Time of attendance: Tuesday, February 13, 2018 04:00 PM...

1
Better Understanding of the Biogeochemical Buffering Capacity of Ria Formosa, Portugal to Future Scenarios of Global Changes Time of attendance: Tuesday, February 13, 2018 04:00 PM - 05:00 PM Background: Estuaries and Coastal Lagoons: Most productive ecosystems on Earth, providing multiple goods and ecosystem services. Protection and conservation are vital. Accurate modeling and prediction of the effects of climate change and variability, and the monitoring of their impacts, require sustained and extended observations of these ecosystems. What do these tell about ? Differences between seasons are not strictly marked Temperature in Summer reflects upwelling events shown in Fig. 3. Extreme DO values at WB5 - the shallowest place at the eastern edge of Ria Formosa, low values during early morning (< 60%). Chl-a max in Summer, after upwelling confirmed by satellite images (Fig.3). NO 3 max at WB5-R, in antiphase with tide and salinity, associated with the highest freshwater input, in Summer by upwelling and globally lower in Autumn, by consumption. Provide observations to support the numerical model calibration and continuous validation. Alexandra Cravo a ([email protected]), José Jacob a , Alexandra Rosa a , Marta Rodrigues b , João Rogeiro b a CIMA/Universidade do Algarve, Faro, Portugal; b Laboratório Nacional de Engenharia Civil, Lisboa Portugal E24A-0255 RESULTS: A Real Time Observation (RTO) station Innovative approach Continuously record every 15 min (Fig. 2), from May 17-Jan 18 (8 months): Temperature, salinity, pH, Dissolved oxygen (Fig. 3), and chlorophyll a and turbidity (not shown) Fig. 1. Location of Ria Formosa, on south coast of Portugal, sampling stations , deployment of Pressure Transducers (PT) and real time observation station (RTO), and the limits of the water bodies (WB) identified by different colors. Acknowledgements: UBEST Project is funded by the Fundação para a Ciência e a Tecnologia, PTDC/AAG-MAA/6899/2014 Atlantic Ocean Study area : Ria Formosa productive coastal lagoon on the south coast of Portugal (Fig. 1). Vision: Advancing the prediction of global changes in the Ria Formosa ecosystem Implementation of an integrative “observatory”: - Data from continuous real time observations; - Discrete in-situ field campaigns, at sites representative of the water bodies under Water Framework Directive; - Hydrodynamic-biogeochemical mechanistic models (ongoing calibration and validation): - System of numerical models SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model), to simulate the hydrodynamics and biogeochemical processes; - Development: customizable and integrative WebSIG platform (access to observations, real-time forecasts and future scenarios to stakeholders/end-users). What can we learn from it? B SEASONAL SEMI-DIURNAL TIDAL CYCLES SPRING AUTUMN SUMMER Sampling: Spring: 5/30/2017; Summer: 9/14/2017; Autumn: 10/25/2017 7 sites (Fig. 1), complete semi-diurnal tidal cycles (~13 h), every 2 h: T, S, DO, Chl-a, NO 3 (Fig. 4), NH 4 , PO 4 , SiO 4 , SS, pH (not shown) -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 35 36 37 38 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Salinity Sampling hour Boundary WB1 WB2 WB3 WB4 WB5-R WB5 Tide -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 20 40 60 80 100 120 140 160 180 200 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) O 2 Saturation (%) Sampling hour Boundary WB1 WB2 WB3 WB4 WB5-R WB5 Tide -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Chlorophyll a (μg/L) Sampling hour Boundary WB1 WB2 WB3 WB4 WB5-R WB5 Tide -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 1 2 3 4 5 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) NO 3 - (μM) Sampling hour Boundary WB1 WB2 WB3 WB4 WB5-R WB5 Tide -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 35 36 37 38 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Salinity Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 20 40 60 80 100 120 140 160 180 200 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) O 2 Saturation (%) Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Chlorophyll a (μg/L) Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 1 2 3 4 5 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) NO 3 - (μM) Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 35 36 37 38 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Salinity Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 20 40 60 80 100 120 140 160 180 200 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) O 2 Saturation (%) Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Chlorophyll a (μg/L) Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 1 2 3 4 5 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) NO 3 - (μM) Sampling hour UBEST Project Goals Improve global understanding of the biogeochemical functioning and buffering capacity of 2 distinct Portuguese estuaries (Tagus estuary, and Ria Formosa lagoon - Fig. 1). Susceptibility to future scenarios of anthropogenic inputs and climate change. -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 15 18 21 24 27 30 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Temperature (ºC) Sampling hour Boundary WB1 WB2 WB3 WB4 WB5-R WB5 Tide -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 15 18 21 24 27 30 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Temperature (ºC) Sampling hour -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 15 18 21 24 27 30 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 Tidal height (m) Temperature (ºC) Sampling hour Capture of seasonal signatures Capture of episodic events and marine processes Upwelling events by in temperature Salinity in Summer pH in Summer, accompanying DO DO, lowest in Summer at night, with values < Minimum Allowable Value (MAV in Fig. 3) Chl-a (not shown) globally < 5 g/L, max in Summer followed by Autumn, by satellite images (Fig. 3) Turbidity (not shown), some outliers data to ignore, globally < 15 NTU Important observational data coupled with modeling can be translated into information useful for end-users and decision makers. Facilitate the better understanding of the functioning of this ecosystem, and contribute to its short and long-term management and protection, imperative to building knowledge‐based societies. Final Remarks Fig. 3. TOP: Temperature, salinity, pH and % saturation of dissolved oxygen data acquired by RTO, from May to Jan 2018 with indication of the sampling date of the seasonal semi-diurnal tidal cycles (indicated in B) for Spring (SP), Summer (SU) and Autumn (AU). MAV=Minimum Allowable Value. BOTTOM: 8-day composite SST (left) and Chl-a (right) satellite images from OceanColor (https://oceancolor.gsfc.nasa.gov/ ) at periods typical of the sampled seasons (indicated by 1 to 3). ATLANTIC OCEAN -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 10 14 18 22 26 30 05/25/17 06/14/17 07/04/17 07/24/17 08/13/17 09/02/17 09/22/17 10/12/17 11/01/17 11/21/17 12/11/17 12/31/17 01/20/18 Tide (m) Temperature (ºC) Date SP SU AU 25 May-01 Jun 25 May-01 Jun 1 - SP -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 7.5 7.75 8 8.25 8.5 05/25/17 06/14/17 07/04/17 07/24/17 08/13/17 09/02/17 09/22/17 10/12/17 11/01/17 11/21/17 12/11/17 12/31/17 01/20/18 Tide (m) pH Date SP SU AU 13-21 Sep 13-21 Sep 2B- SU -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 40 60 80 100 120 140 05/25/17 06/14/17 07/04/17 07/24/17 08/13/17 09/02/17 09/22/17 10/12/17 11/01/17 11/21/17 12/11/17 12/31/17 01/20/18 Tide (m) O 2 Saturation (%) Date SP SU AU MAV=70% 24-31 Oct 24-31 Oct 3 - AU -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 35 36 37 38 05/25/17 06/14/17 07/04/17 07/24/17 08/13/17 09/02/17 09/22/17 10/12/17 11/01/17 11/21/17 12/11/17 12/31/17 01/20/18 Tide (m) Salinity Date SP SU AU 29 Aug-05 Sep 29 Aug-05 Sep 2A- SU 1 2A 2B 3 Fig. 4. Variability of temperature, salinity, % Dissolved Oxygen, Chl-a and NO 3 along the complete tidal cycles conducted in Spring, Summer and Autumn tidal cycles. Fig. 2. RTO location, multiparametric probe with sensors and datalogger

Transcript of Time of attendance: Tuesday, February 13, 2018 04:00 PM...

Page 1: Time of attendance: Tuesday, February 13, 2018 04:00 PM ...ubest.lnec.pt/pdfs/cravoetal_OSM_2018.pdf · Better Understanding of the Biogeochemical Buffering Capacity of Ria Formosa,

Better Understanding of the Biogeochemical Buffering Capacity of Ria Formosa,

Portugal to Future Scenarios of Global Changes

Time of attendance: Tuesday, February 13, 2018 04:00 PM - 05:00 PM

Background:Estuaries and Coastal Lagoons: Most productive ecosystems on Earth, providing multiplegoods and ecosystem services. Protection and conservation are vital.

Accurate modeling and prediction of the effects of climate change and variability, and themonitoring of their impacts, require sustained and extended observations of theseecosystems.

What do these tell about ?

• Differences between seasons are not strictly marked• Temperature in Summer reflects upwelling events shown in Fig. 3.• Extreme DO values at WB5 - the shallowest place at the eastern edge of Ria Formosa,

low values during early morning (< 60%).• Chl-a max in Summer, after upwelling confirmed by satellite images (Fig.3).• NO3 max at WB5-R, in antiphase with tide and salinity, associated with the highest

freshwater input, in Summer by upwelling and globally lower in Autumn, byconsumption.

• Provide observations to support the numerical model calibration andcontinuous validation.

Alexandra Cravo a ([email protected]), José Jacob a, Alexandra Rosa a, Marta Rodrigues b, João Rogeiro b

a CIMA/Universidade do Algarve, Faro, Portugal; b Laboratório Nacional de Engenharia Civil, Lisboa Portugal

E24A-0255

RESULTS:

A Real Time Observation (RTO) station – Innovative approachContinuously record every 15 min (Fig. 2), from May 17-Jan 18 (8 months): Temperature, salinity, pH, Dissolved oxygen (Fig. 3), and chlorophyll a and turbidity (not shown)

Fig. 1. Location of Ria Formosa, on south coast ofPortugal, sampling stations , deployment of PressureTransducers (PT) and real time observation station(RTO), and the limits of the water bodies (WB)identified by different colors.

Acknowledgements: UBEST Project is funded by the Fundação para a Ciência e a

Tecnologia, PTDC/AAG-MAA/6899/2014

Atlantic Ocean

Study area:Ria Formosa productive coastal lagoonon the south coast of Portugal (Fig. 1).

Vision: Advancing the prediction of global changes in the Ria

Formosa ecosystem

Implementation of an integrative “observatory”: - Data from continuous real time observations;- Discrete in-situ field campaigns, at sites representative of the water bodies

under Water Framework Directive;- Hydrodynamic-biogeochemical mechanistic models (ongoing calibration and

validation):- System of numerical models SCHISM (Semi-implicit Cross-scale

Hydroscience Integrated System Model), to simulate the hydrodynamics and biogeochemical processes;

- Development: customizable and integrative WebSIG platform (access to observations, real-time forecasts and future scenarios to stakeholders/end-users).

What can we learn from it?

B SEASONAL SEMI-DIURNAL TIDAL CYCLES

SP

RIN

GA

UT

UM

NS

UM

ME

R

Sampling: Spring: 5/30/2017; Summer: 9/14/2017; Autumn: 10/25/2017

• 7 sites (Fig. 1), complete semi-diurnal tidal cycles (~13 h), every 2 h: T, S, DO, Chl-a, NO3 (Fig. 4), NH4, PO4, SiO4, SS, pH (not shown)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

35

36

37

38

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Salin

ity

Sampling hour

Boundary WB1WB2 WB3WB4 WB5-RWB5 Tide

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0

20

40

60

80

100

120

140

160

180

200

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

O2 S

atu

rati

on

(%

)

Sampling hour

Boundary WB1WB2 WB3WB4 WB5-RWB5 Tide -1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Ch

loro

ph

yll a

g/L

)

Sampling hour

Boundary WB1WB2 WB3WB4 WB5-RWB5 Tide

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0

1

2

3

4

56

:30

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

NO

3-(µ

M)

Sampling hour

Boundary WB1WB2 WB3WB4 WB5-RWB5 Tide

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

35

36

37

38

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Salin

ity

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0

20

40

60

80

100

120

140

160

180

200

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

O2 S

atu

rati

on

(%

)

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Ch

loro

ph

yll a

g/L

)

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0

1

2

3

4

5

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

NO

3-(µ

M)

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

35

36

37

38

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Salin

ity

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0

20

40

60

80

100

120

140

160

180

200

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

O2 S

atu

rati

on

(%

)

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Ch

loro

ph

yll a

g/L

)

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0

1

2

3

4

5

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

NO

3-(µ

M)

Sampling hour

UBEST Project Goals• Improve global understanding of the biogeochemical functioning and buffering capacity

of 2 distinct Portuguese estuaries (Tagus estuary, and Ria Formosa lagoon - Fig. 1).

• Susceptibility to future scenarios of anthropogenic inputs and climate change.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

15

18

21

24

27

30

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Tem

pera

ture

(ºC

)

Sampling hour

Boundary WB1WB2 WB3WB4 WB5-RWB5 Tide

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

15

18

21

24

27

30

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Tem

pera

ture

(ºC

)

Sampling hour

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

15

18

21

24

27

30

6:3

0

7:3

0

8:3

0

9:3

0

10:3

0

11:3

0

12:3

0

13:3

0

14:3

0

15:3

0

16:3

0

17:3

0

18:3

0

19:3

0

20:3

0

21:3

0

22:3

0

Tid

al

heig

ht

(m)

Tem

pera

ture

(ºC

)

Sampling hour

• Capture of seasonal signatures• Capture of episodic events and marine processes

• Upwelling events by in temperature• Salinity in Summer• pH in Summer, accompanying DO• DO, lowest in Summer at night, with values < Minimum Allowable Value (MAV in Fig. 3)• Chl-a (not shown) globally < 5 g/L, max in Summer followed by Autumn, by satellite images (Fig. 3)• Turbidity (not shown), some outliers data to ignore, globally < 15 NTU

• Important observational data coupled with modeling can be translatedinto information useful for end-users and decision makers.

Facilitate the better understanding of the functioning of thisecosystem, and contribute to its short and long-term management andprotection, imperative to building knowledge‐based societies.

Final Remarks

Fig. 3. TOP: Temperature, salinity, pH and % saturation of dissolved oxygen data acquired by RTO, from May to Jan 2018 with indication of the sampling date of the seasonal semi-diurnal tidal cycles (indicated in B) for Spring (SP), Summer (SU) and Autumn (AU). MAV=Minimum Allowable Value.

BOTTOM: 8-day composite SST (left) and Chl-a (right) satellite images from OceanColor (https://oceancolor.gsfc.nasa.gov/) at periods typical of the sampled seasons (indicated by 1 to 3).

ATLANTIC OCEAN

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10

14

18

22

26

30

05/2

5/1

7

06/1

4/1

7

07/0

4/1

7

07/2

4/1

7

08/1

3/1

7

09/0

2/1

7

09/2

2/1

7

10/1

2/1

7

11/0

1/1

7

11/2

1/1

7

12/1

1/1

7

12/3

1/1

7

01/2

0/1

8

Tid

e (

m)

Tem

pera

ture

(ºC

)

Date

SP SU AU

25 May-01 Jun25 May-01 Jun1 -

SP

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

7.5

7.75

8

8.25

8.5

05/2

5/1

7

06/1

4/1

7

07/0

4/1

7

07/2

4/1

7

08/1

3/1

7

09/0

2/1

7

09/2

2/1

7

10/1

2/1

7

11/0

1/1

7

11/2

1/1

7

12/1

1/1

7

12/3

1/1

7

01/2

0/1

8

Tid

e (

m)

pH

Date

SP SU AU

13-21 Sep13-21 Sep2B-

SU

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

40

60

80

100

120

140

05/2

5/1

7

06/1

4/1

7

07/0

4/1

7

07/2

4/1

7

08/1

3/1

7

09/0

2/1

7

09/2

2/1

7

10/1

2/1

7

11/0

1/1

7

11/2

1/1

7

12/1

1/1

7

12/3

1/1

7

01/2

0/1

8

Tid

e (

m)

O2

Satu

rati

on

(%

)

Date

SP SU AU

MAV=70%

24-31 Oct24-31 Oct3 -

AU

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

35

36

37

38

05/2

5/1

7

06/1

4/1

7

07/0

4/1

7

07/2

4/1

7

08/1

3/1

7

09/0

2/1

7

09/2

2/1

7

10/1

2/1

7

11/0

1/1

7

11/2

1/1

7

12/1

1/1

7

12/3

1/1

7

01/2

0/1

8

Tid

e (

m)

Salin

ity

Date

SP SU AU

29 Aug-05 Sep29 Aug-05 Sep2A-

SU

1 2A

2B3

Fig. 4. Variability of temperature, salinity, % Dissolved Oxygen, Chl-a and NO3 along the complete tidal cycles conducted in Spring, Summer and Autumn tidal cycles.

Fig. 2. RTO location, multiparametric probe with sensors and datalogger