THz generation and transport Sara Casalbuoni DESY Hamburg.

33
THz generation and transport Sara Casalbuoni DESY Hamburg

Transcript of THz generation and transport Sara Casalbuoni DESY Hamburg.

Page 1: THz generation and transport Sara Casalbuoni DESY Hamburg.

THz generation and transport

Sara CasalbuoniDESY Hamburg

Page 2: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Overview

• Motivation • Design goals • Simulation tools - POP ZEMAX

- Mathematica code (B. Schmidt, DESY)

• THz beam extraction• Optical design• Simulation of the THz radiation transfer line• Summary and outlook

Page 3: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Motivation

CDR/CTR

140 m, = 1000, Eel = 500 MeV

Bunch length measurements with interferometer

Page 4: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Design goals

• Flat frequency response

• Low frequency response limit as low as possible BUT– Finite dimensions of transfer line tube and mirrors (ɸ ≈ 200mm)– Long transfer line ~20m

• High frequency structures expected from μbunching up to 30THz(10μm)

Page 5: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

30THz

Diamond window

Page 6: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Vacuum needed

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

Transmission through 20m of Humid Air (50% RH)

Tra

smis

sio

n

(m)

vacuum pressure(mbar) 1000 100 10 1 0.1 0.01

from B. Schmidt

Page 7: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

LL

yx

L

yxLd

Lyx

L

y

L

xLdyxLd

dddi

eELyxE

ikd

Surf

22

|||,|

1;)()(

),0,,(~

),,,(~

2222

222222

),(

Simulation ToolsZEMAXCommercially availablePOP (Physical Optic Propagation)

B. Schmidt (DESY)Mathematica

2 CODES

Huygens-Fresnel principle:Every point of a wave front may be considered as a centre of a secondary disturbance which gives rise to spherical wavelets, and the wave-front at any later instant may be regarded as the envelope of these wavelets. The secondary wavelets mutually interfere.

ƞ

ξy

x

L

d

first order second orderFraunhofer near field, Fresnel

≃Lfinite size screen

Kirchhoff integral

Page 8: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Input for CTR

rII

rII

ck

;)(kb/I

)(kb/K )/(k)(kr/)(kr/K )/(kIr)(k,E

~

;)(kb/I

)(kb/K )/(k)(kr/)/(kK )(kr/Ir r)(k,E

~

//2radius pipebradius beamcoordinate radialr

0

01111r

0

01111r

Fourier Transform with respect to the longitudinal coordinate ζ=z-vt of the radial electric field Er of a uniform bunch charge distribution of radius ρ moving with velocity v in straight line uniform motion (M. Geitz, PhD Thesis).

sinE~ E

~cosE

~ E

~atan(y/x)

ryrx

Page 9: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Ginzburg-Frank

L

x

Lx

LxLxI

))/(sin1(

)/(sin)/(

22

22

Valid: - if CTR screen radius ≳ effective CTR radius a ≳ λ -if L ≫ λ 2 ⇒ far field (Castellano & Verzilov, Phy.Rev.ST-Accel. Beams ,1998)

⇒ frequency independent

-8 -6 -4 -2 0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

Inte

nsi

ty

(a.u

.)

Page 10: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

from P. Schmüser

Both conditions satisfied

=300μmL=10m

a=30mm

Page 11: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

from P. Schmüser

Finite size CTR screen

=1.5mmL=20m

a=30mm

Page 12: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

from P. Schmüser

Near field

=300μm

L=0.5m

a=30mm

Page 13: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

L=0.5m a=30mm

from P. Schmüser

Both conditions violated

=1.5mm

and exact SQRT

Page 14: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

ZEMAXCommercially availablePOP (Physical Optic

Propagation)

B. Schmidt (DESY)Mathematica

Both make use of scalar Fresnel diffraction theory

2 CODES

Valid if objects and apertures >> λ|x-ξ|,|y-η|<<L

ξ

ƞ

x

y

L

Fourier transform of

ck

ddeeEeLi

LyxE LyxikLik

Surf

Lyxik

2;

2

2/)(2/)(

),(

2/)( 2222

),0,,(~1

),,,(~

ddeEdi

LyxE ikd

Surf

),(

),0,,(~1

),,,(~

Simulation Tools

Page 15: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Free propagation

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0 (mm) f(THz) 1 0.3 0.1 3 0.01 30 0.001 300

Inte

nsity

(a.

u.)

X (mm)

if a ≲ λ and/or L ≲ λ 2 ⇒ I (x, L,ω) frequency dependent

L=1 m; a=10 mm; =1000

Page 16: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Dimensions of the CTR screen

-10 -5 0 5 100

1

2

3

ZEMAX Mathematica

screen intensity @window/@screen (mm)

10 0.74 20 0.84 25 0.83 30 0.79 40 0.70

Inte

nsity

(a.

u.)

X (mm)

window =20mm

L=40mm; =1000λ=1.5mm ⇒ f=200GHz

Page 17: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

CDR screen

intensity @window/@screen 0.75 0.55 0.78

20 mm

ɸ=20 mm, slit=1mm

ʘ ʘʘ

window =20mmL=40mm; =1000λ=1.5mm ⇒ f=200GHz

ɸ=20 mm

Page 18: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Optical design: technical drawing

from O. Peters

Page 19: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Optical design

CTR screen ɸ=25mm

diamond window ɸ=20mm

M1 f=630mm ɸ=188mm

M2 f=4500mm ɸ=188mm

M3 f=3500mm ɸ=188mm

M4 f=3000mm ɸ=188mm M5 f=100mm

ɸ=100mmfinal screen

40mm 560mm 3410mm 8990mm 3100mm 2400mm 100mm

M1600mm

M2 M3

M4M5

8990mm

2400mm100mm

3100mm

3410mm

Page 20: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Simulation of the THz radiation transfer line with ideal thin lenses

λ=1.5mm ⇒ f=200GHz; =1000

Intensity @final screen/@window=0.49

CTR screen ɸ=25mm Diamond window ɸ=20mm M1 M2

M3 M4 M5 final screen ɸ=8mm

Page 21: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

-10 0 100.000

0.001

0.002

0.003

-60 0 600.00000

0.00002

-100 -50 0 50 1000.00000

0.00001

0.00002

-100 -50 0 50 1000.000000

0.000005

0.000010

-100 -50 0 50 1000.00000

0.00002

0.00004

0.00006

-50 0 500.00000

0.00005

-10 -5 0 5 100.000

0.005

0.010

M5M4M3

M2

Inte

nsity

(a.

u.)

Mathematica ZEMAX

M1

final screen

Inte

nsity

(a.

u.)

X (mm)

X (mm)

Inte

nsity

(a.

u.)

X (mm)

diamond window

Simulation of the THz radiation transfer line with ideal thin lenses

λ=1.5mm ⇒ f=200GHz =1000CTRscreenɸ=25mmDiamond windowɸ=20mm

Intensity @final screen/@window=0.49

Page 22: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

-10 0 100.000

0.001

0.002

0.003

-60 0 600.00000

0.00002

-100 -50 0 50 1000.00000

0.00001

0.00002

-100 -50 0 50 1000.000000

0.000005

0.000010

-100 -50 0 50 1000.00000

0.00002

0.00004

0.00006

-50 0 500.00000

0.00005

-10 -5 0 5 100.000

0.005

0.010

M5M4M3

M2

Inte

nsity

(a.

u.)

intensity @final screen/@CTR screen

CTR 0.49 Gauss beam 0.85

w0=9mm

M1

final screen

Inte

nsity

(a.

u.)

X (mm)

X (mm)

Inte

nsity

(a.

u.)

X (mm)

diamond window

Good also for a Gaussian beam

λ=1.5mm ⇒ f=200GHz =1000CTRscreenɸ=25mmDiamond windowɸ=20mm

Page 23: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Simulation of the THz radiation transfer line at different frequencies

-4 -2 0 2 40.000

0.005

0.010

(mm) f(THz) 1.5 0.2 0.3 1 0.01 30

= 1000 CTR screen = 25mmdiamond window = 20mm

final screen =8mm

Inte

nsity

(a.

u.)

X (mm)

Intensity @final screen/@window

0.490.900.99

Page 24: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Transfer function

0.1 1 10

1E-5

1E-4

1E-3

0.01

0.1

1

Inte

nsi

ty @

fina

l scr

ee

n/@

win

do

w

f(THz)

λ(mm) 3 0.3 0.03

Page 25: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Half screen and horizontal polarization: frequency response

-4 -2 0 2 40.00

0.01

0.02

(mm) f(THz) 1.5 0.2 0.3 1 0.01 30

= 1000 CTR screen = 25mmdiamond window = 20mm

final screen =6mm

Inte

nsity

(a.u

.)

X (mm)

Intensity @final screen/@window

0.520.91 0.99

ʘ

Page 26: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Gaussian beam λ=500nm

M3 M4 M5 final screen

w0=1mm Diamond window ɸ=20mm M1 M2

Page 27: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Summary and outlook

• 2 simulation tools: very good agreement

• Optical design for the THz beam line transfer @140m in TTF2: tested for CTR, CDR and Gaussian beam

• Outlook

-”ideal” mirror surface

-tests for stability against beam displacement and mirrors misalignment

-effect of tilting CTR screen

Page 28: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Electric field of a charge in the laboratory system

krK

kqrkE

derkErkE

ctzvtz

rvtz

rqEE

r

rqrE

r

ikrr

rz

10

2/32220

32/322

2

0

4),(

~

),(),(~

)(4;0

sin1

)1(

4)(

q

)(rE

observation point

r

Page 29: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

L ≫ λ 2 far field⇒

22

22222

1)(

)(12

)(

LL

L

k

characteristic size of theCTR screen

Page 30: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Paraboloid mirrorsCTR screen ɸ=25mm Diamond window ɸ=20mm M1 M2

M3 M4 M5 final screen

Page 31: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Paraboloid mirrors

-10 0 100.000

0.001

0.002

0.003

-60 0 600.00000

0.00002

-100 -50 0 50 1000.00000

0.00001

0.00002

-100 -50 0 50 1000.000000

0.000005

0.000010

-100 -50 0 50 1000.00000

0.00002

0.00004

0.00006

-50 0 500.00000

0.00005

-10 -5 0 5 100.000

0.005

0.010

m4m3

m2

Inte

nsity

(a.

u.)

m1

m5

final screen

paraxial lenses paraboloids

Inte

nsity

(a.

u.)

X (mm)

X (mm)

Inte

nsity

(a.

u.)

X (mm)

window

Page 32: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Transfer function

0.1 1 10

1E-5

1E-4

1E-3

0.01

0.1

1

lenses paraboloids

Inte

nsi

ty @

fina

l scr

ee

n/@

win

do

w

f(THz)

Page 33: THz generation and transport Sara Casalbuoni DESY Hamburg.

S. Casalbuoni, DESY

Paraboloid mirrors: half screen and horizontal polarization

Half CTR screen ɸ=25mm Diamond window ɸ=20mm M1 M2

M3 M4 M5 final screen

Intensity @final screen/@window 0.64