Timber and Steel Design Lecture 14 Welded Connections...

33
Lecture Lecture 1 1 4 4 Welded Connections II Welded Connections II Fillet Weld of Truss Members Shear and Torsion Shear and Bending Design of Moment-Resisting Connections Timber and Steel Design Timber and Steel Design Mongkol JIRAVACHARADET S U R A N A R E E INSTITUTE OF ENGINEERING UNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

Transcript of Timber and Steel Design Lecture 14 Welded Connections...

Page 1: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Lecture Lecture 1144 Welded Connections IIWelded Connections II

� Fillet Weld of Truss Members

� Shear and Torsion

� Shear and Bending

� Design of Moment-Resisting Connections

Timber and Steel DesignTimber and Steel Design

Mongkol JIRAVACHARADET

S U R A N A R E E INSTITUTE OF ENGINEERING

UNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

Page 2: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Effective Net AreaEffective Net Area

���������� �� ����� �������� � ����������� ������������

���� ���!��"�#���$#%&'�(�&#%&�): Ae= U A

g

�,�����- U #���.�/(�����������/$�� ��)����)��� ��!�#�� 1 �)( 2

W, M, S �����������#� �.����� �#��'6�78�������������9� ������ � 2/3 �# ��������)8�

������������)(�������'�(���#��9� �'<�9'�����!�#�� 1

��!�#�� 1

��!�#�� 2

U = 0.90

U = 0.85

Page 3: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

��� ����� 13-4 ����.���)=� A36 �)()���.���� E70 /�����������.����������#�����������)(#��')��� ������ �)����=�#������������C�� L150×100×12 �������8�78�������� ��.����#�������

P = 0.60 FyAg= 0.60 (2.5) (28.56) = 42.8 ���

L2

L1

P

L150x100x12

������ � �)���������8������)=�C�� �&�/����"�#��#�"���� Ag

�&�/����"��$#%&'�(�&#%&�) Ae, ��!�#�� 2 : U = 0.85

P = 0.50 Fu Ae= 0.50 (4.0) (0.85) (28.56) = 48.6 ���

Control

Page 4: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

15 cm

18.5 cm

c.g. of weld

c.g. of angle

7.5 cm

4.88 cm

!"#��$!%��&'(�) 8 &&. � �)������.�������� 8 ��. = 830 ��./7�.

�������#��������� = 42.8/.83 = 51.6 7�. ( !" 52 ,&.)

#��$!%��&./01))� (#/2

c.g. of weld is not the same as c.g. of angle

ECCENTRICITY

��������.������K �$� = 12 L 2 = 10 ��., ��������.�����)=��$� = 5 ��.

P

P

Page 5: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

CC..GG.. coincide of weld and membercoincide of weld and member

L1

L2

P1 P2

P c.g. of weld

& angle

a b

( )Σ =1

0L

M

2( ) 0Pa P a b− + =

22 2,

( ) w

PPaP L

a b P= =

+

�������������.�����������������/$�M��- ���������.������ �������������

/$�M��- �������)=�#��/(�.���� ������)���)����������"��M��-

11 1,

( ) w

PPbP L

a b P= =

+

Pw = � �)���������.����� ���8���� ���������

Page 6: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

��� ����� 13-5 ����.���)=� A36 �)()���.���� E70, /�����������.�������,N)�)�

��������� ������ �)����=�#������������C�� L125x75x13 ��.�������8�����������' ���

9� ��������"��M��-

WTL1

L2

L125x75x13

(A=24.31 cm2)

4.35 cm

8.15 cmc.g.

������ � �)���������8���)=�C��

P = 0.60 FyAg= 0.60 (2.50) (24.31) = 36.5 ���

P = 0.50 FuAe= 0.50 (4.00) (0.85) (24.31) = 41.3 ���

Control

Page 7: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

����������������������.��������')�����

����.������������/(��)��������� 27 ,&. �)( 14 ,&.

��������.������K #���$� = 13 L 2 = 11 ��. !"#��$!%��&'(�) 8 &&.

� �)������.���� = 830 ��./7�.

�����������.����#��������� = 36.5/.830 = 44.0 7�.

4��(56&$&(�7#�8 L1 $9%��9�1�#5� P2:

(36.5)(4.35) L 12.5 P2= 0 → P

2= 12.7 ���

36.5 ton

L1 L2

P1 P2

4.35 cm

12.5 cm

c.g.of angle

P1= P - P

2= 36.5 L 12.7 = 23.8 ���

L1= 23.8/.83 = 28.7 7�. ( !" 29 ,&.)

L2= 12.7/.83 = 15.3 7�. ( !" 16 ,&.)

�.�����.��������')�� 2 (0.8) = 1.6 ( !" 2 ,&.)

Page 8: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

WT200x56.2 (tw=12 mm)

27 cm

14 cm

12.5 cm

�#1<�88=>�0?#�$@%�(6)�<&&A��'(�))�?<)� (#/2

Tbs= 0.30F

uAv+ 0.50F

uAt

= 0.3 (4.0) (27 + 14) (1.2) + 0.5 (4.0) (12.5) (1.2)

= 89 ��� > 36.5 ��� OK

Page 9: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

P1 = 36.5 - 10.4 - 7.5 = 18.6 ���

L1 = 18.6 / 0.830 = 22.4 7�. ( !" 23 ,&.)

L2 = 7.5 / 0.830 = 9.04 7�. ( !" 10 ,&.)

��� ����� 13.8 # ������ ��#�� 13.7 ������"�����.�����.�������������������)(

����')������������C��

������ �.�����.�������� 8 ��. ��� �)�� = 830 ��./7�.

� �)���������.����#��')�� = (12.5) (0.83) = 10.4 ���

36.5 ton

L1 L2

P1 P2

4.35 cm

10.4 t

c.g.of angle

6.25 cm 6.25 cm

� ���!������-��� L1 ������&/��!���� P2:

(36.5) (4.35) L (6.25) (10.4) L 12.5 P2 = 0

P2 = 7.5 ���

Page 10: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Shear and TorsionShear and Torsion

y

y

x x

PeM

Welds subjected to shear and torsion

Pe

Pe

Welds subjected to shear and bending

Page 11: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Elastic Method - No friction between connected parts

- Connected parts are assumed to be rigid

- All deformation occurs in the weld

Eccentrically Loaded Welded Connections Eccentrically Loaded Welded Connections

����&����(�-�)(����������.�������"��M��-

/(�������������)����)������ ������ P ����'<�:

y

y

x x

P

e

Centroid of

weld configuration

Axis of symmetry

for weld

?#�D �(E/(�70=��#��$!%��& = P

6&$&(�78�) T = P e

�� �����/������ ��M��- P /(�# ����#$�/$�������.����

�� �� �����/��������-�&� T /(�'�����(�(#��

Page 12: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Tdf

J=

,h v

Tv Thf f

J J= =

Torsional Stress:

Shear Stress:

s

Pf

L=Σ

Resultant Stress:rf f= Σ

Stresses in Welded Connections Stresses in Welded Connections

Arbitrary typical

cm of weld

Pe

d

C.G.

y

y

x x

x

h

fs

f

v

�� ����� !. /$���W������.��������� 1 7�.

f

fv

fh

J = Polar moment of inertia of the weld

Page 13: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Welded GeometryWelded Geometry

y

C.G.

y

x x

x

l

b

���$�&����.�����'<����� M��- ���������.����

� ���!���������)���������-����� )(����

���������� l :

2 ( / 2) (0) ( )b b l b b l x+ = + +

Polar moment of inertia: J = Ix+ I

y

3 2

3 2

12 ( / 2)

12

22 ( / 2 )

12

x

y

I l b l

I b b b x l x

= +

= + − +

Page 14: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

��� ����� 13-7 � ������.������', /��&/��!������������.����������#������������

�.�)���.���� E70

6 ton20 cm

25 cm

10 cmPL 10 mm

6 ton

20 cm

d

2.22 cm

7.78 cm

27.78 cm

h

v

������ ���$�&�������.���������� 1 7�. cm 22.245

)5)(2(10==x

Ix = (1/12)(1)(25)3 + (2)(10)(12.5)2 = 4,427 7�.4

Iy = (2)(1/3)(2.223 + 7.783) + (25)(2.22)2 = 444 7�.4

J = Ix + Iy = 4,427 + 444 = 4,871 7�.4

Page 15: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

� ���!���� ��������#���$�78��/(��&�#��/$�78���� � ��M��- ���������.�������#���$�

(6,000 27.78)(12.5)428 ksc

4,871h

Tvf

J

×= = =

(6,000 27.78)(7.78)266 ksc

4,871v

Thf

J

×= = =

fs = fshear = 6,000/45 = 133 ksc

( )2 2 266 133 428 586 kscrf = + + =

� �)�����)���.���� E70 ���� 10 ��. = 1,040 ��./��.7�.

�����������.����#��������� = 586/1,040 = 0.56 7�. ( !" 6 &&.)

Page 16: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Shear and BendingShear and Bending

L

Vertical weld

Pe

L

P

L

End return

Seat angle

b

Mcf

I=

I

Mc

Bending stress

M = P e

Shearing stress

total weld lengthv

Pf =

2 2Resultant stress r b vf f f= +

Page 17: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

��� ����� 13.10 ����.�)���.���� E70, /��&/��!���������.����#���������� ��������� �

���' �� P = 12 ���, e = 6 7�., �)( L = 20 7�. ���$�&����������������-�����9�

����$���������.����

������ ���$�&����.���������� 10 ��., � �)������.���� = 1,040 ��./7�.

Pe

L

P

L

End return

kg/cm 300)20(2

000,12==sf

( )kg/cm 540

)2()20)(1(12

1

)10(6000,12

3

=

×=bf

kg/cm 618540300 22 =+=rf

��������.����#��������� = 618/1,040 = 0.594 7�. ( !" 6 &&.)

Page 18: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

UnstiffenedUnstiffened Welded Seated Beam ConnectionsWelded Seated Beam Connections

Example 14-4: Calculate the allowable load for the seat angle-beam combination

shown. All steel is A36. Assume an E70 electrode (SMAW). (From Ex.12-6)

1 cm Nom.

Column

W250 x 72.4

Beam

W250 x 44.1

Beam reaction R = 9.47 ton

L150 x 100 x 15 × 20 cm

Bending moment with respect to the face of column flange is

( )2 9.47 2 3.88 / 2 37.31 t-cm2

bM R

= + = + =

End return

15 cm

Page 19: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Since there is 2 vertical lines, bending moment per line is

56.25/2 = 28.13 t-cm

15 cm

Max. bending stress:

3

28.13 1,000 8659.3 kg/cm

16 /12b

Mcf

I

× ×= = =

Vertical shear stress:

5 1,000312.5 kg/cm

16vf

×= =

Resultant stress: 2 2659.3 312.5 730 kg/cmrf = + =

!"#��$!%��&&�'(�) 8 &.&., 0��=�#��$!%��& = 830 00./,&.

Page 20: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Welded Welded FreamedFreamed Beam ConnectionsBeam Connections

Shop weld

Field weld

C.G.

Shop weldR/2

e1

R/2

Field weld

e2

For flexibility, size of

return ≤ ¼ of angle leg

usually 1.25 cm

��/$�� ��.������������(�� ������)(��� ����� ��8�8�������"��M��-���

���'m&�&�&��#��')�� ������#����������.����

��)=�C���� )(��������� R/2 ���"��M��-/������.������&�������- = (R/2)(e)

Page 21: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

C.G.

Shop weldR/2

e1

l

R/2

Field weld

e2

Beam web

R/2

l/6 H

H

2l/3N.A.

fh

� ����� Shop weld � ���!�� ������C����)(�&�� ����(# ���������&��� � ����� Field weld /(����#�������$����� ������$�����.��������)(� ��) ����)��������

�����"�� �)��/(9��/����������#�����������)(�� ������C������������� Field weld �������(�#&��� #�� l/6

applied moment

(R/2) (e2)

resisting moment

H (2l/3)

2

1 5 2( ) ( )

2 2 6 3h

Re f l l

=

2

2

( )

0.56h

R ef

l=

/ 2

weld lengthv

Rf =

2 2

r h vf f f= +

Page 22: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

��� ����� 14-5 ������ Shop weld �)( Field weld � ����� W500 × 114 ��/$�� �����������' � ���� F

y= 2,500 ��./7�.2 ����.�)���.����.�&� E70 �.���)=�C�� L75×75×

10×25 7�. ���'m&�&�&��')����� 20 ���

������ 1) ��� ���� �M��- ��

2(6.5)(3.25) 25(0)

25 6.5 6.5

1.11 cm

lxx

x

Σ += =

Σ + +

=

R/2 = 10 ���

xx

y

y

x W500 × 114tw= 11 mm

1 7�.6.5 7�.

25 7�.

r = 13.54 7�.

2) � ���! Polar moment of inertia

3 2 31(25) 2(6.5)(12.5) 3,333 cm

12xI = + =

3 2 2 32(6.5) 2(6.5)(6.5 / 2 1.11) 25(1.11) 136 cm

12yI = + − + =

33,333 136 3,469 cmx yJ I I= + = + =

Page 23: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

3) � ���!������-�&�: T = (R/2) (e) = 10 (7.5 L 1.11)

= 63.9 t-cm R/2 = 10 ���

x

7.5 7�.

25 7�. C.G.

1.11 7�.

r = 13.6 7�.�(�(/�� C.G. 8�/$�9�)�$�

2 2(6.5 1.11) 12.5 13.6 cmr = − + =

(63.9 1,000)(12.5)230 ksc

3, 469h

Tvf

J

×= = = →

(63.9 1,000)(5.39)69 ksc

3,469v

Thf

J

×= = = ↑

fs = fshear = 10,000 / (25 + 6.5 + 6.5) = 263 ksc ↑

( )22 230 69 263 429 kscrf = + + =

��������.����#��������� = 429 / 1,040 = 0.413 7�. !"#��$!%��&HI=$=� 5 &.&.

Page 24: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

4) ������ Field weld ���9� �&�����')��

�� ������C�����������������/���)��������$�:

2 2

(20,000)(7.5)429 ksc

0.56 0.56(25)h

Ref

l= = = →

�� ������C���������&��: 10,000400 ksc

25vf = =

2 2 429 400 587 kscrf = + =

��������.����#��������� = 587 / 1,040 = 0.56 7�. !"#��$!%��&HI=$=� 6 &.&.

Page 25: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Traffic signSTEEL15_25

Page 26: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

��� ����� 14-8 ����������.���������KK�!9,/��/�������' ������������� �M��-�)��r����� 114.3 �.�. ���� 12.2 ��./�. �(����KK�!9,���� 50 ��. �&����)����� �'s����KK�!9,���� 0.5 x 1.0 �.2 �)(�" ����������������� � ���� F

y= 2,500 ��./7�.2 ���

�.�)���.����.�&� E70

5 m

5 m

1 m

0.5 m

x

z

y

Page 27: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

������ #���(��������� 0-10 �.

�� �����)��# ���� 50 ��./���.

x

z

y

Pz

Tz

Px

Mx

My

5 m

5 m1 m

.5 m

x

z

y

������-��������"�C�� Mx = 50(5.5) + 12.2(5)(2.5)

= 427.5 ��.-�.

���)�#����(# ������ �'s�� = 50(0.5)(1.0) = 25 ��.

���)��%-������&�� Pz = 50 + 12.2(10) = 172 ��.

���)��%-�������"�C�� Px = 25 ��.

������-�&��������&�� Tz = 25(5+0.5) = 137.5 ��.-�.

������-���������� My = 25(5) = 125 ��.-�.

Page 28: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

J( �?#�$@%�(6)��#�:

fv1= P

x/ A = 25/35.9 = 0.7 ��./7�.2

J( �?#�$@%�(1�00�#8�):

fv2= T

zr / J = (137.5)(100)(11.43/2)/1,173

= 67 ��./7�.2

4A5<&8��#��$!%��& ���$�&����.���������� 1 7�.

I = π r3 = (3.1416)(11.43/2)3 = 586.4 7�.3

J = 2 π r3 = 2(3.1416)(11.43/2)3 = 1,173 7�.3

A = 2 π rt = 2(3.1416)(11.43/2)(1.0) = 35.9 7�.2

Page 29: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

J( �?#�)K�1�06&$&(�7)):

�)���������-��� M =

= 445.4 kg-m

2222 1255.427 +=+ yx MM

J( �?#�=9�7#&:

)���.���� E70 ���� 1 7�. ��� �)�� 1,040 ��./7�.

��������.����#��������� = 434.6/1,040 = 0.435 7�. ( !" 5 &&.)

( ) 22

21

2 kg/cm 6.434=++= vvtr ffff

ft= - P

z/A + Mr/I

= - 172/35.9 + 445.4(100)(11.43/2)/586.4

= 429.3 ��./7�.2

Page 30: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Traffic sign base plate

Page 31: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

Design of Moment-Resisting Connections

T

C

Seat angle

(may have to be stiffened)

Groove weldFillet weld

End connection PL

(a)

(b)

Page 32: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

��� ����� 13.12 /�������/$�� �����#��������-������' � �����')�����

W450×66.2 ������78��# �������)=� A36 �����'t&�&�&��#��')���# ����18 ��� �)(������-

#��')�� 20 ���-���� �.�)���.������� E70, ���$�&����.���)=�C�� L150x100x15 �'<�

u�����

T

C

W450x66.2

Auxiliary PL������ 1A)� �#8?#�$@%�(:

)���.�����.���� 6 ��.��u�������)=�C��

� �)������.�������� 6 ��. = 620 ��./7�.

�������#��������� = 18,000/(2 x 620)

= 14.52 7�.

( !" 15 ,&. (?� =L)"�()

Page 33: Timber and Steel Design Lecture 14 Welded Connections IIeng.sut.ac.th/ce/oldce/CourseOnline/430432/L14 Weld... · 2009-07-27 · Lecture 14 Welded Connections II ... Design of Moment-Resisting

1A)� �#86&$&(�7: ���$�&���������.�������.��'������)�����������'6����

T = ���#����� = ������-��������(�(� ���(�� ��'6����

= (20)(100)/(44.6-1.2) = 46.08 ���Auxiliary PL

8 cm

6 cm

� �)���������.�������.��)�����������'6� = (19.9)(1.2)(0.6)(2.5) = 35.82 ���

����8�#��������������� ���)=��� = 46.08 L 35.82 = 10.26 ���

�.��� ���)=���� 10 ��.,

���������#��������� = 10.26/(1.0 x 0.60(2.5)) = 6.84 7�. ( !" 8 ,&.)

���$�&����.�����.������������� 5 ��., � �)������.���� = 520 ��./7�.)

�����������.���� = 10.26/0.520 L 8 = 11.73 7�. ( !" 6 ,&.?� =L)"�()

!"?D ($J=M08('(�) PL1 x 6 x 8 ,&.