This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup...

8
1 An example of high-throughput materials research Ronald Griessen, Nov.1, 2007 This talk The problem: energy storage How to find new hydrogen storage materials The idea behind hydrogenography The Mg-Ti-Ni-H system Measuring isotherms, enthalpies and entropies optically Finding a destabilized Mg-based hydride Hydrogenography works also for metallic hydrides Bulk, nanocrystals and thin films Catalysts Conclusions This talk The problem: energy storage How to find new hydrogen storage materials The idea behind hydrogenography The Mg-Ti-Ni-H system Measuring isotherms, enthalpies and entropies optically Finding a destabilized Mg-based hydride Hydrogenography works also for metallic hydrides Bulk, ball milling and thin films Catalysts Conclusions The electrical cycle Sun ENERGY ENERGY The hydrogen cycle O 2 O 2 H 2 H 2 H 2 O Dissociation of water Transport Storage Combustion Fuel cells H 2 O 2 Sun ENERGY ENERGY Li-ion battery 0.84 MJ/kg Battery Toyota Prius 0.12 MJ/kg Electrons Hydrogen now

Transcript of This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup...

Page 1: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

1

An example of high-throughput materials research

Ronald Griessen, Nov.1, 2007

This talk

The problem: energy storageHow to find new hydrogen storage materialsThe idea behind hydrogenographyThe Mg-Ti-Ni-H system

Measuring isotherms, enthalpies and entropies opticallyFinding a destabilized Mg-based hydride

Hydrogenography works also for metallic hydridesBulk, nanocrystals and thin filmsCatalystsConclusions

This talk

The problem: energy storageHow to find new hydrogen storage materialsThe idea behind hydrogenographyThe Mg-Ti-Ni-H system

Measuring isotherms, enthalpies and entropies optically

Finding a destabilized Mg-based hydrideHydrogenography works also for metallic hydridesBulk, ball milling and thin filmsCatalystsConclusions

The electrical cycle

Sun

ENERGY

ENERGY

The hydrogen cycle

O2

O2

H2

H2

H2O

Dissociation of water

TransportStorage

CombustionFuel cells

H2 O2

Sun

ENERGY

ENERGY

Li-ion battery0.84 MJ/kg

Battery Toyota Prius0.12 MJ/kg

Electrons Hydrogen now

Page 2: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

2

Electrons Hydrogen now

Li-ion battery0.84 MJ/kg

Battery Toyota Prius0.12 MJ/kg

H in modified Prius “LaNi5H6”

1.9 MJ/kg

Electrons Hydrogen tomorrow

Li-ion battery0.84 MJ/kg

Battery Toyota Prius0.12 MJ/kg

NaAlH4 9 MJ/kgTi(AlH4)4 11 MJ/kgLiAlH4 12 MJ/kg LiBH4 22 MJ/kgAl(BH4)3 24 MJ/kg

Mg2NiH4 4.5 MJ/kg

9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.01

0.1

1

10

100

1000

591 K

493 K

413 K

363 K

293 K

Hyd

roge

n pr

essu

re (1

05 Pa)

Hydrogen concentration H/Pd

Pressure-composition isotherms of PdHx

1.0 1.5 2.0 2.5 3.0 3.5 4.01E-3

0.01

0.1

1

10

100

1000

Hyd

roge

n pr

essu

re (1

05 Pa)

1000/T

0

ln H SpRT RΔ Δ

= −

10

1.0 1.5 2.0 2.5 3.0 3.5 4.010-3

10-2

10-1

100

101

102

Pre

ssur

e[1

05P

a]

1000/T [K]

This talk

The problem: energy storageHow to find new hydrogen storage materials

The idea behind hydrogenographyThe Mg-Ti-Ni-H system

Measuring isotherms, enthalpies and entropies optically

Finding a destabilized Mg-based hydrideHydrogenography works also for metallic hydridesBulk, ball milling and thin filmsCatalystsConclusions

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Period

1 1 H 2

He

2 3 Li

4 Be 5

B 6 C

7 N

8 O

9 F

10Ne

3 11Na

12 Mg 13

Al 14 Si

15 P

16S

17Cl

18Ar

4 19K

20 Ca

21Sc

22Ti

23V

24Cr

25Mn

26 Fe

27 Co

28 Ni

29 Cu

30 Zn

31 Ga

32 Ge

33 As

34Se

35Br

36Kr

5 37Rb

38 Sr

39Y

40Zr

41Nb

42Mo

43Tc

44 Ru

45 Rh

46 Pd

47 Ag

48 Cd

49 In

50 Sn

51 Sb

52Te

53I

54Xe

6 55Cs

56 Ba * 71

Lu72Hf

73Ta

74W

75Re

76 Os

77 Ir

78 Pt

79 Au

80 Hg

81 Tl

82 Pb

83 Bi

84Po

85At

86Rn

7 87Fr

88 Ra ** 103

Lr104Rf

105Db

106Sg

107Bh

108 Hs

109 Mt

110 Ds

111 Rg

112 Uub

113 Uut

114 Uuq

115Uup

116Uuh

117Uus

118Uuo

*Lanthanoids * 57La

58Ce

59Pr

60Nd

61Pm

62 Sm

63 Eu

64 Gd

65 Tb

66 Dy

67 Ho

68 Er

69 Tm

70Yb

**Actinoids ** 89Ac

90Th

91Pa

92U

93Np

94 Pu

95 Am

96 Cm

97 Bk

98 Cf

99 Es

100 Fm

101Md

102No

Periodic System

Page 3: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

3

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Period

1 1 H 2

He

2 3 Li

4 Be 5

B 6 C

7 N

8 O

9 F

10Ne

3 11 Na

12 Mg 13

Al 14 Si

15 P

16S

17Cl

18Ar

4 19 K

20 Ca 21

Sc 22 Ti

23 V

24 Cr

25 Mn

26 Fe

27Co

28 Ni

29 Cu

30 Zn

31 Ga

32 Ge

33 As

34Se

35Br

36Kr

5 37 Rb

38 Sr 39

Y 40 Zr

41 Nb

42 Mo

43 Tc

44 Ru

45Rh

46 Pd

47 Ag

48 Cd

49 In

50 Sn

51 Sb

52Te

53I

54Xe

6 55 Cs

56 Ba * 71

Lu 72 Hf

73 Ta

74 W

75 Re

76 Os

77Ir

78 Pt

79 Au

80 Hg

81 Tl

82 Pb

83 Bi

84Po

85At

86Rn

7 87 Fr

88 Ra ** 103

Lr 104 Rf

105 Db

106 Sg

107 Bh

108 Hs

109Mt

110 Ds

111 Rg

112 Uub

113 Uut

114 Uuq

115 Uup

116Uuh

117Uus

118Uuo

*Lanthanoids * 57 La

58 Ce

59 Pr

60 Nd

61 Pm

62 Sm

63Eu

64 Gd

65 Tb

66 Dy

67 Ho

68 Er

69 Tm

70Yb

**Actinoids ** 89 Ac

90 Th

91 Pa

92 U

93 Np

94 Pu

95Am

96 Cm

97 Bk

98 Cf

99 Es

100 Fm

101 Md

102No

Light ternary compounds

AB 6 x 19 = 114

ABC 6 x 10 x 9 = 540

ABCD 6 x 10 x 9 x 9 = 4869

ABC 6 x 10 x 9 = 540

Discharge capacity of MgyTi1-y films

Vermeulen, Niessen and Notten, Electrochem. Comm. (2005)

y in MgyTi1-y

High rate

Low rate

NiMH 300 mAh/g ~1 MJ/kg

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Period

1 1 H 2

He

2 3 Li

4 Be 5

B 6 C

7 N

8 O

9 F

10Ne

3 11 Na

12 Mg 13

Al 14 Si

15 P

16S

17Cl

18Ar

4 19 K

20 Ca 21

Sc 22 Ti

23 V

24 Cr

25 Mn

26 Fe

27Co

28 Ni

29 Cu

30 Zn

31 Ga

32 Ge

33 As

34Se

35Br

36Kr

5 37 Rb

38 Sr 39

Y 40 Zr

41 Nb

42 Mo

43 Tc

44 Ru

45Rh

46 Pd

47 Ag

48 Cd

49 In

50 Sn

51 Sb

52Te

53I

54Xe

6 55 Cs

56 Ba * 71

Lu 72 Hf

73 Ta

74 W

75 Re

76 Os

77Ir

78 Pt

79 Au

80 Hg

81 Tl

82 Pb

83 Bi

84Po

85At

86Rn

7 87 Fr

88 Ra ** 103

Lr 104 Rf

105 Db

106 Sg

107 Bh

108 Hs

109Mt

110 Ds

111 Rg

112 Uub

113 Uut

114 Uuq

115 Uup

116Uuh

117Uus

118Uuo

*Lanthanoids * 57 La

58 Ce

59 Pr

60 Nd

61 Pm

62 Sm

63Eu

64 Gd

65 Tb

66 Dy

67 Ho

68 Er

69 Tm

70Yb

**Actinoids ** 89 Ac

90 Th

91 Pa

92 U

93 Np

94 Pu

95Am

96 Cm

97 Bk

98 Cf

99 Es

100 Fm

101 Md

102No

Light Mg-Ti-Ni ternary alloys

Mg100-x-y Tix Niy=4950

Looking efficiently for a needle in a huge haystack

This talk

The problem: energy storageHow to find new hydrogen storage materialsThe idea behind hydrogenography

The Mg-Ti-Ni-H system Measuring isotherms, enthalpies and entropies

opticallyFinding a destabilized Mg-based hydride

Hydrogenography works also for metallic hydridesBulk, ball milling and thin filmsCatalystsConclusions

Switchable mirrorsYttrium

Y: Metal

YH2 : Metal

YH3 : Insulator

Page 4: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

4

Switchable mirrors: “seeing” hydrogen

in air

in H2

Yttrium Mg-TiThis talk

The problem: energy storageHow to find new hydrogen storage materialsThe idea behind hydrogenographyThe Mg-Ti-Ni-H system

Measuring isotherms, enthalpies and entropies opticallyFinding a destabilized Mg-based hydride

Hydrogenography works also for metallic hydridesBulk, ball milling and thin filmsCatalystsConclusions

Bernard Dam

Sputtering system for new H storage materials22

Mg

Ti

PdNi

23

Mg

Ti

PdNi

Mg

Ti

Ni

24

Mg

Ti

PdNi

Mg

Ti

Ni

Page 5: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

5

Robin Gremaud26

Mg

Ti

Ni

Optical transmission of Mg-Ti-Ni during hydrogenationT=333 K

Pressure

0 Pa

105 Pa

27

Optical transmission in ternary diagram

Mg at. fraction y0.4 0.5 0.7 0.8 0.9 1 MgTi 0.6

Ni

0.1

0.2

0.3

0.4

0.5

0.6

Ni

Ti Mg

Mg0.69Ni0.26Ti0.05

R. Gremaud et al. Advanced Materials 19 (2007) 2813-2817

28

Isotherms for each pixel

Mg at. fraction y0.4 0.5 0.7 0.8 0.9 1 MgTi 0.6

Ni

0.1

0.2

0.3

0.4

0.5

0.6

100

101

102

0.0 0.2 0.4 0.6 0.8

Mg0.69Ni0.26Ti0.05

log(T/T0)

p H2 (m

bar)

313 K

323 K333 K

353 K363 K

~Hydrogen concentrationR. Gremaud et al. Advanced

Materials 19 (2007) 2813-2817

29

Van ‘t Hoff plot for each pixel

2.7 2.8 2.9 3.0 3.1 3.2

101

102370 360 350 340 330 320 310

p eq (m

bar)

1000/Temperature (K-1)

ΔH = -40 kJ/molH2

Mg0.69Ni0.26Ti0.05

Temperature (K)

Mg at. fraction y0.4 0.5 0.7 0.8 0.9 1 MgTi 0.6

Ni

0.1

0.2

0.3

0.4

0.5

0.6

0

ln H SpRT RΔ Δ

= −

R. Gremaud et al. Advanced Materials 19 (2007) 2813-2817

30

Map of hydride formation enthalpies

Mg at. fraction y0.4 0.5 0.7 0.8 0.9 1 MgTi 0.6

Ni

0.1

0.2

0.3

0.4

0.5

0.6

R. Gremaud et al. Advanced Materials 19 (2007) 2813-2817

Page 6: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

6

31

Van ‘t Hoff plots for Mg-based hydrides

1.5 2.0 2.5 3.0 3.510-5

10-4

10-3

10-2

10-1

100

101600 500 400 300

10-5

10-4

10-3

10-2

10-1

100

101(1)

Mg0.69 Ni

0.26 Ti0.05 H

1.1

nano MgH2 (2)

nano Mg2 NiH

4(2)

Mg0.85 Ti

0.15 H1.6

Mg2 NiH

4

p eq [b

ar]

1000/T [K-1]

TF MgH2

(4)

bulk PdH0.6

(1) G. Liang et al., J. Alloys Compd. 282 286 (1999)(2) G. Liang et al., J. Alloys Compd. 267 302 (1998)

(4) A. Krozer and B. Kasemo, J. Less-Common Met. 160 323 (1990)

Temperature [K]

Mg0.69Ni0.26Ti0.05

3.2 wt%

This talk

The problem: energy storageHow to find new hydrogen storage materialsThe idea behind hydrogenographyThe Mg-Ti-Ni-H system

Measuring isotherms, enthalpies and entropies opticallyFinding a destabilized Mg-based hydride

Hydrogenography works also for metallic hydrides

Bulk, ball milling and thin filmsCatalystsConclusions

33

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.81

10

100

Pd on Plastic 6 cycle

Pd on Quartz 6 cycle

Pres

sure

[mba

r]

ln(T/To)

296 K

Pressure-optical transmission-isotherm

α

34

Optical determined Van ‘t Hoff plots for PdHx

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.410-3

10-2

10-1

100

101550 500 450 400 350 300

Desorption AbsorptionP

ress

ure

[Bar

]

1/Temperature [1000/K]

Temperature T [K]

0

ln H SpRT RΔ Δ

= −

-92.5±1.3-39.0±0.5

-97.5±0.8-41.0±0.4

-96.0±1-41.1±0.4

ΔS0β→α

[J/K/molH2]ΔHβ→α[kJ/molH2]

-92.5±1.3-39.0±0.5

-97.5±0.8-41.0±0.4

-96.0±1-41.1±0.4

ΔS0β→α

[J/K/molH2]ΔHβ→α[kJ/molH2]

E. Wicke and H. Brodowsky, Hydrogen in Metals II, G. Alefeld an J. Völkl ed. (1978)

R. Lässer, K.-H. Klatt, PRB 28, 748

This talk

The problem: energy storageHow to find new hydrogen storage materialsThe idea behind hydrogenographyThe Mg-Ti-Ni-H system

Measuring isotherms, enthalpies and entropies opticallyFinding a destabilized Mg-based hydride

Hydrogenography works also for metallic hydridesBulk, nanocrystals and thin films

CatalystsConclusions

36

FCC+BCC

FCC BCC

Cu Fe

Phase boundaries of Cu-Fe prepared differently

the equilibrium phase boundary at room temperature

liquid quenching

thermal evaporation

sputtering

sputtering on cryogenic substrates

mechanical alloying (nanocrystalline)

Cu FeE. Ma, Progress in Materials Science 50 (2005) 413–509

Page 7: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

7

37

Comparison: films - nanocrystals

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00

1

2

3

4

5

6

7

8

Enth

alpy

of f

orm

atio

n (k

J/m

ol)

C o n c e n tra t io n o f A g (a t% )0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

0

1

2

3

4

5

6

7

8

Enth

alpy

of f

orm

atio

n (k

J/m

ol)

C o n c e n tra t io n o f A g (a t% )

sputter-deposited fcc solution terminal fcc solutions from literature ball milled fcc solution

This talk

The problem: energy storageHow to find new hydrogen storage materialsThe idea behind hydrogenographyThe Mg-Ti-Ni-H system

Measuring isotherms, enthalpies and entropies opticallyFinding a destabilized Mg-based hydride

Hydrogenography works also for metallic hydridesBulk, nanocrystals and thin filmsCatalysts

Yttrium or any switchable mirror material

Catalyst, e.g. Pd

Light source

Optical screening for hydrogen storage properties

3 CCDCamera

substrate200 nm yttrium filmmetallic Y insulating YH3

substrate200 nm yttrium film

A. Borgschulte et al J. Catalysis 239 (2006) 263-271

Critical Pd thickness

substrate200 nm yttrium filmmetallic Y insulating YH3

0 100 200 300 4000.0

0.5

1.0

1.5

2.0

3 nm

4 nm

5 nm

6 nm

7 nm

8 nm

trans

mis

sion

(arb

. u.)

time (s)

At least 4 nm Pd are needed for H absorption

A. Borgschulte et al J. Catalysis 239 (2006) 263-271

is “universal”is “quantitative” for hydride formation and kinetics.can be used for:

batteriescatalytic caplayersadaptive solar collectors optical fiber H sensors.

Thin films are not exotic ! Theory feedback is essential

Page 8: This talk An example of high-throughput materials research · Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64

8

Jan Rector

Herman Schreuders

Chase Broedersz

AndreasBorgschulte

PhilippeMauron

DanaBorsa

BernardDam

MartaGonzalez

AndreaBaldi

Robin Gremaud

WLo

T ank you H2