THIRD EDITION - GBV · 2006. 6. 26. · receptors and cyclic AMP 6.5.1 Activation of adenylat e...

12
An Introduction to Medicinal Chemistry THIRD EDITION Graham L. Patrick OXPORD UNIVERSITY PRESS

Transcript of THIRD EDITION - GBV · 2006. 6. 26. · receptors and cyclic AMP 6.5.1 Activation of adenylat e...

  • An Introduction to

    Medicinal ChemistryTHIRD EDITION

    Graham L. Patrick

    OXPORDUNIVERSITY PRESS

  • LIST OF BOXES

    ACRONYMS AND ABBREVIATIONS

    CLASSIFICATION OF DRUGS

    1 By pharmacological effect

    2 By chemical structure

    3 By target system

    4 By site of action

    NAMING OF DRUGS

    PART A Pharmacodynamics and

    pharmacokinetics

    1 Drugs and the medicinal chemist

    2 The why and the wherefore: drug targets

    2.1 Why should drugs work?

    2.2 Where do drugs work?

    2.2.1 Cell structure

    2.2.2 Drug targets at the molecular level

    2.3 Intermolecular bonding forces

    2.3.1 Electrostatic or ionic bonds

    2.3.2 Hydrogen bonds

    2.3.3 Van der Waals interactions

    2.3.4 Dipole—dipole and ion-dipole interactions

    2.3.5 Repulsive interactions

    2.3.6 The rale of water and

    hydrophobic interactions

    2.4 Drug targets

    2.4.1 Lipids as drug targets

    2.4.2 Carbohydrates as drug targets

    2.4.3 Proteins and nucleic acids as drug targets

    3 Proteins as drug targets

    3.1 Primary structure of proteins

    3.2 Secondary structure of proteins

    3.2.1 α-helix

    3.2.2 β-pleated sheet

    3.2.3 β-turn

    3.3 Tertiary structure of proteins

    3.3.1 Covalent bonds

    3.3.2 Ionic bonds

    xxii

    xxiii

    XXV

    XXV

    XXV

    XXV

    XXV

    xxvii

    3

    8

    8

    8

    8

    9

    10

    10

    11

    13

    14

    15

    15

    17

    17

    17

    21

    24

    24

    25

    25

    25

    25

    25

    29

    30

    3.3.3 Hydrogen bonds

    3.3.4 Van der Waals and hydrophobic interactions

    3.3.5 Relative importance of bonding interactions

    3.3.6 Role of the planar peptide bond

    3.4 Quaternary structure of proteins

    3.5 Post-translational modifications

    3.6 Proteomics

    3.7 Drug action at proteins

    3.7.1 Carrier proteins

    3.7.2 Structural proteins

    3.8 Peptides or proteins as drugs

    3.9 Monoclonal antibodies in medicinal chemistry

    4 Proteins as drug targets: enzymes

    4.1 Enzymes as catalysts

    4.2 How do enzymes lower activation energies?

    4.3 The active site of an enzyme

    4.4 Substrate binding at an active site

    4.5 The catalytic role of enzymes

    4.5.1 Binding interactions

    4.5.2 Acid-base catalysis

    4.5.3 Nucleophilic groups

    4.5.4 Cofactors

    4.5.5 Naming and classification of enzymes

    4.6 Regulation of enzymes

    4.7 Isozymes

    4.8 Enzyme inhibitors

    4.8.1 Competitive (reversible) inhibitors

    4.8.2 Non-competitive (irreversible) inhibitors

    4.8.3 Non-competitive, reversible (allosteric)

    inhibitors

    4.8.4 Transition-state analogues—renininhibitors

    4.8.5 Suicide substrates

    4.8.6 Isozyme selectivity of inhibitors

    4.8.7 Medicinal uses of enzyme inhibitors

    4.8.7.1 Enzyme inhibitors used against

    microorganisms

    4.8.7.2 Enzyme inhibitors used against viruses

    30

    30

    3 0

    32

    32 i

    33

    34

    34

    34

    !

    36

    37

    41

    4 1

    42

    42

    43

    44

    44

    45

    46

    47

    47

    48

    50

    52

    52

    54

    54

    55

    56

    59

    59

    59

    59

  • rXii DETAILED CONTENTS

    4.8.7.3 Enzyme inhibitors used against

    the body's own enzymes

    4.9 Enzyme kinetics

    4.9.1 The Michaelis—Menten equation

    4.9.2 Lineweaver-Burk plots

    4.9.3 Comparison of inhibitors

    5 Proteins as drug targets: receptors

    5.1 The receptor role

    5.2 Neurotransmitters and hormones

    5.3 Receptors

    5.4 How is the message received?

    5.4.1 Ion channels and their control

    5.4.2 Membrane-bound enzyme activation

    5.5 How does a receptor change shape?

    5.6 The design of agonists

    5.6.1 Binding groups

    5.6.2 Position of binding groups

    5.6.3 Size and shape

    5.6.4 Pharmacodynamics and pharmacokinetics

    5.7 Design of antagonists

    5.7.1 Antagonists acting at the binding site

    5.7.2 Antagonists acting outwith the

    binding site

    5.8 Partial agonists

    5.9 Inverse agonists

    5.10 Desensitization and sensitization

    5.11 Tolerance and dependence

    5.12 Cytoplasmic receptors

    5.13 Receptor types and subtypes

    5.14 Affinity, efficacy, and potency

    6 Proteins as drug targets: receptor structure

    and signal transduction

    6.1 Receptor families

    6.2 Receptors that control ion channels

    (ligand-gated ion channel receptors)

    6.2.1 Structure and function of 4-TM ion

    channel receptors

    6.2.2 3-TM ion channel receptors

    6.2.3 2-TM ion channel receptors

    6.3 Structure of G-protein-coupled receptors

    6.3.1 Structure of G-protein-coupled receptors

    60

    61

    61

    63

    63

    66

    66

    66

    69

    69

    70

    70

    72

    73

    75

    76

    77

    77

    78

    78

    79

    80

    81

    83

    83

    84

    84

    86

    90

    90

    90

    91

    93

    93

    93

    93

    6.3.2 Neurotransmitters and hormones tor

    G-protein-coupled receptors

    6.3.3 Ligand binding

    6.3.4 The rhodopsin-like family of

    G-protein-coupled receptors

    6.4 Signal transduction pathways for

    G-protein-coupled receptors

    6.4.1 Interaction of the 7-TM receptor-ligand

    complex with G-proteins

    6.4.2 Signal transduction pathways involving

    the α-subunit

    6.5 Signal transduction involving G-protein-coupled

    receptors and cyclic AMP

    6.5.1 Activation of adenylate cyclase by the

    ots-subunit

    6.5.2 Activation of protein kinase A

    6.5.3 The G,-protein

    6.5.4 General points about the signalling cascade

    involving cAMP

    6.5.5 The role of the Py-dimer

    6.5.6 Phosphorylation

    6.6 Signal transduction involving

    G-protein-coupled receptors and

    phospholipase C

    6.6.1 Activation by phospholipase C

    6.6.2 Action of the secondary messenger

    diacylglycerol

    6.6.3 Action of the secondary messenger

    inositol triphosphate

    6.6.4 Resynthesis of phosphatidylinositol

    diphosphate

    6.7 Kinase-linked (1-TM) receptors

    6.7.1 Structure of kinase-linked receptors

    6.7.2 Signalling mechanism for the tyrosine kinase

    receptor family

    6.7.3 Interaction of protein kinase receptors with

    signalling proteins

    6.7.4 Small G-proteins

    6.7.5 Activation of guanylate cyclase by

    1-TM receptors

    6.8 Intracellular receptors

    7 Nucleic acids as drug targets

    7.1 Structure of DNA

    7.1.1 The primary structure of DNA

    7.1.2 The secondary structure of DNA

    7.1.3 The tertiary structure of DNA

    94

    94

    95

    97

    97

    98

    99

    99

    99

    101

    102

    103

    103

    104

    104

    105

    106

    107

    108

    108

    108

    110

    110

    112

    112

    117

    117

    117

    118

    121

  • 7.2 Ribonucleic acid and protein synthesis

    7.2.1 Structure of RNA

    7.2.2 Transcription and translation

    7.2.3 Small nuclear RNA

    7.3 Drugs and nucleic acids

    7.4 Antisense therapy

    7.5 Genetic illnesses

    7.6 Molecular biology and geneticengineering

    8 Pharmacokinetics and related topics

    8.1 Pharmacodynamics and pharmacokinetics

    8.2 Drug absorption

    8.3 Drug distribution

    8.3.1 Distribution round the blood supply

    8.3.2 Distribution to tissues

    8.3.3 Distribution to cells

    8.3.4 Other distribution factors

    8.3.5 Blood-brain barrier

    8.3.6 Placental barrier

    8.3.7 Drug-drug interactions

    8.4 Drug metabolism

    8.4.1 Phase I and phase II metabolism

    8.4.2 Phase I transformations catalysed bycytochrome P450 enzymes

    8.4.3 Phase I transformations catalysed byflavin-containing monooxygenases

    8.4.4 Phase I transformations catalysed byother enzymes

    8.4.5 Phase II transformations

    8.4.6 Metabolic stability

    8.4.7 The first pass effect

    8.5 Drug excretion

    8.6 Drug administration

    8.6.1 Oral administration

    8.6.2 Absorption through mucous membranes

    8.6.3 Rectal administration

    8.6.4 Topical administration

    8.6.5 Inhalation

    8.6.6 Injection

    8.6.7 Implants

    8.7 Drug dosing

    8.7.1 Drug half-life

    8.7.2 Steady state concentration. 1

    122

    122122

    126

    126

    128

    128

    129

    134

    134

    134

    136

    136

    136

    137

    137

    137

    137

    138

    138

    138

    139

    142

    143

    144

    147

    149

    149

    150

    150

    151

    151

    151

    152

    152

    153

    153

    154

    155

    8.8

    8.9

    PART E

    9 Drug

    9.1

    9.2

    9.3

    9.4

    DETAILED CONTENTS

    8.7.3 Drug tolerance

    8.7.4 Bioavailability

    Formulation

    Drug delivery

    Drug discovery, design, anddevelopment

    discovery: finding a lead

    Choosing a disease

    Choosing a drug target

    9.2.1 Drug targets

    9.2.2 Discovering drug targets

    9.2.3 Target specificity and selectivitybetween species

    9.2.4 Target specificity and selectivity withinthe body

    9.2.5 Targeting drugs to specific organs

    and tissues

    9.2.6 Pitfalls

    Identifying a bioassay

    9.3.1 Choice of bioassay

    9.3.2 In vitro tests

    9.3.3 In vivo tests

    9.3.4 Test validity

    9.3.5 High-throughput screening

    9.3.6 Screening by NMR

    9.3.7 Affinity screening

    9.3.8 Surface plasmon resonance

    9.3.9 Scintillation proximity assay

    Finding a lead compound

    9.4.1 Screening of natural products

    9.4.1.1 The plant kingdom

    9.4.1.2 The microbial world

    9.4.1.3 The marine world

    9.4.1.4 Animal sources

    9.4.1.5 Venoms and toxins9.4.2 Medical folklore

    9.4.3 Screening synthetic compound libraries'

    9.4.4 Existing drugs

    9.4.4.1 'Me too' drugs

    9.4.4.2 Enhancing a side effect

    9.4.5 Starting from the natural ligandor modulator

    xiii

    155

    156

    156

    156 I

    jI

    163

    163

    163

    163

    164

    165

    165 |

    166

    166

    166

    166

    168

    168

    169

    169

    169

    170

    170

    171

    171

    171

    171 I

    172

    172

    173

    173173

    174

    175175176

    177

  • rxiv DETAILED CONTENTS

    9.4.5.1 Natural ligands for receptors 177

    9.4.5.2 Natural substrates for enzymes 177

    9.4.5.3 Enzyme products as lead compounds 178

    9.4.5.4 Natural modulators as lead compounds 178

    9.4.6 Combinatorial synthesis 178

    9.4.7 Computer-aided design 178

    9.4.8 Serendipity and the prepared mind 178

    9.4.9 Computerized searching of structural databases 180

    9.4.10 Designing lead compounds by NMR

    9.5 Isolation and purification

    9.6 Structure determination

    9.7 Herbal medicine

    10 Drug design: optimizing target interactions

    10.1 Structure-activity relationships

    10.1.1 Binding role of alcohols and phenols

    10.1.2 Binding role of aromatic rings

    10.1.3 Binding role of alkenes

    10.1.4 Binding role of ketones and aldehydes

    10.1.5 Binding role of amines

    10.1.6 Binding role of amides

    10.1.7 Binding role of quaternary ammonium salts

    10.1.8 Binding role of carboxylic acids

    10.1.9 Binding role of esters

    10.1.10 Binding role of alkyl and aryl halides

    10.1.11 Binding role of thiols

    10.1.12 Binding role of other functional groups

    10.1.13 Binding role of alkyl groups and

    the carbon skeleton

    10.1.14 Binding role of heterocydes

    10.1.15 Isosteres

    10.1.16 Testing procedures

    10.2 Identification of a pharmacophore

    10.3 Drug optimization: strategies in drug

    design

    10.3.1 Variation of substituents

    10.3.1.1 Alkyl substituents

    10.3.1.2 Aromatic substitutions

    10.3.2 Extension of the structure

    10.3.3 Chain extension/contraction

    10.3.4 Ring expansion/contraction

    10.3.5 Ring variations

    10.3.6 Ring fusions

    10.3.7 Isosteres and bioisosteres

    10.3.8 Simplification of the structure

    180

    181

    182

    183

    185

    185

    187

    188

    189

    189

    190

    191

    193

    193

    194

    194

    195

    195

    195

    195

    197

    197

    198

    200

    200

    200

    200

    202

    204

    204

    204

    206

    206

    208

    10.4

    Drug

    11.1

    11.2

    11.3

    11.4

    11.5

    11.6

    10.3.9 Rigidification of the structure

    10.3.10 Conformational blockers

    10.3.11 Structure-based drug design and

    molecular modelling

    10.3.11.1 The tools: X-ray crystallography

    and molecular modelling

    10.3.11.2 Case study: the design of

    ACE inhibitors

    10.3.12 Drug design by NMR

    10.3.13 The elements of luck and inspiration

    A case study: oxamniquine

    design: optimizing access to the target

    Improving absorption

    11.1.1 Variation of alkyl or acyl substituents

    to vary polarity

    11.1.2 Varying polar functional groups to

    vary polarity

    11.1.3 Variation of A/-alkyl substituents to

    vary pKa

    11.1.4 Variation of aromatic substituents to

    vary pKa

    11.1.5 Bioisosteres for polar groups

    Making drugs more resistant to

    chemical and enzymatic degradation

    11.2.1 Steric shields

    11.2.2 Electronic effects of bioisosteres

    11.2.3 Stereoelectronic modifications

    11.2.4 Metabolic blockers

    11.2.5 Removal of susceptible metabolic groups

    11.2.6 Group shifts

    11.2.7 Ring variation

    Making drugs less resistant to drug metabolism

    11.3.1 Introducing metabolically susceptible groups

    11.3.2 Self-destruct drugs

    Targeting drugs

    11.4.1 Targeting tumour cells—'search and

    destroy' drugs

    11.4.2 Targeting gastrointestinal tract infections

    11.4.3 Targeting peripheral regions rather than

    the central nervous system

    Reducing toxicity

    Prodrugs

    11.6.1 Prodrugs to improve membrane permeability

    11.6.1.1 Esters as prodrugs

    11.6.1.2 W-Methylation

    210

    212

    213

    213

    214

    217

    217

    219

    226

    226

    226

    227

    228

    228

    228

    229

    229

    229

    230

    230

    231

    231

    232

    232

    233

    234

    234

    234

    235

    235

    235

    236

    236

    236

    237

  • — - 1

    11.7

    11.8

    12 Drug

    12.1

    ,1

    12.2

    12.3

    11.6.1.3 Trojan horse approach for

    carrier proteins

    11.6.2 Prodrugs to prolong drug activity

    11.6.3 Prodrugs masking drug toxicity

    and side effects

    11.6.4 Prodrugs to lower water solubility

    11.6.5 Prodrugs to improve water solubility

    11.6.6 Prodrugs used in the targeting of drugs

    11.6.7 Prodrugs to increase chemical stability

    11.6.8 Prodrugs activated by external influence

    (sleeping agents)

    Drug alliances

    11.7.1 'Sentry' drugs

    11.7.2 Localizing a drug's area of activity

    11.7.3 Increasing absorption

    Endogenous compounds as drugs

    11.8.1 Neurotransmitters

    11.8.2 Natural hormones as drugs

    11.8.3 Peptides and proteins as drugs

    11.8.4 Peptidomimetics

    11.8.5 Oligonucleotides as drugs—antisense drugs

    development

    Preclinical and clinical trials

    12.1.1 Toxicity testing

    12.1.2 Drug metabolism studies

    12.1.3 Pharmacology, formulation, and

    stability tests

    12.1.4 Clinical trials

    12.1.4.1 Phase 1 studies

    12.1.4.2 Phase II studies

    12.1.4.3 Phase III studies

    12.1.4.4 Phase IV studies

    12.1.4.5 Ethical issues

    Patenting and regulatory affairs

    12.2.1 Patents

    12.2.2 Regulatory affairs

    12.2.2.1 The regulatory process

    12.2.2.2 Fast tracking and orphan drugs

    12.2.2.3 Good laboratory, manufacturing,

    and clinical practice

    Chemical and process development

    12.3.1 Chemical development

    12.3.2 Process development

    12.3.3 Choice of drug candidate

    12.3.4 Natural products

    237237

    239

    240

    240

    241

    241

    242

    242

    242

    243

    243

    243

    243

    244

    244

    245

    247

    250

    250

    250

    252

    253

    254

    254

    255

    255

    255

    256

    257

    257

    258

    258

    259

    259

    260

    260

    263

    265

    265

    DETAILED CONTENTS

    PART C Tools of the trade

    13 Quantitative structure-activityrelationships (QSAR)

    13.1 Graphs and equations

    13.2 Physicochemical properties

    13.2.1 Hydrophobicity

    13.2.2 Electronic effects

    13.2.3 Steric factors

    13.2.3.1 Taft's steric factor (fs)

    13.2.3.2 Molar refractivity

    13.2.3.3 Verloop steric parameter

    13.2.4 Other physicochemical parameters

    13.3 Hansch equation

    13.4 Craig plot

    13.5 Topliss scheme

    13.6 Bioisosteres

    13.7 Free-Wilson approach

    13.8 Planning a QSAR study

    13.9 Case study

    13.10 3D QSAR

    13.10.1 Defining steric and electrostatic fields

    13.10.2 Relating shape and electronic

    distribution to biological activity

    13.10.3 Hydrophobic potential

    13.10.4 Advantages of 3D QSAR over

    traditional QSAR

    13.10.5 Potential problems of 3D QSAR

    13.10.6 Case study: inhibitors of

    tubulin polymerization

    14 Combinatorial synthesis

    14.1 Combinatorial synthesis in medicinal

    chemistry

    14.2 Solid phase techniques

    14.2.1 The solid support

    14.2.2 The anchor/linker

    14.2.3 Protecting groups and synthetic

    strategy

    14.2.3.1 Boc/benzyl protection strategy

    14.2.3.2 Fmoc/f-Bu strategy

    14.3 Methods of parallel synthesis

    14.3.1 Houghton's teabag procedure

    14.3.2 Automated parallel synthesis

    X V

    271

    271

    272

    273

    276

    279

    279

    280

    280

    280

    281

    282

    283

    286

    287

    287 i

    287

    291

    291 :

    292

    294

    294

    295

    295 !

    299

    299

    300

    301

    302

    304304

    304

    305

    305

    306

  • xvi DETAILED CONTENTS

    14.4 Methods in mixed combinatorial synthesis

    14.4.1 General principles

    14.4.2 The mix and split method

    14.4.3 Mix and split in the production of

    positional scanning libraries

    14.5 Isolating the active component in

    a mixture: deconvolution

    14.5.1 Micromanipulation

    14.5.2 Recursive deconvolution

    14.5.3 Sequential release

    14.6 Structure determination of the

    active compound(s)

    14.6.1 Tagging

    14.6.2 Photolithography

    14.7 Limitations of combinatorial synthesis

    14.8 Examples of combinatorial syntheses

    14.9 Dynamic combinatorial chemistry

    14.10 Planning and designing a

    combinatorial synthesis

    14.10.1 'Spider like' scaffolds

    14.10.2 Designing 'drug-like' molecules

    14.10.3 Scaffolds

    14.10.4 Substituent variation

    14.10.5 Designing compound libraries for

    lead optimization

    14.10.6 Computer-designed libraries

    14.11 Testing for activity

    14.11.1 High-throughput screening

    14.11.2 Screening 'on bead' or 'off bead'

    15 Computers in medicinal chemistry

    15.1 Molecular and quantum mechanics

    15.1.1 Molecular mechanics

    15.1.2 Quantum mechanics

    15.1.3 Choice of method

    15.2 Drawing chemical structures

    15.3 3D structures

    15.4 Energy minimization

    15.5 Viewing 3D molecules

    15.6 Molecular dimensions

    15.7 Molecular properties

    15.7.1 Partial charges

    15.7.2 Molecular electrostatic ootentials

    306

    306

    307

    308

    309

    309

    309

    310

    312

    312

    314

    314

    316

    318

    321

    321

    321

    322

    322

    322

    322

    322

    322

    324

    326

    326

    326

    326327

    327

    327

    328

    329

    329

    330

    330

    332

    15.8

    15.9

    15.10

    15.11

    15.12

    15.13

    15.14

    15.15

    15.16

    15.17

    15.18

    15.7.3 Molecular orbitals

    15.7.4 Spectroscopic transitions

    Conformational analysis

    15.8.1 Local and global energy minima

    15.8.2 Molecular dynamics

    15.8.3 Stepwise bond rotation

    15.8.4 Monte Carlo methods in

    conformational searching

    Structure comparisons and overlays

    Identifying the active conformation

    15.10.1 X-ray crystallography

    15.10.2 Comparison of rigid and non-rigid ligands

    3D pharmacophore identification

    15.11.1 X-ray crystallography

    15.11.2 Structural comparison of active compounds

    15.11.3 Automatic identification of

    pharmacophores

    Docking procedures

    15.12.1 Manual docking

    15.12.2 Automatic docking

    Automated screening of databases

    for lead compounds

    Protein mapping

    15.14.1 Constructing a model protein

    15.14.2 Constructing a binding site

    De novo design

    15.15.1 Thymidylate synthase inhibitors

    15.15.2 Automated de novo design

    Planning combinatorial syntheses

    Database handling

    Case study

    15.18.1 The target

    15.18.2 Testing procedures

    15.18.3 Lead compound to SB 200646

    15.18.4 SB 200646 to SB 206553

    15.18.5 Analogues of SB 206553

    15.18.6 Molecular modelling studies on

    SB 206553 and analogues

    15.18.7 SB 206553 to SB 221284

    15.18.8 Modelling studies on SB 221284

    15.18.9 3D QSAR studies on analogues of

    SB 221284

    15.18.10 SB 221284 to SB 228357

    333

    333

    335

    335

    335

    337

    337

    338

    340

    340

    340

    342

    343

    343

    343

    345

    345

    345

    349

    349

    349

    350

    353

    353

    357

    361

    362

    363

    363

    363

    364

    364

    364

    366

    367369

    371371

  • PART D Selected topics in medicinal chemistry

    16 Antibacterial agents

    16.1 The history of antibacterial agents

    16.2 The bacterial cell

    16.3 Mechanisms of antibacterial action

    16.4 Antibacterial agents which act against

    cell metabolism (antimetabolites)

    16.4.1 Sulfonamides

    16.4.1.1 The history of sulfonamides

    16.4.1.2 Structure-activity relationships

    16.4.1.3 Sulfanilamide analogues

    16.4.1.4 Applications of sulfonamides

    16.4.1.5 Mechanism of action

    16.4.2 Examples of other antimetabolites

    16.4.2.1 Trimethoprim

    16.4.2.2 Sulfones

    16.5 Antibacterial agents which inhibit

    cell wall synthesis

    16.5.1 Penicillins

    16.5.1.1 History of penicillins

    16.5.1.2 Structure of benzylpenicillin and

    phenoxymethylpenicillin

    16.5.1.3 Properties of benzylpenicillin

    16,5.1.4 Mechanism of action of penicillin

    16.5.1.5 Resistance to penicillin•

    16.5.1.6 Methods of synthesizing

    penicillin analogues

    16.5.1.7 Structure-activity relationships

    of penicillins

    16.5.1.8 Penicillin analogues -

    16.5.2 Cephalosporins

    16.5.2.1 Cephalosporin C

    16.5.2.2 Synthesis of cephalosporin analogues

    at the 7-position

    16.5.2.3 First-generation cephalosporins

    16.5.2.4 Second-generation cephalosporins

    16.5.2.5 Third-generation cephalosporins

    16.5.2.6 Fourth-generation cephalosporins

    16.5.2.7 Resistance to cephalosporins

    16.5.3 Other β-lactam antibiotics

    16.5.4 p-Lactamase inhibitors

    16.5.4.1 Clavutanic acid

    16.5.4.2 Penicillanic acid sulfone derivatives

    16.5.4.3 Olivanic acids

    16.5.5 Other drugs which act on bacterial

    cell wall biosynthesis

    379

    379

    381

    382

    382

    382

    382

    383

    383

    383

    385

    387

    387

    387

    388

    388

    388

    389

    389

    390

    393

    396

    397

    397

    404

    404

    406

    407

    408

    409

    410

    410

    411

    412

    412

    413414

    414

    DETAILED CONTENTS

    16.5.5.1 D-cycloserine and bacitracin

    16.5.5.2 The glycopeptides—vancomycin

    and vancomycin analogues

    16.6 Antibacterial agents which act on

    the plasma membrane structure

    16.6.1 Valinomycin and gramicidin A

    16.6.2 Polymyxin B

    16.6.3 Killer nanotubes

    16.6.4 Cyclic lipopeptides

    16.7 Antibacterial agents which impair protein

    synthesis—translation

    16.7.1 Aminoglycosides . •

    16.7.2 Tetracyclines

    16.7.3 Chloramphenicol

    16.7.4 Macrolides

    16.7.5 Lincosamides

    16.7.6 Streptogramins

    16.7.7 Oxazolidinones

    16.8 Agents which act on nucleic acid

    transcription and replication

    16.8.1 Quinolones and fluoroquinolones

    16.8.2 Aminoacridines

    16.8.3 Rifamycins

    16.8.4 Nitroimidazoles and nitrofurantoin

    16.9 Miscellaneous agents

    16.10 Drug resistance

    16.10.1 Drug resistance by mutation

    16.10.2 Drug resistance by genetic transfer

    16.10.3 Other factors affecting drug resistance

    16.10.4 The way ahead

    17 Antiviral agents

    17.1 Viruses and viral diseases

    17.2 Structure of viruses

    17.3 Life cycle of viruses

    17.4 Vaccination

    17.5 Antiviral drugs: general principles

    17.6 Antiviral drugs used against DNA viruses

    17.6.1 Inhibitors of viral DNA polymerase

    17.6.2 Inhibitors of tubulin polymerization

    17.6.3 Antisense therapy

    17.7 Antiviral drugs acting against RNA viruses: HIV

    17.7.1 Structure and life cycle of HIV

    17.7.2 Antiviral therapy against HIV

    xvii

    414

    415

    420

    420

    422

    423

    423

    424

    424

    425

    426

    427

    428

    428

    428

    428

    428

    431

    431

    432

    433

    433

    434

    434

    434

    435

    440

    440

    441

    441

    442

    443

    444

    444

    449

    449

    450

    450

    451

  • xviii DETAILED CONTENTS

    17.8

    17.7.3 Inhibitors of viral reverse transcriptase 452

    17.7.3.1 Nucleoside reverse transcriptase

    inhibitors 452

    17.7.3.2 Non-nucleoside reverse transcriptase

    inhibitors 453

    17.7.4 Protease inhibitors 455

    17.7.4.1 The HIV protease enzyme 456

    17.7.4.2 Design of HIV protease inhibitors 457

    17.7.4.3 Saquinavir 459

    17.7.4.4 Ritonavir and lopinavir 462

    17.7.4.5 Indinavir 466

    17.7.4.6 Nelfinavir 467

    17.7.4.7 Palinavir 468

    17.7.4.8 Amprenavir 468

    17.7.4.9 Atazanavir 469

    17.7.5 Inhibitors of other targets 469

    Antiviral drugs acting against

    RNA viruses: flu virus 471

    17.8.1 Structure and life cycle of the

    influenza virus 471

    17.8.2 Ion channel disrupters: adamantanes 473

    17.8.3 Neuraminidase inhibitors 473

    17.8.3.1 Structure and mechanism

    of neuraminidase 473

    17.8.3.2 Transition-state inhibitors:

    development of zanamivir (Relenza) 475

    17.8.3.3 Transition-state inhibitors:

    6-carboxamides 478

    17.8.3.4 Carbocydic analogues: development

    of oseltamivir (Tamiflu)

    17.8.3.5 Other ring systems

    17.8.3.6 Resistance studies

    17.9 Antiviral drugs acting againstRNA viruses: cold virus

    17.10 Broad-spectrum antiviral agents

    17.10.1 Agents acting against cytidine

    triphosphate synthetase

    17.10.2 Agents acting against

    5-adenosylhomocysteine hydrolase

    17.10.3 Ribavirin (or virazole)

    17.10.4 Interferons

    17.10.5 Antibodies and ribozymes

    17.11 Bioterrorism and smallpox

    18 Anticancer agents

    18.1 Cancer: an introduction

    18.1.1 Definitions

    18.1.2 Causes of cancer

    479481

    482

    483

    485

    485

    485

    485

    486

    486

    486

    489

    489

    489

    489

    18.1.3 Genetic faults leading to cancer:

    proto-oncogenes and oncogenes

    18.1.3.1 Activation of proto-oncogenes

    18.1.3.2 Inactivation of tumour suppression

    genes (anti-oncogenes)

    18.1.4 Abnormal signalling pathways

    18.1.5 Insensitivity to growth-inhibitory signals

    18.1.6 Abnormalities in cell cycle regulation

    18.1.7 Apoptosis and the p53 protein

    18.1.8 Telomeres

    18.1.9 Angiogenesis

    18.1.10 Tissue invasion and metastasis

    18.1.11 Treatment of cancer

    18.1.12 Resistance

    18.2 Drugs acting directly on nucleic acids

    18.2.1 Intercalating agents

    18.2.2 Non-intercalating agents which inhibit

    the action of topoisomerase enzymes

    on DNA

    18.2.2.1 Podophyllotoxins

    18.2.2.2 Camptothecins

    18.2.3 Alkylating agents

    18.2.3.1 Nitrogen mustards

    18.2.3.2 Nitrosoureas

    18.2.3.3 Busulfan

    18.2.3.4 Cisplatin and cisplatin analogues

    18.2.3.5 Dacarbazine and procarbazine

    18.2.3.6 Mitomycin C

    18.2.3.7 CC 1065 analogues

    18.2.4 Chain cutters

    18.2.5 Antisense therapy

    18.3 Drugs acting on enzymes: antimetabolites

    18.3.1 Dihydrofolate reductase inhibitors

    18.3.2 Inhibitors of thymidylate synthase

    18.3.3 Inhibitors of ribonucleotide reductase

    18.3.4 Inhibitors of adenosine deaminase

    18.3.5 Inhibitors of DNA polymerases

    18.3.6 Purine antagonists

    18.4 Hormone-based therapies

    18.4.1 Glucocorticoids

    18.4.2 Oestrogens

    18.4.3 Progestins

    18.4.4 Androgens

    18.4.5 LHRH agonists

    18.4.6 Antioestrogens

    18.4.7 Antiandrogens

    490

    490

    490

    490

    491

    491

    493

    494

    495

    496

    497

    499

    500

    500

    504

    504

    504

    505

    506

    508

    509

    509

    510

    511

    511

    511

    511

    514

    514

    515

    516

    517

    518

    518

    519

    519

    520

    520

    520

    520

    521

    521

    ' . - • •

    f

    pi•>HftS

    •>'{S

    • : • «

  • m

    18.4.8 Aromatase inhibitors

    18.4.9 Adrenocortical suppressors

    18.5 Drugs acting on structural proteins

    18.5.1 Agents which inhibit tubulin polymerization

    18.5.2 Agents which inhibit tubulin

    depolymerization

    18.6 Inhibitors of signalling pathways

    18.6.1 Inhibition of farnesyl transferase and

    the Ras protein

    18.6.2 Protein kinase inhibitors

    18.6.2.1 Kinase inhibitors of the epidermal

    growth factor receptor

    18.6.2.2 Inhibitors of the Abelson

    tyrosine kinase

    18.6.2.3 Inhibitors of cyclin-dependent

    kinases

    18.6.2.4 Kinase inhibitors of FGF-R and

    VEGF-R

    18.6.2.5 Other kinase targets

    18.7 Miscellaneous enzyme inhibitors

    18.7.1 Matrix metalloproteinase inhibitors

    18.7.2 Cyclooxygenase-2 inhibitors

    18.7.3 Proteasome inhibitors

    18.7.4 Histone deacetylase inhibitors

    18.7.5 Other enzyme targets

    18.8 Miscellaneous anticancer agents

    18.8.1 Synthetic agents

    18.8.2 Natural products

    18.8.3 Protein therapy

    18.9 Antibodies, antibody conjugates, and

    gene therapy

    18.9.1 Monoclonal antibodies

    18.9.2 Antibody-drug conjugates

    18.9.3 Antibody-directed enzyme

    prodrug therapy (ADEPT)

    18.9.4 Antibody-directed abzyme

    prodrug therapy (ADAPT)

    18.9.5 Gene-directed enzyme

    prodrug therapy (GDEPT)

    18.9.6 Other forms of gene therapy

    18.10 Photodynamic therapy

    19 Cholinergics, anticholinergics,

    and anticholinesterases

    19.1 The peripheral nervous system

    19.2 Motor nerves of the peripheral nervous system

    522

    522

    523

    523

    525

    528

    528

    531

    533

    535

    538

    539

    540

    540

    540

    542

    543

    543

    544

    544

    544

    545

    546

    547

    547

    548

    550

    552

    552

    553

    553

    558

    558

    559

    19.3

    19.4

    19.5

    19.6

    19.7

    19.8

    19.9

    19.10

    19.11

    19.12

    19.13

    19.14

    19.15

    19.16

    DETAILED CONTENTS

    19.2.1 The somatic motor nervous system

    19.2.2 The autonomic motor nervous system

    19.2.3 The enteric system

    The neurotransmitters

    Actions of the peripheral nervous system

    The cholinergic system

    19.5.1 The cholinergic signalling system

    19.5.2 Presynaptic control systems

    19.5.3 Co-transmitters

    Agonists at the cholinergic receptor

    Acetylcholine: structure, SAR, and

    receptor binding

    The instability of acetylcholine

    Design of acetylcholine analogues

    19.9.1 Steric shields

    19.9.2 Electronic effects

    19.9.3 Combining steric and electronic effects

    Clinical uses for cholinergic agonists

    19.10.1 Muscarinic agonists

    19.10.2 Nicotinic agonists

    Antagonists of the muscarinic

    cholinergic receptor

    19.11.1 Actions and uses of muscarinic

    antagonists

    19.11.2 Muscarinic antagonists

    19.11.2.1 Atropine and hyoscine

    19.11.2.2 Structural analogues based

    on atropine

    Antagonists of the nicotinic cholinergic

    receptor

    19.12.1 Applications of nicotinic antagonists

    19.12.2 Nicotinic antagonists

    19.12.2.1 Curare and tubocurarine

    19.12.2.2 Decamethonium and

    suxamethonium

    19.12.2.3 Pancuronium and vecuronium

    19.12.2.4 Atracurium and mivacurium

    Other cholinergic antagonists

    Structure of the nicotinic receptor

    Structure of the muscarinic receptor

    Anticholinesterases and acetylcholinesterase

    19.16.1 Effect of anticholinesterases

    19.16.2 Structure of the acetylcholinesterase enzyme

    xix I

    559 I559 1560 1

    560 I

    561 1

    562 1562 I563 I563 I

    563 1

    565 11567 1

    568 1568 1

    568 J569 I

    569 1569 1570 I

    570 I

    570 I

    571

    571 J

    572 I

    575 1

    575 1575 1575 I

    576577 1577

    579

    579

    580

    581

    581

    581

  • XX DETAILED CONTENTS

    19.16.3 The active site of acetylcholinesterase

    19.16.3.1 Binding interactions at the

    active site

    19.16.3.2 Mechanism of hydrolysis

    19.17 Anticholinesterase drugs

    19.17.1 Carbamates

    19.17.1.1 Physostigmine

    19.17.1.2 Analogues of physostigmine

    19.17.2 Organophosphorus compounds

    19.17.2.1 Nerve gases

    19.17.2.2 Medicines

    19.17.2.3 Insecticides

    19.18 Pralidoxime: an organophosphate

    antidote

    19.19 Anticholinesterases as 'smart drugs'

    20 The adrenergic nervous system

    20.1 The adrenergic system

    20.1.1 Peripheral nervous system

    20.1.2 The central nervous system

    20.2 Adrenergic receptors

    20.2.1 Types of adrenergic receptor

    20.2.2 Distribution of receptors

    20.2.3 Clinical effects

    20.3 Endogenous agonists for the

    adrenergic receptors

    20.4 Biosynthesis of catecholamines

    20.5 Metabolism of catecholamines

    20.6 Neurotransmission

    20.6.1 The neurotransmission process

    20.6.2 Co-transmitters

    20.6.3 Presynaptic receptors and control

    20.7 Drug targets

    20.8 The adrenergic binding site

    20.9 Structure-activity relationships

    20.9.1 Important binding groups on

    catecholamines

    20.9.2 Selectivity for a- versus

    β-adrenoceptors

    20.10 Adrenergic agonists

    20.10.1 General adrenergic agonists

    20.10.2 oti, a 2 , P i , and p3-agonists

    20.10.3 P2-Agonists and the treatment

    of asthma

    581 20.11 Adrenergic receptor antagonists

    20.11.1 General ^β-blockers

    605

    581

    582

    583

    583

    583

    585

    586

    587

    587

    587

    588

    589

    593

    593

    593

    593

    594

    594

    594

    595

    r fir

    595

    595

    595

    596

    596

    597

    597

    598J 17 (J

    599

    599

    599

    600

    601

    601

    601

    602

    20.12

    21 The

    21.1

    21.2

    21.3

    21.4

    20.11.2 tx-Blockers

    20.11.3 p-Blockers as cardiovascular drugs

    20.11.3.1 First-generation β-blockers

    20.11.3.2 Structure-activity relationships of

    aryloxypropanolamines

    20.11.3.3 Clinical effects of first-generation

    β-blockers

    20.11.3.4 Selective β^blockers

    (second-generation β-blockers)

    20.11.3.5 Third-generation β-blockers

    20.11.3.6 Other clinical uses for β-blockers

    Other drugs affecting adrenergic

    transmission

    20.12.1 Drugs that affect the biosynthesis

    of adrenergics

    20.12.2 Uptake of noradrenaline into

    storage vesicles

    20.12.3 Release of noradrenaline from

    storage vesicles

    20.12.4 Uptake of noradrenaline into nerve

    cells by carrier proteins

    20.12.5 Metabolism

    opium analgesics

    History of opium

    Morphine

    21.2.1 Isolation of morphine

    21.2.2 Structure and properties

    21.2.3 Structure-activity relationships

    21.2.3.1 Functional groups of

    morphine analogues

    21.2.3.2 Stereochemistry

    Morphine analogues

    21.3.1 Variation of substituents

    21.3.2 Drug extension

    21.3.3 Simplification or drug dissection

    21.3.3.1 Removing ring E

    21.3.3.2 Removing ring D

    21.3.3.3 Removing rings C and D

    21.3.3.4 Removing rings B, C, and D

    21.3.3.5 Removing rings B, C, D, and E

    21.3.4 Rigidification

    Receptor theory of analgesics

    21.4.1 Beckett-Casy hypothesis

    21.4.2 Multiple analgesic receptors

    605

    606

    606

    607

    608

    609

    609

    610

    611

    611

    611

    611

    612

    613

    616

    616

    618

    618

    618

    619

    619

    621

    622

    622

    623

    626

    626

    626

    627

    627

    629

    629

    632

    632

    633

  • 21.4.2.1 The μ-receptor

    21.4.2.2 The K-receptor

    21.4.2.3 The S-receptor

    21.5 Agonists and antagonists

    21.6 Endogenous opioid peptides

    21.6.1 Enkephalins, endorphins, dynorphins,

    and endomorphins

    21.6.2 Analogues of enkephalins

    21.6.3 Inhibitors of peptidases

    21.7 Receptor mechanisms

    21.7.1 The μ-receptor

    21.7.2 The K-receptor

    21.7.3 The 5-receptor

    21.7.4 The α-receptor

    21.8 The future

    22 Antiulcer agents

    22.1 Peptic ulcers

    22.1.1 Definition

    22.1.2 Causes

    22.1.3 Treatment

    22.1.4 Gastric acid release

    22.2 H2 antagonists

    22.2.1 Histamine and histamine receptors

    22.2.2 Searching for a lead

    22.2.2.1 Histamine

    22.2.2.2 AT-guanylhistamine

    22.2.3 Developing the lead: a chelation

    bonding theory

    22.2.4 From partial agonist to antagonist:

    the development of burimamide

    22.2.5 Development of metiamide

    22.2.6 Development of cimetidine

    22.2.7 Cimetidine

    22.2.7.1 Biological activity

    22.2.7.2 Structure and activity

    22.2.7.3 Metabolism

    633

    633

    634

    634

    636

    636

    637

    637

    637

    638

    639

    639

    639

    639

    642

    642

    642

    642

    642

    642

    644

    644

    645

    645

    646

    648

    650

    651

    654

    655

    655

    656

    656

    DETAILED CONTENTS

    22.2.8 Further studies of cimetidine analogues

    22.2.8.1 Conformational isomers

    22.2.8.2 Desolvation

    22.2.8.3 Development of the

    nitroketeneaminal binding group

    22.2.9 Further H2 antagonists

    22.2.9.1 Ranitidine

    22.2.9.2 Famotidine and nizatidine

    22.2.9.3 H2 antagonists with prolonged

    activity

    22.2.10 Comparison of H, and H2 antagonists

    22.2.11 H2 receptors and H2 antagonists

    22.3 Proton pump inhibitors

    22.3.1 Parietal cells and the proton pump

    22.3.2 Proton pump inhibitors

    22.3.3 Mechanism of inhibition

    22.3.4 Metabolism of proton pump inhibitors

    22.3.5 Design of omeprazole and esomeprazole

    22.3.6 Other proton pump inhibitors

    22.4 H. pylori and the use of antibacterial agents

    22.4.1 Treatment

    22.5 Traditional and herbal medicines

    APPENDIX 1 Essential amino acids

    APPENDIX 2 The standard genetic code

    APPENDIX 3 Statistical data for QSAR

    APPENDIX 4 The action of nerves

    APPENDIX 5 Microorganisms

    Bacterial nomenclature

    Some clinically important bacteria

    The Gram stain

    Classifications

    Definitions of different microorganisms

    APPENDIX 6 Drugs and their trade names

    GLOSSARY

    GENERAL FURTHER READING

    INDEX

    xxi I

    656 1656 1658 1

    659 1

    662 1

    662 1

    662 1

    663 1

    663 1

    664 1

    664 1

    664 1

    665 I

    666 I

    667 I

    667 1

    670 1

    671

    672

    672 i

    675

    676

    677

    680

    685

    685

    685

    685

    685

    686

    687

    695

    711

    _