Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ]...

42
Control of Spin Systems

Transcript of Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ]...

Page 1: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Control of Spin Systems

Page 2: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

The Nuclear Spin Sensor • Many Atomic Nuclei have intrinsic angular momentum

called spin. • The spin gives the nucleus a magnetic moment (like a

small bar magnet). • Magnetic moments precess in a magnetic field at a

precession frequency that depends on the magnetic field strength.

• The spins are therefore beautiful, very localized (angstrom resolution) probes of local magnetic fields.

• The chemical environment of a nucleus in a molecule effects the local magnetic field on the nucleus.

• Probing spins with radio frequency magnetic fields and observing them gives information about chemical environment of the nuclei in a non-invasive way. Therefore field of nuclear magnetic resonance is the single most important analytical tool in science.

Page 3: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

• The magnetic moment of a single

nuclear spin is too weak to detect.

• The spins are generally detected in the Bulk by making them precess coherently.

• The precession of nuclear spins is detected or observed by a Magnetic resonance technique.

Page 4: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

I

S

ISr

6

1

ISrNOE

0BM

x

y

d

M dt

= γ

M ×B

( )rfB t M

0Bω0 = γ B0

H

0 (1 )Bω γ σ= −

Page 5: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Chemistry Pharmaceuticals

Life Science Imaging

Food Material Research Process Control

Page 6: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.
Page 7: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

One dimensional spectrum

Page 8: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

2 1 1 2( ) exp( )exp( )cos(2 )cos(2 )I s S Is t R t R t t tη πν πν= − −

Page 9: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.
Page 10: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Relaxation Optimized Coherent Spectroscopy Singular Optimal Control Problems

Page 11: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Transfer of Polarization Interactions

SI

νSJ

ν I

B

(D)

Spin Hamiltonian: H + H (t)

B (t)rf

0

0 rf

zI z zI S

Page 12: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Random collisions with solvent molecules causes stochastic tumbling of the protein molecules

θ0B I

( )rfB t

S

2 2( )1

c

c

J τωω τ

≈+

1cωτ >>Spin Diffusion Limit

( ) exp( / )cC τ τ τ− 2

1 (0)k JTπ

= ≈

Page 13: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

0 ( )( )

2 2( )( ) 02 2

z z

x x

y z y z

z z z z

I Iu tI Iu t k JdI S I SJ k v tdt

v tI S I S

− − − = − −

Optimal Control in Presence of Relaxation

1 00 00 00 η

3

2

2 y z

x

I Sxx I

η= =

1 1

2 2

3 3

4 4

0 ( )( )

( )( ) 0

x xu tx xu t k Jdx xJ k v tdtx xv t

− − − = − −

Page 14: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

The control problem

Page 15: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Relaxation Optimized Pulse Elements (ROPE)

2 2

1 1

u ru r

η=

Page 16: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Comparison

S x

Page 17: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.
Page 18: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

0 ( )( )

2 2( )( ) 02 2

z z

x x

y z y z

z z z z

I Iu tI Iu t k JdI S I SJ k v tdt

v tI S I S

− − − = − −

Page 19: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Finite Horizon Problem

Page 20: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Experimental Results

Khaneja, Reiss, Luy, Glaser JMR(2003)

z z zH H C→

Page 21: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Cross-Correlated Relaxation

θ0B I

( )rfB t

S

I S

a ck k− a ck k+

2IJν +

αα

βα

2IJν −

αβ

ββ

Page 22: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Optimal control of spin dynamics in the presence of Cross-correlated Relaxation

1r

1l

xI

2r

2l

x zI S

0 0 0 00 0

0 00 00 00 0 0 0

z z

x xa c

y ya c

c ay z y z

c ax z x z

z z z z

I Iu v

I Iu k J kI Iv k k Jd

J k k vdt I S I Sk J k uI S I S

v uI S I S

− − − − − − −

= − − − − − − −

zI

yI

z zI S

y zI S

Page 23: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

ξξη −+== 2

1

2 1ll

22

22

Jkkk

c

ca

+−

Khaneja, Luy, Glaser PNAS(2003)

Page 24: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.
Page 25: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Khaneja, Luy, Glaser PNAS(2003)

Page 26: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

TROPIC: Transverse relaxation optimized polarization transfer induced by cross-correlated relaxation.

Groel Protein: 800KDa

Room Temperature

J = 93 Hz

Proton Freq = 750Mhz

Ka = 446 Hz

Kc = 326 Hz Frueh et. al Journal of Biomolecular NMR (2005)

Page 27: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

2 2

0

u v AA ω

+ ≤

Control of Bloch Equations

0

0

0 ( )0 ( )

( ) ( ) 0

x u t xd y v t ydt

z u t v t z

ωω

− − = −

0B

M

x

y

d

M dt

= γ

M ×B

( )rfB t M

0Bω0 = γ B0

Presenter
Presentation Notes
Analogous to the simplest linear system that we just mentioned, the corresponding ensemble control problem will be as follows. Instead of one system, we have k systems whose natural dynamics Ai are different. To motivate more understanding about the ensemble control, we consider the following example. Consider an ensemble of harmonic oscillators modeled by this equation whose natural frequencies w are uniformly distributed in the range [-B, B]. The question is can we steer all this ensemble from (x, y)=(1, 0) to (0, 0) simultaneously by using the same controls u and v.
Page 28: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

2 2u v A+ ≤

[1 ,1 ]ε δ δ∈ − +

Broadband Excitation

0 ( )0 ( )

( ) ( ) 0

x u t xd y v t ydt

z u t v t z

ω εω ε

ε ε

−∆ − = ∆ −

0B

M

x

y

d

M dt

= γ

M ×B

( )rfB t M

0Bω0 = γ B0

Presenter
Presentation Notes
Analogous to the simplest linear system that we just mentioned, the corresponding ensemble control problem will be as follows. Instead of one system, we have k systems whose natural dynamics Ai are different. To motivate more understanding about the ensemble control, we consider the following example. Consider an ensemble of harmonic oscillators modeled by this equation whose natural frequencies w are uniformly distributed in the range [-B, B]. The question is can we steer all this ensemble from (x, y)=(1, 0) to (0, 0) simultaneously by using the same controls u and v.
Page 29: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Inhomogeneous Ensemble of Bloch Equations

0 0[ , ]B Bω ω ω∈ − +

[1 ,1 ]ε δ δ∈ − +

0 ( )0 ( )

( ) ( ) 0

x u t xd y v t ydt

z u t v t z

ω εω ε

ε ε

−∆ − = ∆ −

( )f ε

( )g ω

Presenter
Presentation Notes
Analogous to the simplest linear system that we just mentioned, the corresponding ensemble control problem will be as follows. Instead of one system, we have k systems whose natural dynamics Ai are different. To motivate more understanding about the ensemble control, we consider the following example. Consider an ensemble of harmonic oscillators modeled by this equation whose natural frequencies w are uniformly distributed in the range [-B, B]. The question is can we steer all this ensemble from (x, y)=(1, 0) to (0, 0) simultaneously by using the same controls u and v.
Page 30: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

0 0 ( )0 0 ( )

( ) ( ) 0

x v t xd y u t ydt

z v t u t z

εε

ε ε

= − −

Robust Control Design

[1 ,1 ]ε δ δ∈ − +

z

x

y

[ ( ) ( ) ]x ydX u t v t Xdt

ε= Ω + Ω( )

( ) ( ) ( )2 2

y

y x y

π

π ππ− −

Presenter
Presentation Notes
Analogous to the simplest linear system that we just mentioned, the corresponding ensemble control problem will be as follows. Instead of one system, we have k systems whose natural dynamics Ai are different. To motivate more understanding about the ensemble control, we consider the following example. Consider an ensemble of harmonic oscillators modeled by this equation whose natural frequencies w are uniformly distributed in the range [-B, B]. The question is can we steer all this ensemble from (x, y)=(1, 0) to (0, 0) simultaneously by using the same controls u and v.
Page 31: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Robust Control Design by Area Generation

2

2,

( ) exp( )exp( )exp( )exp( )

( ) [ ]

z

y x y x

x y

U t t t t t

I tε

ε

ε ε ε ε

ε εΩ

∆ = − Ω ∆ − Ω ∆ Ω ∆ Ω ∆

≈ + ∆ Ω Ω

[ ( ) ( ) ]x ydX u t v t Xdt

ε= Ω + Ω

3

2,

( ) exp( ) ( ) exp( )

( ) [ [ ]]

y

x x

x x y

U t t U t tI tε ε

ε

ε ε

ε ε ε− Ω

− ∆ − Ω ∆ ∆ Ω ∆

≈ + ∆ Ω Ω Ω

Page 32: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Lie Algebras, Areas and Robust Control Design

exp( ( ) )yf ε Ω

2 1( ) kk

kf cε ε += ∑

( )f εChoose such that it is approx. constant for

[1 ,1 ]ε δ δ∈ − +

Using 3 2 1

,, , ky y yε ε ε +Ω Ω Ω as generators

1 2 3( ) exp( ( ) ) exp( ( ) ) exp( ( ) )x y xf f fε ε ε εΘ = Ω Ω Ω

Page 33: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Fourier Synthesis Methods for Robust Control Design

cos( )kk

k θβ πεε

=∑

1 exp( )exp( )exp( )2

exp( (cos( ) sin( ) ))2

kx y x

ky z

U k k

k k

βπε ε πε

βε πε πε

= Ω Ω − Ω

= Ω + Ω

2 exp( )exp( )exp( )2

exp( (cos( ) sin( ) ))2

kx y x

ky z

U k k

k k

βπε ε πε

βε πε πε

= − Ω Ω Ω

= Ω − Ω

1 2 exp( cos( ) )k yU U kεβ πε= Ω

ε

B. Pryor, N. Khaneja Journal of Chemical Physics (2006).

Page 34: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Fourier Synthesis Methods for Compensation

Page 35: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Time Optimal Control of Quantum Systems

U(0)

U F

G

K

dU (t)dt

= −i[Hd + uj Hjj=1

m

∑ ]U(t); U(0) = I

k = −iHjLA

K = exp(k)

Minimum time to go from U(0) to U is the same as minimum time

to go from KU(0) to KU F

F

Khaneja, Brockett, Glaser, Physical Review A , 63, 032308, 2001

Page 36: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Example

= -i λ1

⋱λ𝑛

+∑ 𝑢𝑖𝐵𝑖𝑖 U

𝐵𝑖 ∈ 𝑠𝑠 𝑛 ,𝑈 ∈ SU(n)

Page 37: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Control Systems on Coset Spaces This image cannot currently be displayed.

G/K is a Riemannian Symmetric Space

The velocities of the shortest paths in G/K always commute!

Page 38: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Cartan Decompositions , Two-Spin Systems and Canonical Decomposition of SU(4)

σx =12

0 11 0

; σ y =

12

0 −ii 0

; σ z =

12

1 00 −1

G = SU(4); K = SU(2) ⊗ SU (2)

Iα = σα ⊗ I ;Sα = I ⊗ σα ;IαSβ = σα ⊗ σβ ;

Interactions

SI

νSJ

ν I

B

(D)

Spin Hamiltonian: H + H (t)

B (t)rf

0

0 rf

Page 39: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Geometry, Control and NMR

Page 40: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Reiss, Khaneja, Glaser J. Mag. Reson. 165 (2003)

Khaneja, et. al PRA(2007)

Page 41: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.
Page 42: Time Optimal Control of Spin Systems - SysCon · ωω ω∈− +[, ] 00. BB. ε δδ∈− +[1 ,1 ] 0 0 () 0. x ut x d y vt y dt z ut vt z. ωε ωε εε −∆ − ∆−= f ()ε.

Collaborators • Steffen Glaser • Niels Nielsen • Gerhard Wagner • Robert Griffin • James Lin • Jamin Sheriff • Philip Owrutsky • Mai Van Do • Paul Coote • Haidong Yuan • Jr Shin Li • Brent pryor

• Arthanari Haribabu