  buds  were  checked  daily  for  oviposiAon  scars  and  then  monitored  for  gall  

inducAon.    Gall  diameters  were  measured  twice  a  week.    

RESULTS  

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

90%  

100%  

12   13   14   15   16   17   18   19   20   21   22   23   24   25  

Rate  (%

)  

Gall  Size  (mm)  

Rate  of  PredaAon  by  Birds  

Rate  of  ParasiAsm  by  E.  gigantea  

Fig.  3  Small  galls  were  prone  to  parasitoid  a4ack,  large  galls  were  to  woodpecker  a4ack.  

y  =  0.58x  +  17284.73  R²  =  0.25  

10-­‐Jun  

15-­‐Jun  

20-­‐Jun  

25-­‐Jun  

30-­‐Jun  

5-­‐Jul  

10-­‐Jul  

15-­‐Jul  

20-­‐Jul  

25-­‐Jul  

30-­‐Jul  

26-­‐May  28-­‐May  30-­‐May   1-­‐Jun   3-­‐Jun   5-­‐Jun   7-­‐Jun   9-­‐Jun   11-­‐Jun   13-­‐Jun   15-­‐Jun  

Gall  Ind

ucDo

n  Da

te  

OviposiDon  Date  

Fig.  4  Delaying  oviposiAon  by  1  day  caused  more  than  a  1/2  day  delay  in  gall  inducAon.    

y  =  -­‐0.31x  +  12910.40  R²  =  0.15  0  

5  

10  

15  

20  

25  

30  

10-­‐Jun   15-­‐Jun   20-­‐Jun   25-­‐Jun   30-­‐Jun   5-­‐Jul   10-­‐Jul   15-­‐Jul   20-­‐Jul  

Gall  D

iameter  (m

m)  

Gall  InducDon  Date  

Galls  that  Start  Late,  End  Small  

Fig.  5  Delaying  gall  inducAon  by  1  day  caused  a  1/3  mm  decrease  in  final  diameter.  

DISCUSSION  and  IMPLICATIONS  

•  The  manipulaAon  extended  the  range  in  emergence  Ames  to  over  4  weeks,  compared  to  the  typical  2.5  weeks.      

•  Early-­‐induced  galls  were  larger,  while  later  inducAon  resulted  in  smaller  size  (see  Fig  3).    

•  Based  on  parasiAsm  and  predaAon  rates  on  the  2012  generaAon,  2013  galls  produced  in  the  middle  of  the  observed  inducAon  period  should  have  the  highest  survival  rates.    Survival  data  will  be  taken  next  Spring.  

•  In  future  decades,  increases  in  mean  April/May  temperatures,  could  lead  to  earlier  fly  emergence,  increasing  mean  gall  size,  and  therefore  decrease  parasiAsm,  while  increasing  bird  predaAon.  

•  However,  effects  of  increased  temperature  on  the  host  plant  could  either  intensify  or  mute  its  response  to  the  inducAon  sAmulus  from  the  larva.    A  shiJing  plant  response  could  come  through  changes  in  spring  emergence  or  in  August  flowering  Ame.  

NEXT  STEPS?  There  are  plans  in  place  to  extend  the  experiment  by  collecAng  data  on  the  goldenrod  plants  that  have  been  planted  in  the  heaAng  arrays  located  on  the  reserve.  KSR  has  one  of  a  handful  of  heaAng  arrays  on  the  conAnent  designed  to  simulate  temperatures  predicted  for  a  half-­‐century  from  now.  It  would  be  interesAng  to  see  just  how  drasAc  the  changes  are  to  flowering  seasons  and  life  history  of  the  goldenrod  as  a  result  of  higher  than  normal  temperatures,  and  what  the  implicaAons  are  to  gall  size  and  rates  of  gall  survival.    

REFERENCES  1.  Weis,  A.,  Abrahamson,  W.,  &  Andersen,  M.  (1992).  Variable  selecAon  on  Eurosta’s  gall  size,  I:  the  extent  and  nature  of  variaAon  in  phenotypic  selecAon.  Evolu/on.  46(6),  1674-­‐1697.    2.  Weis,  A.,  Wolfe,  C.,  &  Gorman.,  W.  (1989).  Genotypic  variaAon  and  integraAon  in  histological  features  of  the  goldenrod  ball  gall.  American  Journal  of  Botany.  76(10).  1541-­‐1550.      3.  Bode,  R.,  Tripi,  J.,  &  Heath,  J.  (2013).  Goldenrod  guidebook:  a  primer  on  herbivorous  species  commonly  found  on  Solidago  spp.  (1st  ed.).  Ithaca,  NY:  Cornell.    4.  Tooke,  F.,  &  Ba4ey,  N.  (2010).  Temperate  flowering  phenology.  Journal  of  Experimental  Botany,  61(11),  2853-­‐2862.    

ACKNOWLEDGMENTS  A  huge  thank  you  goes  out  to  the  staff  and  other  researching  students  at  KSR  who  have  lent  me  a  hand  or  given  me  advice  during  different  points  in  my  project.  Special  thanks  are  due  to  Dr.  Powell  and  Dr.  Weis  for  guiding  me  through  my  research  experience  and  for  teaching  me  with  a  great  deal  of  paAence.    Thanks  are  also  in  order  for  the  University  of  Toronto’s  Centre  for  Global  Change  Science  for  organizing  this  opportunity  for  me.