This Webinar is being presented from a computer with a ... and Design... · LESSON 2A:...

74
This Webinar is being presented from a computer with a resolution of 1280 X 1024. Using a similar setting on your machine may improve your viewing experience.

Transcript of This Webinar is being presented from a computer with a ... and Design... · LESSON 2A:...

This Webinar is being presented from a computer with a resolution of 1280 X 1024

Using a similar setting on your machine may improve your viewing experience

Webinar Series Introduction Purpose

Webinar Series Introduction Objectives

Module 1 About AASHTOWare Pavement ME Design Software

Module 2 Climate Inputs

Module 3 Traffic Inputs

Module 4 Material and Design Inputs for New Pavement Design

Module 5 Material amp Design Inputs for Pavement Rehab with Asphalt Overlays

Module 6 Material amp Design Inputs for Pavement Rehab with Concrete Overlays

Module 7 New Asphalt Pavement Structures

Module 8 Asphalt Overlays of Asphalt Pavement

Module 9 New Concrete Pavement Structures

Module 10 Unbonded Concrete Overlays

list the design options for rehabilitation with asphalt concrete (AC) overlays

identify key input differences between new and rehab designs recall how to characterize existing pavement condition recall how to characterize existing pavement layer moduli recall how to work with backcalculated moduli for existing pavement recall how to import backcalculated moduli from XML files recall the resources available to verify the accuracy of third-party

generated backcalculation data

After completing Module 5 you will be able to

Module 5 Design Inputs Rehab w AC Overlays Objectives

Webinar Series Introduction Software Name Change

LESSON 1 OVERVIEW

Module 5 Design Inputs Rehab wAC Overlays

bull Rehabilitation Options using Asphalt Overlays

bull Input differences new vs rehab

bull Existing Pavement Condition bull Layer characterization

ndash Existing AC Layers ndash Existing Portland Cement

Concrete (PCC) Layers ndash Existing Unbound Layers amp

Subgrade bull Material inputs from

Backcalculation Chapter 10 Pavement Evaluation Chapter 13 Rehab Design Strategies

Module 5 Design Inputs Rehab wAC Overlays Topics Covered

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Webinar Series Introduction Purpose

Webinar Series Introduction Objectives

Module 1 About AASHTOWare Pavement ME Design Software

Module 2 Climate Inputs

Module 3 Traffic Inputs

Module 4 Material and Design Inputs for New Pavement Design

Module 5 Material amp Design Inputs for Pavement Rehab with Asphalt Overlays

Module 6 Material amp Design Inputs for Pavement Rehab with Concrete Overlays

Module 7 New Asphalt Pavement Structures

Module 8 Asphalt Overlays of Asphalt Pavement

Module 9 New Concrete Pavement Structures

Module 10 Unbonded Concrete Overlays

list the design options for rehabilitation with asphalt concrete (AC) overlays

identify key input differences between new and rehab designs recall how to characterize existing pavement condition recall how to characterize existing pavement layer moduli recall how to work with backcalculated moduli for existing pavement recall how to import backcalculated moduli from XML files recall the resources available to verify the accuracy of third-party

generated backcalculation data

After completing Module 5 you will be able to

Module 5 Design Inputs Rehab w AC Overlays Objectives

Webinar Series Introduction Software Name Change

LESSON 1 OVERVIEW

Module 5 Design Inputs Rehab wAC Overlays

bull Rehabilitation Options using Asphalt Overlays

bull Input differences new vs rehab

bull Existing Pavement Condition bull Layer characterization

ndash Existing AC Layers ndash Existing Portland Cement

Concrete (PCC) Layers ndash Existing Unbound Layers amp

Subgrade bull Material inputs from

Backcalculation Chapter 10 Pavement Evaluation Chapter 13 Rehab Design Strategies

Module 5 Design Inputs Rehab wAC Overlays Topics Covered

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Webinar Series Introduction Objectives

Module 1 About AASHTOWare Pavement ME Design Software

Module 2 Climate Inputs

Module 3 Traffic Inputs

Module 4 Material and Design Inputs for New Pavement Design

Module 5 Material amp Design Inputs for Pavement Rehab with Asphalt Overlays

Module 6 Material amp Design Inputs for Pavement Rehab with Concrete Overlays

Module 7 New Asphalt Pavement Structures

Module 8 Asphalt Overlays of Asphalt Pavement

Module 9 New Concrete Pavement Structures

Module 10 Unbonded Concrete Overlays

list the design options for rehabilitation with asphalt concrete (AC) overlays

identify key input differences between new and rehab designs recall how to characterize existing pavement condition recall how to characterize existing pavement layer moduli recall how to work with backcalculated moduli for existing pavement recall how to import backcalculated moduli from XML files recall the resources available to verify the accuracy of third-party

generated backcalculation data

After completing Module 5 you will be able to

Module 5 Design Inputs Rehab w AC Overlays Objectives

Webinar Series Introduction Software Name Change

LESSON 1 OVERVIEW

Module 5 Design Inputs Rehab wAC Overlays

bull Rehabilitation Options using Asphalt Overlays

bull Input differences new vs rehab

bull Existing Pavement Condition bull Layer characterization

ndash Existing AC Layers ndash Existing Portland Cement

Concrete (PCC) Layers ndash Existing Unbound Layers amp

Subgrade bull Material inputs from

Backcalculation Chapter 10 Pavement Evaluation Chapter 13 Rehab Design Strategies

Module 5 Design Inputs Rehab wAC Overlays Topics Covered

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

list the design options for rehabilitation with asphalt concrete (AC) overlays

identify key input differences between new and rehab designs recall how to characterize existing pavement condition recall how to characterize existing pavement layer moduli recall how to work with backcalculated moduli for existing pavement recall how to import backcalculated moduli from XML files recall the resources available to verify the accuracy of third-party

generated backcalculation data

After completing Module 5 you will be able to

Module 5 Design Inputs Rehab w AC Overlays Objectives

Webinar Series Introduction Software Name Change

LESSON 1 OVERVIEW

Module 5 Design Inputs Rehab wAC Overlays

bull Rehabilitation Options using Asphalt Overlays

bull Input differences new vs rehab

bull Existing Pavement Condition bull Layer characterization

ndash Existing AC Layers ndash Existing Portland Cement

Concrete (PCC) Layers ndash Existing Unbound Layers amp

Subgrade bull Material inputs from

Backcalculation Chapter 10 Pavement Evaluation Chapter 13 Rehab Design Strategies

Module 5 Design Inputs Rehab wAC Overlays Topics Covered

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Webinar Series Introduction Software Name Change

LESSON 1 OVERVIEW

Module 5 Design Inputs Rehab wAC Overlays

bull Rehabilitation Options using Asphalt Overlays

bull Input differences new vs rehab

bull Existing Pavement Condition bull Layer characterization

ndash Existing AC Layers ndash Existing Portland Cement

Concrete (PCC) Layers ndash Existing Unbound Layers amp

Subgrade bull Material inputs from

Backcalculation Chapter 10 Pavement Evaluation Chapter 13 Rehab Design Strategies

Module 5 Design Inputs Rehab wAC Overlays Topics Covered

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

LESSON 1 OVERVIEW

Module 5 Design Inputs Rehab wAC Overlays

bull Rehabilitation Options using Asphalt Overlays

bull Input differences new vs rehab

bull Existing Pavement Condition bull Layer characterization

ndash Existing AC Layers ndash Existing Portland Cement

Concrete (PCC) Layers ndash Existing Unbound Layers amp

Subgrade bull Material inputs from

Backcalculation Chapter 10 Pavement Evaluation Chapter 13 Rehab Design Strategies

Module 5 Design Inputs Rehab wAC Overlays Topics Covered

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

bull Rehabilitation Options using Asphalt Overlays

bull Input differences new vs rehab

bull Existing Pavement Condition bull Layer characterization

ndash Existing AC Layers ndash Existing Portland Cement

Concrete (PCC) Layers ndash Existing Unbound Layers amp

Subgrade bull Material inputs from

Backcalculation Chapter 10 Pavement Evaluation Chapter 13 Rehab Design Strategies

Module 5 Design Inputs Rehab wAC Overlays Topics Covered

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

AC overlay of existing AC surfaced pavements Existing conventional or deep

strength Semi-rigid pavements Composite pavements

AC overlay of existing intact PCC pavements

AC overlay of fractured PCC slabs

Module 5 Design Inputs Rehab wAC Overlays Rehabilitation Options with AC Overlays

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Load associated fatigue of the AC layers both top-down and bottom-up cracking Load associated fatigue fracture of any

chemically stabilized layer Permanent deformation in AC layers Permanent deformation in unbound layers Thermal fracture in HMA surface layers Reflection of fatigue cracks from underlying

AC or chemically stabilized layers

Module 5 Design Inputs Rehab wAC Overlays Distresses Predicted

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull MaterialDesign Properties

bull General Information bull Traffic bull Climate bull Design CriteriaReliability bull Existing Pavement Condition bull MaterialDesign Properties

New Pavement Existing Pavement

Module 5 Design Inputs Rehab wAC Overlays Input Differences New vs Rehabilitation

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

LESSON 2 AC OVERLAYS OF EXISTING AC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Flexible or Semi Rigid

Mill In-place Recycle

Partial or Full-depth

Repair

AC over AC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACAC MEPDG Philosophy amp Design Options

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

LESSON 2A CHARACTERIZING THE CONDITION OF THE EXISTING ASPHALT PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Initial Bottom-up Fatigue Damage in Existing AC

Estimate of Initial Permanent Strain in Existing Pavement

Level 1 From Undamaged and Damaged E Level 2 From a detailed distress survey Level 3 From a windshield survey

Level 1 For each pavement layer from trenching Level 2 Estimated for each layer from surface rutting Level 3 Hardcode estimate from surface rutting

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

1 Milled Thickness 2 Subjective

Pavement Rating 3 Total Rut Depth

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 3

Tables 13-1 amp 13-10 in MOP provides a physical description

of each rating

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition at Rehab Input Level 3

0 05 1 15 2

Damage dAC

Cracking (lane area)

Condition

gt50 Poor

35-50 Fair

15-35 Good

5-15 Very Good

lt5 Excellent

Poor

Fair

Excellent

Very Good

Good

Pavement Rating vs Damage

This relationship may change with local

calibration

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Chart1

CAC
Damage dAC
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Sheet1

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

1 Milled Thickness 2 Amount of Total

Fatigue Cracking in percent total lane area

3 Rutting In Each Layer

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 2

Rut depth distribution by layer without any

trench data

0102030405060708090

100

0 05 1 15 2

Fatig

ue C

rack

ing

(CA

C)

o

f lan

e ar

ea

Damage dAC

Layer Type I-25 SH 82

Asphalt Concrete 706 563

Granular Base 47 173

Subgrade 247 200

An Example from Colorado

Cracking vs Damage

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Chart1

CAC
Damage dAC
Fatigue Cracking (CAC) of lane area
0010713917
00261349307
00626202368
01425830116
02478708886
05074994376
0719503471
08645960651
0940810635
09753495316
09899491861

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range
0001
02
04
06
075
1
12
14
16
18
2

Sheet1

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
dAC CAC
0001 0010713917
02 00261349307
04 00626202368
06 01425830116
075 02478708886
1 05074994376
12 0719503471
14 08645960651
16 0940810635
18 09753495316
2 09899491861
To resize chart data range drag lower right corner of range

1 Milled Thickness 2 Rutting In Each Layer

same as input level 2

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

AC layer condition defined through FWD deflection basin

tests amp backcalculation of layer modulus

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Damaged HMA Modulus HMA Layer Damage Computation

Damaged Mastercurve

Log

Mod

ulus

E

Log Reduced Time tr

δ

NDT Modulus E

E

Undamaged Mastercurve

Module 5 Design Inputs Rehab wAC Overlays Defining Existing Pavement Condition ar Rehab Input Level 1

Point corresponding to FWD test frequency

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Damaged amp Undamaged Modulus amp Fatigue Damage

Undamaged modulus (|E|) bull Standard forensic tests on field cores to determine volumetric amp

recovered binder parameters for dynamic modulus predictive equation aggregate amp binder properties ndash Module 4

Damaged modulus (|Edam|) bull NDT modulus (eg FWD) bull (test in wheel paths amp in cracked areas) bull FWD frequency = 10-25 Hz

Determine Fatigue Damage (dAC)

( )rtloge1|)Elog(|

γ+β+

α+δ=

( )ACdlog530e1

10E10dam|E|+minus+

δminus+δ=

Module 5 Design Inputs Rehab wAC Overlays Lesson 4 Existing Asphalt Concrete

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

LESSON 2B CHARACTERIZING EXISTING AC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 2 AC Overlays of Existing AC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Existing AC bull Thickness (coringGPR)

bull Post milling

bull Mixture Volumetrics (coringGPR) bull In-situ mix volumetrics bull For representative lift

bull Mechanical Properties bull E - undamaged amp damaged

bull Thermal Properties bull AC Layer Design Properties

bull Rehabilitation inputs for defining condition (discussed in LESSON 2A)

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Thickness of Existing AC Layer

bull Thickness of existing AC is the thickness after any milling In other words the total average thickness of the existing AC layer minus the milled thickness

bull ME Design software can accommodate up to 3 AC layers (including overlay) and 8 pavement layers

bull Combine existing pavement layers as simulated in the backcalculation (if rehabilitation input level 1 is used)

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Number of Existing AC Layers

Number of Existing AC Layers

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Mixture Volumetric Properties of Existing AC Layer

Input requirements are same as the new AC See MODULE 4 Use standard tests on field cores to determine mix

volumetrics Use representative values if existing layers are combined

Unit Weight Effective Binder

Content by Volume Air Voids Poissonrsquos Ratio

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Mechanical Properties of Existing AC Layer

AC Overlay

Existing AC

Unbound Materials

Subgrade

All layermaterial properties except dynamic modulus are same as the new AC ndash See MODULE 4

ldquoUndamagedrdquo dynamic modulus inputs are determined using predictive equation at all rehabilitation input levels Use standard tests on field cores to determine mix volumetric and recovered binder parameters for use in predictive equation

ldquoDamagedrdquo dynamic modulus required at Rehabilitation Input Level 1 only Use NDT backcalculation results for damaged E

Creep compliance and indirect tensile strengths are computed internally from mix properties

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Determining Undamaged Modulus of Existing AC Layer

bull Required at all rehabilitation input levels bull Standard tests on field cores to determine volumetric and

recovered binder parameters for E predictive equation

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Determining Damaged Modulus of Existing AC Layer

Undamaged dynamic modulus

Damaged dynamic modulus appears

for rehab input level 1 only

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Backcalculation of AC layer modulus Deflection basin tests over one day Measure deflection basins at same location

at different times or temperatures Conduct FWD testing in cracked areas (if

possible) and non-cracked wheel path areas Determine backcalculated elastic moduli at

different temperatures in wheel paths

Example

Module 5 Design Inputs Rehab wAC Overlays NDT amp Backcalculated Modulus of Existing AC Layer

FWD frequency varies from 10

to 25 Hz

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Unbound Layers and Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Same as New Designs bull Poissonrsquos Ratio bull Specific Gravity of Solids bull Coeff of Lateral Earth Pressure bull Saturated Hydraulic Conductivity bull Soil-Water Characteristic Curve

May be different for Rehab Designs bull Resilient Modulus (Mr) bull Gradation and Atterberg Limits bull Moisture Content and Dry Density bull Thickness (from borings)

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus of Existing Unbound Layers and Subgrade

AC Overlay

Existing AC

Unbound Materials

Subgrade

Depends on rehabilitation input level Mr inputs are the same as defined for

new pavement materials at Rehab Input Levels 2 and 3ndash See MODULE 4

Mr at Rehab Input Level 1 determined from backcalculation and field-to-lab and moisture adjustments DONrsquoT FORGET LIMITING MODULUS

CONCEPT

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

FOR Mr input level 2 Enter backcalculated

Mr value Enter C-factor for lab-

to-field adjustments

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 1

Rehabilitation Input Level 1

Correction or adjustment factor

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Conversion Factors for Mr at Rehab Input Level 1

Why convert to lab resilient modulus Global calibration coefficients determined for laboratory

resilient modulus values only Backcalculated elastic modulus values are not equal to lab

resilient modulus

What are the conversion factors bull Depends on if in-situ moisture contents and dry densities are

measured from materials recovered from borings

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Layer Type Location in Structure C-Factor

Unbound Aggregate

Base

Between Two Bound Layers 143 Below a PCC Layer 132 Below an HMA Layer 062

Subgrade or Embankment

Below a Stabilized Subgrade 075 Below an HMA or PCC Layer 052 Below an Aggregate Base 035

Apply these adjustment factors when the in place water content is measured Table 11-8 in MOP

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

bull Mean project backcalculated elastic modulus = 20000 psi bull C-factor = 035 (subgrade is below an aggregate base

course) bull Measured subgrade moisture content = 22 (enter this

value into the software under optimum water content) bull Input subgrade lab Mr 22 moisture = 03520000 psi

= 7000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities Measured

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are Measured

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Type of MaterialSoil C-Factor

Coarse-Grained Materials 067 Fine-Grained Materials 055

These values were used in global calibration

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

bull Mean project backcalculated elastic modulus = 20000 psi bull Adjustment factor = 055 (fine-grained subgrade soil) bull Input subgrade lab Mr optimum moisture = 05520000 psi

= 11000 psi

Module 5 Design Inputs Rehab wAC Overlays C-Factors when In-situ Moisture and Dry Densities not Known

Example Illustrating the use of Correction Factors when In-situ Moisture Content and Dry Densities are not Determined

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Either of These Approaches at Rehab Input Level 1 for Mr

1 Enter in place water

content andor dry density and apply in place adjustment factors

2 Enter optimum water content amp maximum dry density and apply optimum adjustment factors

Two important volumetric properties ndash consistent with estimate of resilient modulus Water Content Dry Density

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

AASHTO Soil Classification

Embankment and Subgrade for Flexible Pavements

Embankment and Subgrade for Rigid Pavements

A-1-a 29500 18000 A-1-b 26500 18000 A-2-4 24500 16500 A-2-5 21500 16000 A-2-6 21000 16000 A-2-7 20500 16000 A-3 16500 16000 A-4 16500 15000 A-5 15500 8000 A-6 14500 14000

A-7-5 13000 10000 A-7-6 11500 13000

Level 3 Subgrade Resilient Modulus Inputs at Optimum Moisture Content MOP

Module 5 Design Inputs Rehab wAC Overlays Resilient Modulus at Rehabilitation Input Level 23

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Other Properties of Unbound Layers and Subgrade

Other Properties are the same as defined for new pavement materials See MODULE 4

Use in-situ properties if available from borings

Same as the new designs

Gradation Atterberg Limits Moisture Content Dry Density Thickness

Poissonrsquos Ratio Specific Gravity of Solids Coeff of Lateral Earth Pressure Saturated Hydraulic Conductivity Soil-Water Characteristic Curve

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

LESSON 3 AC OVERLAYS OF EXISTING PCC PAVEMENTS

Module 5 Design Inputs Rehab wAC Overlays

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Overlay Options

bull AC overlay design addresses structural deficiencies

bull Functional drainage materials durability issues need to be additionally considered

Rigid JPCPCRCP

Partial or Full-depth

Repair

AC over PCC Overlay

Existing Pavement

Pre-overlay Treatments

Module 5 Design Inputs Rehab wAC Overlays ACPCC Design Options and Philosophy

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

LESSON 3A CHARACTERIZING THE CONDITION OF THE EXISTING PCC PAVEMENT

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays What we need and How to Obtain

Estimate of Fatigue Damage in Existing PCC due to Transverse Cracking

Estimated from a detailed distress survey at all input levels

NOTE Do not include

longitudinal cracking or corner cracking in

this value

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

INPUT 1 Percent slabs replaced distressed (transverse cracks) before restoration in lane with most transverse cracks

Description Existing distress before restoration as defined by slabs with transverse cracks plus percent previously repairedreplaced slabs

Example If 10 slabs cracked and 2 previously replaced this input is 12

Transverse Fatigue Crack

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Existing JPCP Condition

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

INPUT 2 Percent slabs repairedreplaced after restoration

Module 5 Design Inputs Rehab wAC Overlays Fatigue Damage in Existing Intact PCC Layer

Example From previous example assume all existing cracked slabs are replaced then Input is 10+2 = 12 Thus the percent slabs that are still cracked after restoration is 12 ndash 12 = 0

NOTE This input is used to determine the existing damage for future projections over the design life

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

LESSON 3B CHARACTERIZING EXISTING PCC PAVEMENT LAYER PROPERTIES

Module 5 Design Inputs Rehab wAC Overlays Lesson 3 AC Overlays of Existing PCC Pavements

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

AC Overlay bull Thickness bull Mixture Volumetrics bull Mechanical Properties bull Thermal Properties bull AC Layer Design Properties

Same as for new AC layermdashSee MODULE 4

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for AC Overlay Layer

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Existing PCC (Intact) bull Thickness bull JPCP Design Properties bull Thermal Properties bull Mix Properties bull Mechanical Properties

ndash Strength amp Elastic Modulus of Aged PCC

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Intact PCC Layer

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Level 1

bull Flexural strength testing of field beams bull PCC Elastic Modulus

o Coring of slab amp lab testing o FWD Backcalculation

Level 2 bull Compressive strength testing of field cores

Level 3 bull Estimates of 28-day flexural or compressive strength

from historical agency data

Module 5 Design Inputs Rehab wAC Overlays StrengthModulus of Existing Intact PCC

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 1

Lab Test No conversion is necessary FWD Measured Convert backcalculated ldquodynamicrdquo elastic modulus to static modulus using a factor of 08

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 2

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus of Existing Intact PCC Layer

PCC Strength Input Level 3

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Modulus or Strength Ratio = α1+ α2log10(AGE)+ α3[log10(AGE)]2

28-day strength or modulus

Strength or modulus at a given age

AGE

Module 5 Design Inputs Rehab wAC Overlays Strength amp Modulus Gain in Existing Intact PCC

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Chart1

Column2
Age of Concrete
Flexural or Compressive Strength or Modulus of Elasticity
624009
635704
643648
649608
654346
658261
661583
664462
666995
669253
671286
673132
674821
688172
695685
7008
704622
707644
710123
712212
71401
715581
716972
718216
719339
720359
721293
722153
722947
723685
724373
725017
72562
726189
726725
727232
727712
728168
728602
729016
729411
729788
730149
730496
730828
731147
731454
73175
732035
732309
732575
732831
733079
733319
733551
733776
733994
734206
734411
734611
734805
734993

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993
0
1
2
3
4
5
6
7
8
9
10
11
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600

Sheet1

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00
Column1 Column2
0 624009
1 635704
2 643648
3 649608
4 654346
5 658261
6 661583
7 664462
8 666995
9 669253
10 671286
11 673132
12 674821
24 688172
36 695685
48 7008
60 704622
72 707644
84 710123
96 712212
108 71401
120 715581
132 716972
144 718216
156 719339
168 720359
180 721293
192 722153
204 722947
216 723685
228 724373
240 725017
252 72562
264 726189
276 726725
288 727232
300 727712
312 728168
324 728602
336 729016
348 729411
360 729788
372 730149
384 730496
396 730828
408 731147
420 731454
432 73175
444 732035
456 732309
468 732575
480 732831
492 733079
504 733319
516 733551
528 733776
540 733994
552 734206
564 734411
576 734611
588 734805
600 734993

AC Overlay

Existing PCC

Unbound Materials

Subgrade

Module 5 Design Inputs Rehab wAC Overlays Key Inputs for Existing Unbound Layers and Subgrade

Existing Unbound Layers and Subgrade

bull Thickness of basesubbase bull Gradations and Atterberg

limits bull Estimates of Mr at all levels bull k-value and month of test

at rehab input level 1 only

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

Module 5 Material and Design for Pavement Rehab with Asphalt Overlays

k-value at Rehabilitation Level 1

Enter the mean dynamic k-value and month of measurement

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

Comments on k-Value Dynamic k-value is typically twice as high as the static k-value

obtained from slow plate loading (used in 1993 AASHTO) Spread sheet is available that calculates dynamic k-value of

subgrade from FWD deflection data on top of slab AASHTO 1993 concept of ldquobumping uprdquo k-value for base

course is incorrect

Module 5 Design Inputs Rehab wAC Overlays Determining k-value

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

Module 5 Design Inputs Rehab wAC Overlays k-value at Rehabilitation Levels 2 amp 3

k-value is internally calculated

Resilient modulus is entered as in new pavement material ndash See MODULE 4

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

LESSON 4 HOW TO ENTER MATERIAL INPUTS FROM BACKCALCULATION

Module 5 Design Inputs Rehab wAC Overlays

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

bull Enter Manually bull Importing XML Files

Module 5 Design Inputs Rehab wAC Overlays Entering Backcalculated Moduli and Other Inputs

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

bull One set of moduli and layer properties per deflection test or project (manually entered or XML imported)

bull Needs preliminary pavement model with baseline design inputs

bull Creates design files (DGPX) for each station entry

bull User is responsible for creating XML files in the required format

Module 5 Design Inputs Rehab wAC Overlays Backcalculation Data Entry

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

Module 5 Design Inputs Rehab wAC Overlays Project Segmentation to Determine Average Values

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

Chart1

Series 1
Deflection under load plate (mils)
58
69
68
53
81
73
73
74
66
55
67
143
157
149
16
124
131
14
156
135
16
7
9
79
101
88
83
93
79
99
105

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range
0+00
1+00
2+00
3+00
4+00
5+00
6+00
7+00
8+00
9+00
10+00
11+00
12+00
13+00
14+00
15+00
16+00
17+00
18+00
19+00
20+00
21+00
22+00
23+00
24+00
25+00
26+00
27+00
28+00
29+00
30+00

Sheet1

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
Series 1
0+00 58
1+00 69
2+00 68
3+00 53
4+00 81
5+00 73
6+00 73
7+00 74
8+00 66
9+00 55
10+00 67
11+00 143
12+00 157
13+00 149
14+00 16
15+00 124
16+00 131
17+00 14
18+00 156
19+00 135
20+00 16
21+00 7
22+00 9
23+00 79
24+00 101
25+00 88
26+00 83
27+00 93
28+00 79
29+00 99
30+00 105
To resize chart data range drag lower right corner of range

Existing AC Pavements Existing JPCP bull Station bull Test frequency bull Test temperature bull Identifiers

For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

bull Station bull Modulus of subgrade reaction bull Identifiers For each structural layer bull Layer modulus bull Thickness bull Unit weight bull Poissonrsquos ratio

Module 5 Design Inputs Rehab wAC Overlays

Module 5 Design Inputs Rehab wAC Overlays Information Needed from Backcalculation to Run ME Design

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

Click ldquoNew Back Calculationrdquo to enter manually

Enter backcalculated moduli here

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

Enter backcalculated moduli by each pavement layer consistent with your pavement model

Enter station and layer details

Repeat the same for multiple stations

Module 5 Design Inputs Rehab wAC Overlays Illustration of Manual Data Entry

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

Importing XML Use ldquoImportrdquo to bring in XML files

Open the XML files one at a time

Module 5 Design Inputs Rehab wAC Overlays Illustration of How to Import XML Files

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

Create Projects from Backcalculation Click Create Projects from Back Calculation

Go to this folder

Module 5 Design Inputs Rehab wAC Overlays Creating Projects after Importing Backcalculation Data

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

AASHTO has published XML file format and validator for backcalculation

httpwwwme-designcomMEDesignIndexhtml

http2041175378080project6XML-Validator1jsp

XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Formats

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

Module 5 Design Inputs Rehab wAC Overlays XML File Format Validation

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

Future Webinars

1 About AASHTOWare Pavement ME Design SoftwaremdashCOMPLETED

2 Climate InputsmdashCOMPLETED

3 Traffic InputsmdashCOMPLETED

4 Material amp Design Inputs for New Pavement DesignmdashCOMPLETED

5 Material amp Design for Pavement Rehab with Asphalt OverlaysmdashCOMPLETED

6 Material amp Design Inputs for Pavement Rehab with Concrete OverlaysmdashFeb 13 2013

7 New Asphalt Pavement StructuresmdashFeb 20 2013

8 Asphalt Overlays of Asphalt PavementmdashFeb 27 2013

9 New Concrete Pavement StructuresmdashMar 6 2013

10 Unbonded Concrete OverlaysmdashMar 13 2013

US version 1100 am to 100 pm (EST) Metric Version 200 pm to 400 pm (EST)

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74

Thank you for Attending

AASHTOWare Pavement ME Design Webinar Contacts Gary Crawford FHWA Concrete Quality Engineer garycrawforddotgov Phone (202) 366-1286 Jagannath Mallela ARA Inc Principal Engineer jmallelaaracom Phone (217) 356 4500 ME Design Resource Website httpwwwme-designcom

  • Slide Number 1
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Lesson 1 Overview
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Lesson 2 AC Overlays of Existing Ac pavements
  • Slide Number 13
  • Lesson 2A Characterizing the condition of the Existing asphalt Pavement
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Lesson 2B Characterizing EXISTING AC PAVEMENT LAYER PROPERTIES
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Lesson 3 AC Overlays of Existing PCC pavements
  • Slide Number 45
  • Lesson 3A Characterizing the condition of the Existing PCC Pavement
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Lesson 3B Characterizing EXISTING PCC PAVEMENT LAYER PROPERTIES
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • Slide Number 61
  • Lesson 4 HOW TO ENTER Material Inputs from Backcalculation
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Slide Number 68
  • Slide Number 69
  • Slide Number 70
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74