THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

download THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

of 5

Transcript of THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

  • 8/18/2019 THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

    1/5

    Võ Quc Bá Cn Phm Th Hng

    Copyright © Vo Quoc Ba Can 1

    THE SUMS OF SQUARE TECHNIQUE

    I. Theorem.

    Consider the following inequality4 2 2 3 3 2( ) 0

    cyc cyc cyc cyc cyc

    m a n a b p a b g ab m n p g a bc+ + + − + + + ≥∑ ∑ ∑ ∑ ∑With , ,a b c  be real numbers.

    Then this inequality holds when2 2

    0

    3 ( )

    m

    m m n p pg g  

    >

    + ≥ + +.

    Proof.

    We rewrite the inequality as

    4 2 2 2 2 2 3 2

    3 2

    ( )

    0

    cyc cyc cyc cyc cyc cyc

    cyc cyc

    m a a b m n a b a bc p a b a bc

     g ab a bc

     − + + − + −  

     

     + − ≥    

    ∑ ∑ ∑ ∑ ∑ ∑

    ∑ ∑ Note that

    4 2 2 2 2 2

    3 2 3 2 2 2

    2 2 2 2 2 2

    3 2 3 2 2 2

    2 2

    1( )

    2

    ( )

    1 1( ) ( ) ( ) ( )( 2 )

    3 3

    ( )

    ( )

    cyc cyc cyc

    cyc cyc cyc cyc cyc

    cyc cyc cyc

    cyc cyc cyc cyc cyc

    cy

    a a b a b

    a b a bc b c a bc bc a b

    bc a b ab bc ca a b a b ab ac bc

    ab a bc ca ab c ca a b

    ca a b

    − = −

    − = − = −

    = − − + + + − = − + −

    − = − = −

    = −

    ∑ ∑ ∑

    ∑ ∑ ∑ ∑ ∑

    ∑ ∑ ∑

    ∑ ∑ ∑ ∑ ∑2 2 2 21 1( ) ( ) ( )( 2 )

    3 3c cyc cyc

    ab bc ca a b a b ab bc ca− + + − = − − + −∑ ∑ ∑Then the inequality is equivalent to

    2 2 2 2 2

    2 2 2

    1( ) ( )[( ) (2 ) ( 2 ) ]

    2 3

    ( ) 0

    cyc cyc

    cyc cyc

    ma b a b p g ab p g bc p g ca

    m n a b a bc

    − + − − − + + +

     + + − ≥  

     

    ∑ ∑

    ∑ ∑Moreover 

    2 2 2 2

    2 21 [( ) (2 ) ( 2 ) ]

    6( )cyc cyc cyca b a bc p g ab p g bc p g ca

     p pg g − = − − + + +

    + +∑ ∑ ∑The inequality becomes

  • 8/18/2019 THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

    2/5

    Võ Quc Bá Cn Phm Th Hng

    Copyright © Vo Quoc Ba Can 2

    2 2 2 2 2

    2

    2 2

    2 2 2

    1( ) ( )[( ) (2 ) ( 2 ) ]

    2 3

    [( ) (2 ) ( 2 ) ] 06( )

    1[3 ( ) ( ) (2 ) ( 2 ) ]

    18

    cyc cyc

    cyc

    cyc

    ma b a b p g ab p g bc p g ca

    m n p g ab p g bc p g ca

     p pg g 

    m a b p g ab p g bc p g cam

    − + − − − + + +

    ++ − − + + + ≥

    + +

    ⇔ − + − − + + +

    ∑ ∑

    ∑2 2

    2

    2 2

    3 ( )[( ) (2 ) ( 2 ) ] 0

    18 ( )   cyc

    m m n p pg g   p g ab p g bc p g ca

    m p pg g  

    + − − −+ − − + + + ≥

    + +   ∑

    From now, we can easily check that if 2 2

    0

    3 ( )

    m

    m m n p pg g  

    >

    + ≥ + + then the inequality is true.

    Our theorem is proved.  J

    II. Application.

    Example 1. (Vasile Cirtoaje) Prove that2 2 2 2 3 3 3( ) 3( ).a b c a b b c c a+ + ≥ + +Solution.

    The inequality is equivalent to4 2 2 32 0

    cyc cyc cyc

    a a b a b+ − ≥∑ ∑ ∑From this, we get 1, 2, 3, 0m n p g  = = = − = , we have

    2 2 2 2

    1 0

    3 ( ) 3 1 (1 2) ( 3) ( 3) 0 0 0

    m

    m m n p pg g  

    = >

    + − − − = ⋅ ⋅ + − − − − ⋅ − =Then using our theorem, the inequality is proved. J

    Example 2. (Võ Quc Bá Cn) Prove that

    ( )4 4 4 3 3 33 1 ( ) 3( ).a b c abc a b c a b b c c a+ + + − + + ≥ + +

    Solution.

    We have 1, 0, 3, 0m n p g  = = = − =  and

    ( ) ( )22 2 2

    1 0

    3 ( ) 3 1 (1 0) 3 3 0 0 0

    m

    m m n p pg g  

    = >

    + − − − = ⋅ ⋅ + − − − − ⋅ − =Then the inequality is proved. J

    Example 3. (Phm Vn Thun) Prove that

    4 4 4 3 3 37( ) 10( ) 0.a b c a b b c c a+ + + + + ≥Solution.We will prove the stronger result, that is

    4

    4 3 177 1027

    cyc cyc cyc

    a a b a+ ≥      

    ∑ ∑ ∑

  • 8/18/2019 THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

    3/5

    Võ Quc Bá Cn Phm Th Hng

    Copyright © Vo Quoc Ba Can 3

    4 2 2 3 3 286 51 101 34 102 0

    86

    51

    101

    34

    cyc cyc cyc cyc cyc

    a a b a b ab a bc

    m

    n

     p

     g 

    ⇔ − + − − ≥

    = = −⇒

      =   = −

    ∑ ∑ ∑ ∑ ∑

    Moreover 

    2 2 2 2

    86 0

    3 ( ) 3 86 (86 51) 101 101 ( 34) ( 34) 1107 0

    m

    m m n p pg g  

    = >

    + − − − = ⋅ ⋅ − − − ⋅ − − − = >Then the inequality is proved. J

    Example 4. (V ình Quý) Let , , 0, 1.a b c abc> =  Prove that

    2 2 2

    1 1 13.

    1 1 1a a b b c c+ + ≤

    − + − + − +Solution.On Mathlinks inequality forum, I posted the following proof:

     Lemma. If  , , 0, 1,a b c abc> =  then2 2 2

    1 1 11.

    1 1 1a a b b c c+ + ≥

    + + + + + +

     Proof. From the given condition , , 0, 1a b c abc> = , there exist , , 0 x y z  >  such that

    2

    2

    2

    .

     z a

     x

     zxb

     xyc

    = =

    =

     And

    then, the inequality becomes4

    4 2 2 21

    cyc

     x

     x x yz y z ≥

    + +∑By the Cauchy Schwarz Inequality, we get

    2 2 2

    2 2 2

    4

    4 2 2 2 4 2 2 2 4 2 2 2 4 2 21

    ( ) 2

    cyc cyc cyc

    cyc

    cyc cyc cyc cyc cyc cyc

     x x x x

     x x yz y z    x x yz y z x y z x yz x y z  

         ≥ = ≥ =

    + +   + + + + +

    ∑ ∑ ∑∑ ∑ ∑ ∑ ∑ ∑ ∑

    Our lemma is proved.

     Now, using our lemma with note that2 2 2

    2 2 2

    1 1 1, , 0

    ,1 1 1

    1

    a b c

    a b c

    >   ⋅ ⋅ =

     we get

  • 8/18/2019 THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

    4/5

    Võ Quc Bá Cn Phm Th Hng

    Copyright © Vo Quoc Ba Can 4

    4 2 2

    4 2 4 2 4 2

    2 2

    2 2 2 2

    1 2( 1)1 2 4

    1 1 1

    ( 1) ( 1) 1 14 4

    ( 1)( 1) 1 1

    cyc cyc cyc

    cyc cyc cyc

     x x x

     x x x x x x

     x x x x

     x x x x x x x x

    + +≥ ⇔ ≤ ⇔ ≤

    + + + + + +

    + + + − +⇔ ≤ ⇔ + ≤

    + + − + − + + +

    ∑ ∑ ∑

    ∑ ∑ ∑Using our lemma again, we can get the result. J

     Now, I will present another proof of mine based on this theorem

    Since , , 0, 1,a b c abc> =  there exists , , 0 x y z  >  such that , , y z x

    a b c x y z 

    = = =  then our inequality

     becomes2 2 2 2

    2 2 2 2 2 2 2 2

    3 3 ( 2 )3 9 4 3 3

    cyc cyc cyc cyc

     x x x x y

     x xy y x xy y x xy y x xy y

    −  ≤ ⇔ ≤ ⇔ − ≥ ⇔ ≥  − + − + − + − +  ∑ ∑ ∑ ∑

    By the Cauchy Schwarz Inequality, we get2

    2

    2 2 2 22 2

    ( 2 )( 2 ) ( ) ( 2 )

    cyc cyc cyc

     x y x y x xy y x y

     x xy y

    − − − + ≥ − − + ∑ ∑ ∑

    It suffices to show that2

    2 2 2 2

    4 2 2 3 3 2

    ( 2 ) 3 ( 2 ) ( )

    10 39 25 16 8 0

    cyc cyc

    cyc cyc cyc cyc cyc

     x y x y x xy y

     x x y x y xy x yz 

    − ≥ − − +

    ⇔ + − − − ≥

    ∑ ∑

    ∑ ∑ ∑ ∑ ∑From this, we get 10, 39, 25, 16m n p g  = = = − −  and

    2 2 2 2

    10 0

    3 ( ) 3 10 (10 39) ( 25) ( 25) ( 16) ( 16) 189 0

    m

    m m n p pg g  

    = >

    + − − − = ⋅ ⋅ + − − − − ⋅ − − − = >Then using our theorem, the inequality is proved. J

    III. Some problems for own study.

    Problem 1. (Vasile Cirtoaje) Prove that4 4 4 3 3 3 3 3 32( ).a b c a b b c c a a b b c c a+ + + + + ≥ + +

    Problem 2. (Phm Vn Thun, Võ Quc Bá Cn) Prove that

    3 3 3 48( ) ( ) ( ) ( ) .27

    a a b b b c c c a a b c+ + + + + ≥ + +

    Problem 3. (Phm Kim Hùng) Prove that

    4 4 4 2 3 3 31( ) 2( ).3

    a b c ab bc ca a b b c c a+ + + + + ≥ + +

    Võ Quc Bá CnStudent

    Can Tho University of Medicine and Pharmacy, Can Tho, VietnamE-mail: [email protected]

    mailto:[email protected]:[email protected]

  • 8/18/2019 THE_SUMS_OF_SQUARE_TECHNIQUE.pdf

    5/5

    Võ Quc Bá Cn Phm Th Hng

    Copyright © Vo Quoc Ba Can 5