thethe endend ofof thisthis sectionsection thethe studentstudent...

33
Mechanics of Materials stress and strain fl lb b di l i d i l flexuralbeam bending analysis under simple loading conditions EECE 300 2011 1 Learning Objectives By the end of this section the student should be able to: By the end of this section, the student should be able to: describe the stressstrain relationship for elastic materials calculate beam deflection for simple loading conditions describe comb drive actuators and how they are used in siliconbased microsystems Further Reading • Chang Liu, Foundations of MEMS, Chapter 3: Review of Essential Electrical and Mechanical Concepts EECE 300 2011 2

Transcript of thethe endend ofof thisthis sectionsection thethe studentstudent...

Page 1: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Mechanics of Materials

• stress and strain

fl l b b di l i d i l• flexural beam bending analysis under simple loading conditions

EECE 300 ‐ 2011 1

Learning Objectives• By the end of this section the student should be able to:• By the end of this section, the student should be able to:

– describe the stress‐strain relationship for elastic materials

– calculate beam deflection for simple loading conditionsp g

– describe comb drive actuators and how they are used in silicon‐based microsystems

Further Reading

• Chang Liu, Foundations of MEMS, Chapter 3: Review of Essential Electrical and Mechanical Concepts

EECE 300 ‐ 2011 2

Page 2: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Mechanical design issues for MEMS devices

Example: MEMS accelerometer‐uses a loaded cantilever beam (or other design) to sense inertial motion (acceleration)sense inertial motion (acceleration)‐electrical circuitry to transduce the proof mass vibration into an electrical signal for amplification

A MEMS accelerometer is a key component of many automobile airbag sensors. The device consists of a center region, the proof mass, which is connected by springs to the surrounding structure. The interdigitated fingers are capacitors used by on‐chip electronics (not shown) to sense acceleration(not shown) to sense acceleration.

http://www.analog.com 

EECE 300 ‐ 2011 3

Movable electrodes in the form of interdigitated fingers are attached to the proof mass. The fi d d i l t d f b k f ll l t d it If l ti i

EECE 300 ‐ 2011

fixed and moving electrodes form a bank of parallel‐connected capacitors. If an acceleration is applied to the chip, the proof mass will move under an inertial force against the chip frame. This changes the finger distances and therefore the total capacitance, which is read using on‐chip signal processing electronics. 4

Page 3: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Mechanical design issues for MEMS devices

Example: nanoscale cantilever mass sensor‐small amount of mass binds to cantilever (single bacterium single virus particle)bacterium, single virus particle)‐change in mass changes the resonance frequency

2 μm

A small gold dot rests on a silicon cantilever. The dot is a test mass for studying how the cantilever can be used to measure the masses of tiny particles including viruses withof tiny particles, including viruses, with attogram precision.

EECE 300 ‐ 2011

ILIC, et al. (2004) Attogram detection using nanoelectromechanical oscillators. Journal of Applied Physics,95, 3694‐3703. 5

Stress and strain

EECE 300 ‐ 2011 6

Page 4: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Normal stress and strain

Mechanical stresses are either normal stress or shear stress.If the stress acts in a direction perpendicular to the cross section, it is called a normal stress. The normal stress σ is defined as the force F applied to a given area A. The SI unit of 

i N/ 2 Pstress is N/m2, or Pa.

A normal stress can be tensile or compressive. The unit elongation is the strain. For a rod with uniform cross‐sectional area subjected to axial loading the normal strain is given byaxial loading, the normal strain is given by

F

EECE 300 ‐ 2011

F

L + ΔL

7

Poisson’s ratio

In reality, the applied longitudinal stress along the x‐axis not only produces a longitudinal elongation in the direction of the stress, but a reduction of the cross‐sectional area as well.The material must try to maintain constant atomic spacing and bulk volume.P i ’ i i d fi d h i b d l i di l l iPoisson’s ratio is defined as the ratio between transverse and longitudinal elongations: 

y z

x x

ε ενε ε

= = 0

0

lateral strain

axial strain

Ld

d Lν Δ

= − = −Δ

x x

F Fcross

L

crosssection

EECE 300 ‐ 2011

L + ΔL

8

Page 5: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Elastic behavior – Hooke’s Law and springs

When a material experiences a stress, the usual result is a deformation resulting in a strain on the material.A common example is a spring which is either stretched or compressed.

F

This is an example of Hooke’s Law, a simple elastic response to an external force F. When F = 0, the Δx goes back to zero as long as the force remained in the elastic limit. There is no permanent deformation in the elastic limit.Atoms are held together with atomic forces If we imagine interatomic force acting asAtoms are held together with atomic forces. If we imagine interatomic force acting as springs to provide restoring force when atoms are pulled apart or pushed together, the modulus of elasticity is the measure of the stiffness of the interatomic spring near the equilibrium point.

FF

slope = k

EECE 300 ‐ 2011

Δx

slope   k

9

Young’s modulus

Under small deformation, the stress and the strain terms are proportional to each other according to Hooke’s law:

The proportion constant E is called the modulus of elasticity or Young’s modulus. It is an intrinsic property of a material It is a constant for a given material irrespective of theintrinsic property of a material. It is a constant for a given material, irrespective of the shape and dimensions of the mechanical element.The Young’s modulus is a measure of the stiffness of a material. It is measured in stress units (force/area). E [=] Pa

i‐Clicker:i Clicker: a. k ~ Lb. k ~ 1/L

EECE 300 ‐ 2011 10

Page 6: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Longitudinal stress and strain

A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1mm long and 100 μm in diameter. Find the stress and strain in the longitudinal direction of the rod, given that E = 130 x 109  N/m2.

310452a ×= −εi‐Clicker: 

3

6

1018.3 c.

1045.2 b.

1045.2a.

×=

×=

×=

ε

ε

ε

51018.3 d. ×=ε

EECE 300 ‐ 2011 11

Elastic behavior of materials

elastic regime

stress σ(F/A)

silicon 160 GPa

gold 78 GPa(F/A)

slope Eσε

Δ= =

Δ

bones 18 GPa

silicone rubber ~ 500 kPaε silicone rubber  500 kPa

brain tissue ~ 3 kPa

strain ε(δL/L)

EECE 300 ‐ 2011

( / )

12

Page 7: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Elastic limit and plastic behavior of materials

At some point when applying a stress, the material will reach a maximum strength at which point a deformation is produced. This is the yield strength. This is the elastic limit of the material.

Beyond this point, the material is plastically deformed. If the load is 

d th t i lremoved, the material retains this deformation at zero load.

EECE 300 ‐ 2011 13

Shear stress and strain

The magnitude of the shear stress is defined as

F=τ

The unit of τ is N/m2. Shear stress has no tendency to elongate or shorten the element in the x y and z directions Instead the shear stresses produce a change in the shape of the

the x, y, and z directions. Instead, the shear stresses produce a change in the shape of the element.Shear strain, defined as the extent of rotational displacement, is

XΔX

Lγ Δ

=

The shear strain is unitless It is the angular displacement expressed in radians

tanθ θ≈ for small θ

The shear strain is unitless. It is the angular displacement expressed in radians.

EECE 300 ‐ 2011

F

14

Page 8: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Shear modulus of elasticity

The shear stress and strain are related to each other by a proportional constant, called the shear modulus of elasticity G. 

Gτγ

=

The unit of G is N/m2. The value of G depends on the material, not the shape and dimensions of an object.

For a given material, E, G, and Poisson’s ratio are related by:

( )2 1

EG

ν=

+

EECE 300 ‐ 2011 15

Flexural beam bending analysis

Flexural beams are commonly encountered in MEMS as spring support elements.It is important to calculate the bending of a beam under simple loading conditions, analyze induced internal stress, and determine the resonant frequency associated with the lelement.

EECE 300 ‐ 2011 16

Page 9: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Possible boundary conditions

A flexural beam can be classified according to the combination of the two mechanical boundary conditions associated with it.

EECE 300 ‐ 2011 17

Beam segment in pure bending

The loads acting on a beam cause the beam to bend (or flex), deforming its axis

When a beam is loaded by force, stresses and strains are created throughout the interior of the beam.

beam to bend (or flex), deforming its axis into a curve.Consider a portion of a beam (A–B) in pure bending. The cross section of the b i i b h ibeam is symmetric about the y axis.It is assumed that the cross sections of the beam, such as sections mn and pq, remain plane and normal to the plongitudinal axis.The lower part of the beam is in tensionand the upper part is in compression.

EECE 300 ‐ 2011 18

Page 10: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Beam segment in pure bending

Somewhere between the top and bottom of the beam is a surface in which

When a beam is loaded by force, stresses and strains are created throughout the interior of the beam.

of the beam is a surface in which longitudinal lines do not change in length. This surface, indicated by st, is called the neutral surface of the beam.Th i i b h lThe intersection between the neutral surface with any cross‐sectional plane such as line tu is the neutral axis of the cross section.

EECE 300 ‐ 2011 19

Deflection of beam under pure bending

The general method for calculating the curvature of the beam under small displacement is to solve a second order differential equation of a beam:

2∂2

( )y

EI M xx

∂=

∂where M(x) represents the bending moment at the cross section at location xwhere M(x) represents the bending moment at the cross section at location x.y represents the displacement at location x.The x‐axis runs along the longitudinal direction of the cantilever.

EECE 300 ‐ 2011 20

Page 11: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Cantilever beam under small deflections

Beam segment under pure bending:

top is in tension

y

b i i i

neutral axis ε = 0

bottom is in compression

εx

εma

y

εmax

y

‐εmax

t/2‐t/2

EECE 300 ‐ 2011 21

Bending

To calculate the magnitude of stresses at any location in the beam:At any section, the distributed stress contributes to distributed force, which subsequently gives rise to a reaction moment with respect to the neutral axis.b i f f dibasic concept of moment: force × distance

( )2( ) ( )t

M dF h h h dA h∫∫ ∫ ∫ ( )2

2

( ) ( )tA w hM dF h h h dA hσ

=−= =∫∫ ∫ ∫

Assuming that the magnitude of stress is linearly related to h and is the highest at the surface (denoted by σ ) this equation can be rewritten as:

2max max2 2max / 2 / 2 / 2

t t

t tw wh h

hM dA h h dA I

t t t

σ σσ⎛ ⎞= = =⎜ ⎟⎝ ⎠∫ ∫ ∫ ∫

surface (denoted by σmax), this equation can be rewritten as:

2 2/ 2 / 2 / 2w wh ht t t=− =−⎜ ⎟⎝ ⎠∫ ∫ ∫ ∫

The term I is called the moment of inertia associated with a particular cross section.

EECE 300 ‐ 2011 22

Page 12: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Bending strain and beam curvature

Radius of curvature → geometric connec on to strain

RR

( )/ 2 / 2R t d Rd tθ θε

+ − 21 d y=

also, for small deflections

( )max Rd R

εθ

= = 2R dx=

EECE 300 ‐ 2011 23

Curvature and strain

Combining the curvature and moment results:

/ 2t Emax

/ 2t

Rε =

2max max2 2

t thM dA h h dA I

σ σ⎛ ⎞⎜ ⎟∫ ∫ ∫ ∫

Eσ ε=

21 d y

2max max2 2max

2 2/ 2 / 2 / 2t tw wh hM dA h h dA I

t t tσ

=− =−

⎛ ⎞= = =⎜ ⎟⎝ ⎠∫ ∫ ∫ ∫

2

1 d y

R dx=

2

2( )

yEI M x

x

∂=

where M(x) represents the bending moment at the cross section at location x.y represents the displacement at location x.The x‐axis runs along the longitudinal direction of the cantilever

EECE 300 ‐ 2011

The x axis runs along the longitudinal direction of the cantilever.

24

Page 13: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Cantilever beam

Goal: find relation between tip deflection y(x = L) and applied load F.

Clamped end:y = 0 dy/dx = 0 at x = 0

x x = L

y = 0, dy/dx = 0 at x = 0

F

Assume tip deflection is small compared to length of beam.Shear stresses negligible.

( )( )M x F L x= −2

2( )

yM x EI

x

∂=

EECE 300 ‐ 2011 25

Cantilever beam ‐ bending i‐Clicker:deflection at beam tip: 

2

2

)(b

2)(a.

LF

Ly

LEI

FLy

=

=

3

3)( c.

3)( b.

LEI

FLy

LEI

Ly

=

=

i‐Clicker:slope at beam tip: p p

2

2

2)(a.

F

LEI

FLy =

3

2

3)( c.

3)( b.

LEI

FLy

LEI

FLy

=

=

EECE 300 ‐ 2011 26

3EI

Page 14: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Review

: fin

taken

 from nding m

om

mE. Po

pov, E en

t of in

ert

Engineerin

g tia

g M

echaniccs o

f Solids

EECE 300 ‐ 2011

s

27

Finding the spring constant

Beams are the most frequently encountered spring element in MEMS. These microbeams serve as mechanical springs for sensing and actuation. The stiffness of these beams is a frequently encountered design concern.Th iff i h i d b h i ( f ) Th h i lThe stiffness is characterized by the spring constant (or force constant). The mechanical spring constant is the ratio of the applied force and the resultant displacement:

FFk

x=

For a cantilever with a point‐loading on the free end, the maximum deflection occurs at the free end. For a fixed‐fixed bridge with a loading force in the center of the span, the center has the largest deflection.

EECE 300 ‐ 2011 28

Page 15: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Spring constant for cantilever

A fixed‐free beam with a rectangular cross section is one of the most common scenarios encountered in MEMS. 

The free end of the beam will reach a certain bent angle, 

The resultant vertical displacement equals 

EECE 300 ‐ 2011

The spring constant of the cantilever is:

Liu, Foundations of MEMS 29

Spring constant for cantileverThe spring constant of the cantilever is:The spring constant of the cantilever is:

3

3 3

3

4

F EI Ewtk

x l l= = =

The spring constant:• decreases with increasing length• proportional to the width• strongly influenced by change in thickness due to the term t3• strongly influenced by change in thickness due to the term t3.The stiffness of the cantilever depends on the direction of the bending. If the force is applied longitudinally, the constant would be very different. The beam provides compliance in one direction and resistance to movement in another.

EECE 300 ‐ 2011 30

Page 16: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Springsi‐Clicker:

3

3

4 a.

L

bEaka =

b3

3

4 b.

4

L

Eabk

L

a =

L

b

ai‐Clicker:

3

3

a.bEa

kb = L

Fb3

3

3

4 b.

4 a.

L

Eabk

Lk

b

b

=

Fa

EECE 300 ‐ 2011 31

Spring systems – parallel connected springs

In many applications, two or more springs may be connected to form a spring system.In the parallel case:Same displacement → load is shared and the spring constant is the sum of the individual 

ispring constants.

a

b

F/2

F/2

Lc

i‐Clicker:

kk 2a =F

b F/2

a

a

kk

kk

2

1 b.

2a.

=

=

EECE 300 ‐ 2011 32

Page 17: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Spring systems – serially connected springs

In many applications, two or more springs may be connected to form a spring system.In the serial case:Same load → deflec ons add

Ltotal

Fa b

Lc Lc

total

i‐Clicker:

kk 2a =Lc

a

a

kk

kk

2

1 b.

2a.

=

=

EECE 300 ‐ 2011 33

Moments of inertia of two beams – example

Consider two cantilever beams of the same length and material: one has a cross section of 100 μm by 5 μm, and a second one has a cross section of 50 μm by 8 μm. Which one is more resistant to flexural bending (i.e., stiffer)?

F

w1 t1 i‐Clicker:

a. beam 1 is stiffer1

F

w2 t2

L1b. beam 2 is stiffer

2

L2

2

EECE 300 ‐ 2011 34

Page 18: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

End constraints and loading conditions

EECE 300 ‐ 2011Liu, Foundations of MEMS 35

End constraints and loading conditions

EECE 300 ‐ 2011Liu, Foundations of MEMS 36

Page 19: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Vertical translational plates

Fixed‐guided springs are often used to support rigid plates and facilitate their translation. Often, a plate is supported by two or more such beams. In these cases, one end of the beam is fixed, with all degrees of freedom limited. Another end of the spring can move in h i l di i b l di l i ll d b i i dthe vertical direction, but no angular displacement is allowed because it is connected to the stiff translational plate, which remains parallel to the substrate under allowable plate movement.

EECE 300 ‐ 2011Liu, Foundations of MEMS 37

Vertical translational plate – example 

Find the expression of the force constant associated with the plate.

Start with the basic formula for the spring constant of a single fixed‐guided beam under a transverse loading force F. The maximum displacement x occurs at the guided end of the beam:

EECE 300 ‐ 2011 38

Page 20: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Vertical translational plate – example 

The expression for the spring constant (force constant) of each single fixed‐guided beam is:

If a force is applied to a plate supported by n cantilevers with equal dimensions and force constants, each spring shares 1/nth of the total force load. The total force constant experienced by the spring is nk.The force constant associated with each fixed‐guided beam is:

For the plate supported by two fixed‐ For the plate supported by four fixed‐For the plate supported by two fixedguided beams, the equivalent force constant is

For the plate supported by four fixedguided beams, the equivalent force constant is

EECE 300 ‐ 2011 39

Capacitance Sensor Response

A parallel capacitor with an area (A) of 100 × 100 μm2 is supported by four cantilever beams. The plate is made of polycrystalline silicon that is t = 2 μm thick. The distance between the bottom of the plate and the substrate is d = 1 μm. Each cantilever beam is l 400 20 0 1 Fi d h l i h f i dl = 400 μm, w = 20 μm, t = 0.1 μm. Find the relative change of capacitance under an acceleration of 1 g.

EECE 300 ‐ 2011 40

Page 21: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Capacitance Sensor Response

A parallel capacitor with an area (A) of 100 × 100 μm2 is supported by four cantilever beams. The plate is made of polycrystalline silicon that is t = 2 μm thick. The distance between the bottom of the plate and the substrate is d = 1 μm. Each cantilever beam is l 400 20 0 1 Fi d h l i h f i dl = 400 μm, w = 20 μm, t = 0.1 μm. Find the relative change of capacitance under an acceleration of 1 m/s2.

EECE 300 ‐ 2011 41

Capacitance Sensor Response

EECE 300 ‐ 2011 42

Page 22: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Microneedles for painless drug delivery

EECE 300 ‐ 2011N.-T. Nguyen and S. T. Wereley, Fundamentals And Applications of Microfluidics, Second ed: Artech House, 2006. 43

Molded polysilicon microneedles

EECE 300 ‐ 2011D. V. McAllister, M. G. Allen, and M. R. Prausnitz, "Microfabricated Microneedles for Gene and Drug Delivery," Annual Review of Biomedical Engineering, vol. 2, pp. 289-313, 2000. 44

Page 23: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

4

Solid square

1Solid rectangle

141

12I W= 31

12I WH=

H h

( )4 4

Hollow square

1

12I W w= − ( )3 3

Hollow rectangle

1

12I WH wh= −

12

Solid circle

( )12

Hollow circle

4

4I R

π= ( )4 4

4I R r

π= −

EECE 300 ‐ 20113

Thin annulus

I R tπ= 45

Buckling of a microneedle

• If the needle’s length is relatively long compared to its width the first failure mode iscompared to its width, the first failure mode is buckling.

• The critical b cklin force

Fb

• The critical buckling force:

2EIπ24b

EIF

L

π=

EECE 300 ‐ 2011 46

Page 24: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Parylene microneedle – buckling

• A microneedle made of parylene C has channel dimensions 200 μm × 200 μm × 2 mm. The parylene layer is deposited over 4 hours at a rate of 5 μm/hr (over a sacrificial material) The Young’s modulus is 3 2 GPaμm/hr (over a sacrificial material). The Young s modulus is 3.2 GPa.

• Calculate the critical buckling force for this needle.

EECE 300 ‐ 2011 47

Bending of a microneedle

• As a rough estimate, the bending stiffness of a needle can be modeled by the spring constant k:

• For a hollow square needle:

EECE 300 ‐ 2011 48

Page 25: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Parylene microneedle – bending• A microneedle made of parylene C has channel (inner) dimensions 200 μmA microneedle made of parylene C has channel (inner) dimensions 200 μm

× 200 μm × 2 mm. The parylene layer is deposited over 4 hours at a rate of 5 μm/hr (over a sacrificial material). The Young’s modulus is 3.2 GPa.

• Calculate the tip deflection under a force of 15 mN at the tipCalculate the tip deflection under a force of 15 mN at the tip.

EECE 300 ‐ 2011 49

Polysilicon microneedle• If the previous needle were made of polysilicon, what are the tip p p y , p

deflection and critical buckling force? Assume all other parameters are the same, and Young’s modulus of polysilicon is 150 GPa.

i‐Clicker:

a. the tip deflection is directly proportional to Young’s modulus.b. the tip deflection is inversely proportional to Young’s modulus.

i‐Clicker:

a. the critical buckling force is directly proportional to Young’s modulus.b. the critical buckling force is inversely proportional to Young’s modulus.b. the critical buckling force is inversely proportional to Young s modulus.

EECE 300 ‐ 2011 50

Page 26: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Microneedle – mechanical designInsertion force• The area A of contact surface at the needle tip is considered the determining 

factor for the insertion force Fi.• The puncture toughness Gp which is the work per area needed to initiate a crack:

W

Insertion force (static case where the insertion speed is slow and the kinetic energy

p

WG

A=

Insertion force (static case, where the insertion speed is slow and the kinetic energy of the needle is negligible)

1F F G A= +,max 0i pF F G A

χ= +

F0 and χ determined experimentally.F initial force

EECE 300 ‐ 2011

F0 initial forceχ characteristic insertion length

51

Insertion force of a microneedle• The tip radius of a microneedle is 50 μm. Assume a puncture p μ p

toughness of the skin of 30 kJ/m2, a characteristic insertion length of 150 μm, and an initial force F0 = 0.1 N. Determine the force required for puncturing the skin.

EECE 300 ‐ 2011 52

Page 27: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Differential thermal expansion

If two materials are in close contact during temperature changes (heating or cooling) and their thermal expansion coefficients are not equal, then differential expansion (during heating) or differential contraction (during cooling) can occur.Thi h d i hi fil d i i Th fil i d i d f T bThis can happen during thin film deposition. The film is deposited stress‐free at Tdep, but then at room temperature the film is under a thermal mismatch strain.

( ) Tε γ γ Δ( )1 2 Tε γ γ= − Δ

EECE 300 ‐ 2011 53

Beam bending – intrinsic stress

EECE 300 ‐ 2011 54

Page 28: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Thermal coefficient of expansion

At the temperature increases, most solids expand in volume. The lateral dimensions of the object increases in all directions.

The volumetric thermal expansion coefficient α is the

Th li i ffi i i h h f l

The volumetric thermal expansion coefficient α is the ratio between the relative change of volume to the degree of temperature variation, 

The linear expansion coefficient γ is the change of only one dimension of an object due to temperature variation,

The percentage change in length in an unconstrained object (free to expand at both ends) due to the increase in temperature is given by

If the object is fixed at both ends, then the thermal expansion produces a stress given by 

EECE 300 ‐ 2011

j , p p g y

55

Thermal Expansion

EECE 300 ‐ 2011 56

Page 29: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Thermal actuatorAssume that you have a silicon beam that is 100 μm long, and 1μm square.  You heat it by 100K.  How much force do you get if you constrain it?  How much elongation if you allow it to expand? Linear thermal coefficient of expansion for silicon is 2.3 × 10‐6/K . ESi = 160 GPa.

Area=ε = γ ΔT =ε = γ ΔT =σ = Ε ε =F AF = A σ =δL = ε L=

EECE 300 ‐ 2011 57

Thermal Actuators

Use thermal expansion for actuation

Very effective and high force output per unit area

Actuator translatesin this direction

Cold arm

Very effective and high force output per unit area

Cold arm

Current output pad

Hot arm 

Cascaded thermal actuators for high force

EECE 300 ‐ 2011

Current input pad

J. Judy, UCLA 58

Page 30: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Bimetallic beam actuatorradius of curvatureradius of curvature

Bi t lli t ti th diff i th l ffi i t f i f t b d dBimetallic actuation uses the difference in thermal coefficient of expansion of two bonded solids. This principle is often called thermal bimorph actuation. Bimetallic actuators offer an almost linear deflection dependence on heating power. Their disadvantages are high power consumption and slow response.The resulting force is proportional to the difference between the thermal expansion coefficients of the two materials and the temperature difference.

EECE 300 ‐ 2011 59

Bimetallic beam actuator2L

The displacement of the beam tip is calculated as:

h di f i

( )2

Ly L

R≈

The radius of curvature is:

( ) ( ) ( )( ) ( )

2 22 2 2 21 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2

2 1 1 1 1 2 2 2 1 2

2 2 3 2

6

b E t b E t b E t b E t t t t t

Tb E t b E t t tρ

γ γ

+ + + +=

− Δ +

where b1 and b2 are the widths of the two material layers.

( ) ( )2 1 1 1 1 2 2 2 1 2γ γ

( ) ( )3 EI y LTh i l t f th ti f th b ( ) ( )3

3beam

EI y LF

L=The equivalent force on the tip of the beam 

(cantilever beam with free end) is:

The flexural rigidity of the composite beam is:

( ) ( ) ( ) ( )( )

2 22 2 2 21 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2

1 1 1 2 2 2

2 2 3 2

12beam

b E t b E t b E t b E t t t t tEI

b E t b E t

+ + + +=

+

EECE 300 ‐ 2011 60

Page 31: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Bimetallic beam actuator

Assuming that the two layers have the same width b, the radius of curvature and the equivalent tip force can be simplified to: 

2 2⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞2 2

1 1 1 1 2 2

2 2 2 2 1 11 2

2

3 1 1

6

t t E t t E

t t E t t Et t

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ ⎣ ⎦=⎛ ⎞( ) 1

2 12

61

tT

tγ γ

⎛ ⎞− Δ +⎜ ⎟

⎝ ⎠

( )1 22 1

31 14

t tbF T

Lγ γ+

= − Δ+

1 1 2 2t E t E+

EECE 300 ‐ 2011 61

Design of a thermomechanical valve with bimetallic actuator

A thermomechanical microvalve has a rigid square seat of 500 × 500 μm. The valve seat is suspended on four flexures. Each flexure is 500 μm long and 200 μm wide. The flexure is made of 10‐μm silicon and 2‐μm aluminum. The silicon heater is integrated in the flexure. Th l i l i d 400°C If ll l d i l i bThe aluminum layer is evaporated at 400°C. If a normally closed microvalve is to be designed at 25°C, what is the maximum gap between valve opening and the surface of the valve seat wafer? 

Si: t1 = 10 μm γ1 = 2 3 × 10‐6 K‐1 E1 = 170 GPa

EECE 300 ‐ 2011

Si: t1  10 μm, γ1  2.3 × 10 K , E1  170 GPaAl: t2 = 2 μm, γ2 = 23 × 10‐6 K‐1, E2 = 70 GPa

62

Page 32: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Thermomechanical valve

EECE 300 ‐ 2011 63

Thermomechanical valve

EECE 300 ‐ 2011 64

Page 33: thethe endend ofof thisthis sectionsection thethe studentstudent …courses.ece.ubc.ca/300/handouts/EECE300-2011-mechanical... · 2011-10-17 · fixed an mov ng electrodes orm a bank

Thermomechanical valve: minimum opening/closing pressure

If the gap between valve opening and surface of the valve seat is 5 μm, how large shouldIf the gap between valve opening and surface of the valve seat is 5 μm, how large should the inlet pressure be to open the valve? What is the temperature difference for opening the valve at zero inlet pressure? The valve opening is 200 × 200 μm.

EECE 300 ‐ 2011 65