Thermodynamic cycles - Seoul National...

32
SNU NAOE Y. Lim Thermodynamic cycles

Transcript of Thermodynamic cycles - Seoul National...

Page 1: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Thermodynamic cycles

Page 2: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Carnot cycle on T-s diagram

Tem

pera

ture

T

Entropy s

π›Ώπ‘žπ‘Ÿπ‘’π‘£ = 𝑇𝑑𝑠

12 Isothermal Expansion at TH

23 Adiabatic Expansion THTC

34 Isothermal Compression at TC

41 Adiabatic Compression TCTH

Pre

ssu

re P

Volume v

𝑑𝑠 =π›Ώπ‘žπ‘Ÿπ‘’π‘£π‘‡

π›Ώπ‘€π‘Ÿπ‘’π‘£ = βˆ’π‘ƒπ‘‘π‘£

Page 3: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Carnot cycle on T-s diagram

3

T

Entropy s

π‘žπΆ

34

π›Ώπ‘žπ‘Ÿπ‘’π‘£ = 𝑇𝑑𝑠

Isothermal (Ξ”T=0)12 Isothermal Expansion at TH

34 Isothermal Compression at TC

T

Entropy s

π‘žπ»

21

π›Ώπ‘žπ‘Ÿπ‘’π‘£ = 𝑇𝑑𝑠

TH

TCPre

ssu

re P

Volume v

Page 4: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Carnot cycle on T-s diagram

4

Adiabatic and reversible isentropic(qrev=0Ξ”s=0)23 Adiabatic Expansion THTC

41 Adiabatic Compression TCTH

T

Entropy s

3

2

4

1

TC

TH

Pre

ssu

re P

Volume v

Page 5: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Carnot cycle on T-s diagram

5

T

Entropy s

3

2

4

1

π‘žπ‘›π‘’π‘‘ = π‘žπ» + π‘žπΆ

π›Ώπ‘žπ‘Ÿπ‘’π‘£ = 𝑇𝑑𝑠

12 Isothermal Expansion at TH

23 Adiabatic Expansion THTC

34 Isothermal Compression at TC

41 Adiabatic Compression TCTH

TC

TH

Pre

ssu

re P

Volume v

π›Ώπ‘€π‘Ÿπ‘’π‘£ = βˆ’π‘ƒπ‘‘π‘£

Page 6: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Practical problems of Carnot cycle

β€’ 12 boiler: sat. liquid to sat. vaporβ€’ 23 turbine: maybe OK but large amount of liquid

flowing into the turbine can cause physical damageβ€’ 34 condenser: how to stop at 4?β€’ 41 compressor: how to compress L/G mixture?

6

T

Entropy s

3

2

4

1

π‘ž = π‘žπ» + π‘žπΆ

LiquidVapor

Page 7: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Rankine cycle

β€’ 12 Isobaric expansion at PH (T change): boilerβ€’ 23 Adiabatic expansion: turbineβ€’ 34 Isobaric and isothermal compression:β€’ 41 Adiabatic compression: pump (for 100% liquid)

7

T

Entropy s

3

2

4

1

Sub-cooled Liquid

Superheated Vapor

Saturated Liquid

Saturated Vapor with less liquid

π‘žπ» at PH

π‘žπΆ at PC

William JM Rankine(1820 –1872)

http://en.wikipedia.org/wiki/Rankine_cycle

Page 8: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Efficiency of Rankine cycle

β€’ Δ𝑒𝑐𝑦𝑐𝑙𝑒 = π‘žπ‘›π‘’π‘‘ +𝑀𝑛𝑒𝑑

β€’ πœ‚ =𝑀𝑛𝑒𝑑

π‘žπ»=

π‘žπ‘›π‘’π‘‘

π‘žπ»

8

T

Entropy s

3

2

4

1π‘žπ»

T

Entropy s

3

2

4

1π‘žπ‘›π‘’π‘‘

Page 9: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Ideal Rankine cycle example 3.14

β€’ Ideal Rankine cycle(100% efficiency turbine and pump)

9

(1)

(2)(3)

(4)

(1)

(2)(3)

(4)

πœ‚π‘…π‘Žπ‘›π‘˜π‘–π‘›π‘’ =𝑀

π‘žπ»=1108

3196= 34.7%

600℃10MPa

99.6℃0.1MPa

99.6℃0.1MPa

Saturated water

v.f. 0.924Superheated steam

Subcooled water

100.3℃10MPa

Page 10: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Ts diagram

10

Page 11: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Real Rankine cycle example 3.15

β€’ Rankine cycle with 85% efficiency turbine and pump

600℃10MPa

99.6℃0.1MPa

99.6℃0.1MPa

Saturated water

v.f. 0.999Superheated steam

Subcooled water

100.8℃10MPa

πœ‚π‘…π‘Žπ‘›π‘˜π‘–π‘›π‘’ =𝑀

π‘žπ»=938.5

3194= 29.4%

(1)

(2)(3)

(4)

πœ‚π‘…π‘Žπ‘›π‘˜π‘–π‘›π‘’ =𝑀

π‘žπ»=1108

3196= 34.7%

Page 12: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Carnot cycle and Rankine cycle

β€’ Ex 3.14

12

T

Entropy s

3

2

4

1

π‘žπ» at PH

π‘žπΆ at PC

14

2

3

π‘žπ»

π‘€π‘œπ‘’π‘‘

π‘žπΆ

1 2

34

𝑀𝑖𝑛 Carnot cycle

Carnot cycle

Page 13: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Joule-Thomson effect(expansion)

β€’ How does the temperature of gas change when it is forced through a valve or porous plug while kept insulated so that no heat is exchanged with the environment?

13

JP Joule(1818-1889)

W Thomson(Lord Kelvin)

(1824-1907)

𝑃1, 𝑇1 𝑃2, 𝑇2

(throttling process or Joule–Thomson process)

Page 14: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

JT process β‰ˆ isenthalpic process

(Assume steady-state, KE&PE small, adiabatic)

β€’ Energy Balance (1st law, Open system)

β€’π‘‘π‘ˆ

𝑑𝑑= αˆΆπ‘„ + αˆΆπ‘Šπ‘  + σ𝑖𝑛 αˆΆπ‘šπ‘–β„Žπ‘– βˆ’ Οƒπ‘œπ‘’π‘‘ αˆΆπ‘šπ‘œβ„Žπ‘œ

β€’ Since the gas spends so little time in the valve, there is no time for heat transfer. Since there is no component, the shaft work is near zero. If the kinetic energy difference is negligible, for st-st,

β€’ 0 = 0 + 0 + αˆΆπ‘š1β„Ž1 βˆ’ αˆΆπ‘š2β„Ž2β€’ β„Ž1 = β„Ž2 (isenthalpic)

P1, T1, V1, H1 P2, T2, V2, H2

αˆΆπ‘š1 αˆΆπ‘š2

Page 15: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Refrigeration cycle

15

αˆΆπ‘„Air

(Cold:0~4℃)

(Hot:15~30 ℃)

Page 16: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Refrigeration process

β€’ Carnot cycle

16

𝑄𝐻

𝑄𝐢

π‘Šπ‘–π‘›

π‘Šπ‘œπ‘’π‘‘ π‘Šπ‘ 

Boiler Condenser

Turbine

Pump

Compressor

Evaporator (heater)

𝑄𝐢𝑄𝐻

Expander or valve

Condenser

Refrigeration cycle

Page 17: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Refrigeration cycle

17

αˆΆπ‘„ αˆΆπ‘„

Cold

(Cold)

HotIsenthalpicexpansion(Very Cold)

Heat exchanger

(hot)

Evaporator

(cold vapor)

High PLow P

Low P

Compressor

High P

(Very hot)

Condenser

Page 18: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

CondenserEvaporatorαˆΆπ‘„ αˆΆπ‘„

αˆΆπ‘„

αˆΆπ‘„

αˆΆπ‘Š High THigh PVapor

V. Low TLow PLiquid

Low TLow PVapor

CondenserEvaporatorαˆΆπ‘„ αˆΆπ‘„

αˆΆπ‘Š

High THigh PVapor

Low THigh PLiquid

V. Low TLow PLiquid

Low TLow PVapor

Page 19: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Example

β€’ R134a (Refrigerant 134a)

19

1,1,1,2-Tetrafluoroethane

Boiling point of βˆ’26.3 Β°C at 1 atm

Condenser

Evaporator

αˆΆπ‘„π‘’π‘£π‘Žπ‘

αˆΆπ‘„π‘π‘œπ‘›π‘‘

αˆΆπ‘Š

High T (70℃)High P (10bar)Vapor

Low T (30℃)High P (10bar)Liquid

V. Low T(-20℃)Low P (1.5bar)Liquid/Vapor

Low T (-20℃)Low P (1.5 bar)Saturated vapor

Page 20: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Subcooling & Superheating

β€’ Subcooling (Point 44’)

β€’ Superheating (Point 22’)

∴ 𝐢𝑂𝑃 =αˆΆπ‘„πΆαˆΆπ‘Šπ‘

=π‘žπΆπ‘€πΆ

1 2

34

1’ 2’

3’4’Saturated LiquidSubcooled Liquid

Saturated Vapor

Superheated Vapor

π‘žπΆ

𝑀𝐢

Page 21: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Multi Compression

β€’ Multi Compression– βˆ†β„Ž2β€²1 > βˆ†β„Ž21 + βˆ†β„Ž43

Condenser

Evaporator

Compressor

Throttling (J-T)

Valve

T2T3

𝑀𝐢 = βˆ†β„Ž

βˆ†β„Ž21

βˆ†β„Ž2β€²1

βˆ†β„Ž43

(T3<T2)

Page 22: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Simple liquefaction process

22

Page 23: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Linde-Hampson liquefaction process

β€’ (1895)

23http://ethesis.nitrkl.ac.in/1466/1/PROCESS_DESIGN.pdf

Page 24: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Example 3.16

β€’ n=? (0.73 mol/s in textbook)

β€’ COP=? (3.22 in textbook)

24

PR

0.72mol/s

3.21

Page 25: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Exergy

β€’ Energy is always conserved, but not all that energy is available to do useful work.

β€’ How can we define an useful energy that we can use? Exergy

25

Hot Th

Cold Tc

CarnotCycle

Useful energy

Not useful energy (=heat loss)

Energy 100Steam table Internal

energy uEnthalpy h (kJ/kg)

P=100kPa, T=200℃ 2658.0 2875.3

P=10MPa, T=325℃ 2610.4 2809.0 50

50

Page 26: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Exergy

β€’ Exergy– Available energy to be used.

– The maximum useful work possible during a process that brings the system into equilibrium with its surroundings.

– The useful energy based on the surroundings condition as the reference.

26

ReversibleAdiabaticExpansion

𝑃0, 𝑇0

𝑃1, 𝑇1𝑃0, 𝑇2

𝑃0, 𝑇0𝑀

Still you can produce more workwhen the temperature T2>T0 !

CarnotCycle

π‘€π‘π‘Žπ‘Ÿπ‘›π‘œπ‘‘ 𝑐𝑦𝑐𝑙𝑒

𝑇0𝑃0, 𝑇0

Dead state(no more useful work)

Page 27: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Exergy

β€’ Exergy b at state 1 can be defined as:

β€’ If the macroscopic kinetic energy and potential energy are not negligible:

27

𝑏1 ≑ 𝑒1 βˆ’ 𝑒0 + 𝑃0 𝑣1 βˆ’ 𝑣0 βˆ’ 𝑇0 𝑠1 βˆ’ 𝑠0Available internal energy (comparing to the dead state)

Available PV work Entropy loss or heat loss(or Available chemical energy)

𝑏1 = 𝑒1 βˆ’ 𝑒0 + 𝑃0 𝑣1 βˆ’ 𝑣0 βˆ’ 𝑇0 𝑠1 βˆ’ 𝑠0 +ഀ𝑉12

2βˆ’ΰ΄€π‘‰02

2+ 𝑔 𝑧1 βˆ’ 𝑧0

= 𝑒1 βˆ’ 𝑒0 + 𝑃0 𝑣1 βˆ’ 𝑣0 βˆ’ 𝑇0 𝑠1 βˆ’ 𝑠0 +ഀ𝑉12

2+ 𝑔𝑧1

Page 28: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Exergy in an open system

– This exergy in an open system is called as β€œexthalpy 𝑏𝑓,” but many people use just exergy

for both meaning.

28

𝑏1 = 𝑒1 βˆ’ 𝑒0 + 𝑃0 𝑣1 βˆ’ 𝑣0 βˆ’ 𝑇0 𝑠1 βˆ’ 𝑠0 + 𝑃1 βˆ’ 𝑃0 𝑣1

= 𝑒1 + 𝑃1𝑣1 βˆ’ 𝑒0 + 𝑃0𝑣0 βˆ’ 𝑇0 𝑠1 βˆ’ 𝑠0

= β„Ž1 βˆ’ β„Ž0 βˆ’ 𝑇0 𝑠1 βˆ’ 𝑠0

Page 29: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Example 3.18

29

Q

αˆΆπ‘šπ‘Žπ‘–π‘Ÿ = 30 kg/min𝑇1 = 285 K𝑃1 = 1 bar 𝑃2 = 1 bar

αˆΆπ‘šπ‘ π‘‘π‘’π‘Žπ‘š = 3 kg/minπ‘₯3 = 0.9𝑃3 = 10 bar

π‘₯4 = 0.2𝑃4 = 10 bar

Ex 3.18 (exergy loss)

814.4 kJ/min(SRK)

Page 30: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Example 3.18

30

From h,s: -794 kJ/minFrom ex: -809kJ/min

From h s: From ex: -813/-839

Page 31: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Exergy analysis

0

2479.7 910.9

794.4

1568.8 774.4

2479.7910.9+794.4=1705.3

774.4Exergy loss through heat exchanger

Page 32: Thermodynamic cycles - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/5_Thermodynamic cycles.pdfΒ Β· Carnot cycle on T-s diagram 5 T Entropy s 3 2 4 1 π‘ž =π‘žπ»+π‘žπΆ

SNU NAOE

Y. Lim

Exergy Analysis

32http://exergy.se/goran/thesis/paper1/paper1.html