Thorben Menne 10.10 · 2014. 10. 22. · 4↵Z2e4 m2 µ 1 v (2 2v + v2) 1() 2 3 (1 v) 2() = m2 µk...

20
New Cross Section for Muon-Proton-Bremsstrahlung Thorben Menne 10.10.2014

Transcript of Thorben Menne 10.10 · 2014. 10. 22. · 4↵Z2e4 m2 µ 1 v (2 2v + v2) 1() 2 3 (1 v) 2() = m2 µk...

  • New Cross Section for Muon-Proton-BremsstrahlungThorben Menne 10.10.2014

  • IceCube Simulation

    2

    detection spectrum

    flux

    energy

  • IceCube Simulation

    3

    simulations machine learning and unfolding

    detection spectrum

    flux

    energy

  • IceCube Simulation

    4

    generators: - NuGen - CORSIKA

    lepton propagator PROPOSAL

    µ

    e+, e�X

    photon propagators: - photonics - PPC - clsim

    µ

    N

    detector components: - electrics - trigger - …

    X

  • PROPOSAL PRopagator with Optimal Precision and Optimized Speed for All Leptons

    ‣ … Optimal Precision … ‣ aiming for exact simulation ‣ small errors in cross sections necessary

    ‣ systematic errors higher than statistical ones ‣ cross sections for different interactions

    5

    ionisation pair production bremsstrahlung photo nuclear

    multiple models to choose from

    µA ! µA+e� µA ! µAe+e� µA ! µA� µN ! µNX

  • Bremsstrahlung Cross Sections in PROPOSAL

    6

    ‣ 4 different parametrizations ‣ based on Bethe-Heitler formula, QED ‣ various corrections

  • Bremsstrahlung Cross Sections in PROPOSAL

    7

    d�

    dv=

    4↵Z2e4

    m2µ

    1

    v

    ✓(2� 2v + v2)�1(�)�

    2

    3(1� v)�2(�)

    � =m2µk

    2E0(E0 � k)

    ‣ 4 different parametrizations ‣ based on Bethe-Heitler formula ‣ various corrections ‣ finite nucleus size ‣ screening ‣ nucleus excitation ‣ coulomb correction

  • 8

    divergence due to ! ! 0

  • New Cross Section

    ‣ static field ‣ not Lorentz-invariant !

    !

    ‣ valid for very high energies only

    ‣ Thomas-Fermi form-factors

    9

    ‣ dynamic field with recoil ‣ explicit Lorentz-invariant ‣ semi automatic calculation

    possible

    ‣ no kinematical approximations

    ‣ proton form-factors from 2013 measurements

    new c.s.existing c.s.

  • New Cross Section

    ‣ effective proton-vertex function

    ‣ tree level QED calculation ‣ find best working phase

    space

    10

    �µ = F1(q2)�µ +

    i�µ⌫q⌫

    2MF2(q

    2)

  • Computer Aided Calculation

    11

    FeynArts - topologies - particles - amplitude

    FormCalc - process

    amplitude - indices, fermion

    chains, …

    u↵�⌫↵� ū�

    Mathematica

    Fortran

    numerical calculation of cross section

  • Phase Space First Approach

    ‣ recursively build up phase space

    12

    R3 =1

    2ps

    ZdM2 ⌦2

    p32

    Zd⌦1

    p22

  • Results First Approach

    13

  • Problems

    14

  • Phase Space Second Approach

    ‣ two energies and two angles

    ‣ better suited for bremsstrahlung

    15

    R3 =⇡

    4

    ZdE5 dE3 dcos ✓ d⌘

  • Results Second Approach

    16

  • Results Second Approach

    ‣ better than first approach ‣ similar behavior to existing cross sections But:

    ‣ both calculations in center of mass system ‣ not comparable to existing cross sections

    17

  • Phase Space Third Approach

    ‣ 4 kinematic invariants ‣ complicated border functions ‣ comparison to existing cross

    sections possible

    18

    R3 =⇡

    16p�(s,m21,m

    22)

    Zdt25 ds34

    Zds45 dt13

    1p��4

  • Results Third Approach

    19

  • Summary

    ‣ need for more precise cross sections ‣ systematic errors higher than statistical ones

    ‣ new muon-proton-bremsstrahlung cross section ‣ numerical calculation problematic ‣ instable even for small energies ‣ optimal phase space not found yet !

    ‣ further studies only make sense if numerical integration problem is solved

    20