Thermochemistry of Silicates - NASA · 2020. 8. 6. · Gustavo Costa and Nathan Jacobson NASA Glenn...

31
National Aeronautics and Space Administration www.nasa.gov Thermochemistry of Silicates Gustavo Costa and Nathan Jacobson NASA Glenn Research Center Cleveland, OH [email protected]

Transcript of Thermochemistry of Silicates - NASA · 2020. 8. 6. · Gustavo Costa and Nathan Jacobson NASA Glenn...

  • National Aeronautics and Space Administration

    www.nasa.gov

    Thermochemistry of Silicates

    Gustavo Costa and Nathan Jacobson

    NASA Glenn Research Center

    Cleveland, OH

    [email protected]

  • National Aeronautics and Space Administration

    www.nasa.gov

    Outline of Presentation

    • Silicates in Materials Science, Mineralogy, Geology and Planetary Science

    - Silicate Mineral Subclasses

    • Thermochemistry of Silicates

    - Stability of silicates in different environments and their acid-base chemistry

    - Partial thermodynamics quantities (activity): An indicator of reactivity

    - Thermodynamic activity in silicates

    - Methods to measure activity

    • Thermochemistry of Olivine

    • Thermochemistry of Rare earth Silicates

    -Results for Y2O3-SiO2 and Yb2O3-SiO2 systems

    • Summary: Silicates

  • National Aeronautics and Space Administration

    www.nasa.gov

    Coating applications:

    3

    Ceramics in non-moving parts:

    • Combustor liners

    • Exhaust nozzles

    Eventually moving parts!

    Modern Solid-state Chemistry• Mesoporous based Silicates Sensors: pH, metal cation and humidity

    • Rare-Earth Silicates and Vitreous Silica:

    - Electronic devices: microwave, semiconductors, ferromagnetics, ferroelectrics,

    lasers and phosphors

    - High-Temperature Materials: refractory bricks and coatings

    Silicates in Materials Science

    Felsche, “The Crystal Chemistry of the Rare-Earth Silicates, Springer 1973, 99-197. Melde et al, Sensors, 2008, 8, 5202-5228.

  • National Aeronautics and Space Administration

    www.nasa.gov 4

    Ocurrence

    - Over 90 % of the Earth’s crust consists of silicate minerals

    Silicates in Geology, Mineralogy and Planetary Science

    - Moon, Mars, Asteroids, Comets, Interplanetary dust particles and..

    ..Hot, rocky

    exoplanets

    8%

    3%

    5%

    5%5%

    11%12%

    12%

    39%

    Plagioclase

    Alkali feldspar

    Quartz

    Pyroxene

    Amphibole

    Mica

    Clay

    Other Silicates

    Nonsilicates

    G. E. Brown, Rev. Mineral. Geochem., 5, 275-381, 1980. M. T. DeAngelis etal., Am. Mineral., 97, 653-656, 2012.

    D. Perkins, Mineralogy, 3, Prentice Hall, 2011.

  • National Aeronautics and Space Administration

    www.nasa.gov

    - (FexMg1-x)2SiO4

    - Ortorrombic structure (Pbnm).

    - Red – oxygen.

    - Blue –A sites, silicon.

    - Green – B sites, magnesium or iron.

    Silicate Mineral Subclasses

    D. Perkins, Mineralogy, 3, Prentice Hall, 2011.

  • National Aeronautics and Space Administration

    www.nasa.gov

    Thermodynamics and Acid-Base Chemistry

    Enthalpy of formation of orthosilicates

    vs. ionic potential (z/r) of divalent cations

    z/r < 2 strongly basic

    2 z/r < 4 basic

    4 < z/r < 7 amphoteric

    z/r > acidic

    MgO + SiO2= MgSiO3 Ionic Potential (z/r)and

    Acid-Basic ScaleBase Acid Enstatite

    A. Navrotsky, American Mineralogist, 79, 589-605, 1994..

    Thermodynamic

    Activity as Indicator

    of Stability?

    C a

    Concentration

    Activity

    coefficient

  • National Aeronautics and Space Administration

    www.nasa.gov

    Partial Thermodynamics Quantities: Activity and Vapor

    Pressure Measurement

    R

    S

    TR

    HP

    C

    aPRTKRTSTHG

    vvM

    MMpvvv

    1ln

    ionconcentrat C ;coeficientactivity

    a

    )/ln(ln

    M (s) = M (g)

    Activity Pressure

    R

    Hvslopeplot with Hofft van'a is vs1/TlnP M

    kITMPerSpectromet Mass

    Au(l) = Au(g)

    ∆v𝐻𝑜 = -R*(-41.162) = 342.20 kJ/mol

    Tables = 342 kJ/mol

    section cross ionizationσ

    re; temperatuAbsoluteT

    intenisty;ion I constant; instrumentk

    M; of pressure partialPM

  • National Aeronautics and Space Administration

    www.nasa.gov

    Solutions: A1-B1-βC1-γSame Phase; Variable Stoichiometry

    • Important solution parameters

    • Quantify how vapor pressure is reduced due to solution formation

    • Example: Olivine—can treat as solution of FeO, MgO, SiO2

    • Use data to calculate thermodynamic activity of each component

    • Measure thermodynamic parameters for olivine solutions

    – e.g. ln a(FeO) vs 1/T slope is partial molar enthalpy

    – Input to codes to model:

    • Atmospheres of hot, rocky exoplanets

    • Vapor over lava

    1

    ][][K

    (g)O 1/2Fe(g)FeO(s)

    2/12/1

    p

    2

    22

    o

    O

    o

    Fe

    FeO

    o

    O

    o

    Fe PP

    a

    PP

    Thermodynamic Activities

    2/1

    2/1

    2/1

    p

    2

    ][

    ][

    ][K

    (g)O 1/2Fe(g)1) a on,FeO(soluti

    2

    2

    2

    o

    O

    o

    Fe

    OFe

    FeO

    FeO

    OFe

    PP

    PPa

    a

    PP

  • National Aeronautics and Space Administration

    www.nasa.gov

    Methods to measure silica activity

    • Oxidation-reduction equilibrium using gas mixtures or electrochemical cells

    • High temperature reaction calorimetry

    • Knudsen Effusion Mass Spectrometry

    vapor

    sample

    Effusion orifice

    Mass spectrometer: Intensity Pressure Activity

    Exact approach depends on the system

    *A. I Zaitsev and B. M. Mogutnov, J Mater Chem 5, 1063 (1995)

    RE-silicates - Reducing agent is used for to boost vaporization of SiO2 without

    changing solid composition

    Olivine – Single cell configuration is used to attain higher temperatures

  • National Aeronautics and Space Administration

    www.nasa.gov

    Knudsen Effusion Mass Spectrometry (KEMS)

    • 90 magnetic sector; non-magnetic ion source ion counting detector no mass discrimination

    • Cross axis electron impact ionizer

    • Resistance heated cell; multiple Knudsen cell system

    • Measurements to 2000C, Pressure to 1 x 10-10 bar

    section cross ionization

    (K) eTemperatur

    constant instrument

    i component of pressure

    i

    i

    iii

    S

    T

    k

    p

    STIkp

    Use Multi-Cell Flange for a(SiO2)

    Design of E. Copland 2002

    Intensity Pressure Activity

    Olivine and Rare – Earth Silicates

  • National Aeronautics and Space Administration

    www.nasa.gov

    Olivine - Results

  • National Aeronautics and Space Administration

    www.nasa.gov

    93% forsterite and 7% fayalite, Fo93Fa7 - (Fe0.7Mg0.93)2SiO4

    *Uncertainties of

    the analyses are

    given in

    parentheses.

    807876747270686664626058565452504846444240383634323028262422201816141210

    13,000

    12,500

    12,000

    11,500

    11,000

    10,500

    10,000

    9,500

    9,000

    8,500

    8,000

    7,500

    7,000

    6,500

    6,000

    5,500

    5,000

    4,500

    4,000

    3,500

    3,000

    2,500

    2,000

    1,500

    1,000

    500

    0

    -500

    -1,000

    -1,500

    -2,000

    -2,500

    -3,000

    -3,500

    -4,000

    forsterite 87.68 %

    enstatite 7.08 %

    Silica 0.84 %

    Sapphirine 0.45 %

    Clinochlore 3.94 %

    XRD pattern and Rietveld refinement of the as received olivine samples.

    ICP-OES analysis

    of the as received

    olivine samples.

    Forsterite – 87.7 ± 0.3%

    Enstatite – 7.1 ± 0.2%

    Silica – 0.84 ± 0.6%

    Sapphirine – 0.5 ± 0.1%

    Clinochlore – 3.9 ± 0.2%

    Phase content

    Olivine – Starting Material and Characterization

  • National Aeronautics and Space Administration

    www.nasa.gov

    10 20 30 40 50 60 70 80

    Rela

    tiv

    e I

    nte

    nsit

    y (

    a. u

    .)

    2 (degree)

    A

    B

    C*

    Olivine

    Protoenstatite*

    XRD patterns of the olivine samples : (A) green sand from Hawaii, (B)

    after KEMS up to 1850 K in a Mo Knudsen cell (C) after KEMS up 2079

    K in an Ir Knudsen cell.

    XRD patterns of the olivine samples : (A) as received , (B) after KEMS

    up to 2084 K in a Mo Knudsen cell (C) after KEMS up to 1850 K in a

    Mo Knudsen cell (D) after KEMS up 2079 K in an Ir Knudsen cell.

    10 20 30 40 50 60 70 80

    Protoenstatite*

    *

    D

    Sapphirine-1A

    C

    B

    Tugarinovite

    Olivine

    Quartz

    Enstatite

    Rela

    tiv

    e I

    nte

    nsit

    y (

    a. u

    .)

    2 (degree)

    Clinochlore

    A

    *

    Side view (cross-section) of the Mo Knudsen

    cell containing the olivine sample heat treated

    up to 2084 K.

    Element

    Wt (%)Sample as

    receivedaAfter KEMS in a

    Mo cell

    After KEMS in a Ir

    cell

    Al 0.0120(6) 0.016(6) 0.2(1)

    Ca 0.035(2) 0.009(2) 0.04(2)

    Co 0.0120(6) 0.003(2) 0.004(3)

    Cr 0.052(3) 0.035(4) 0.06(1)

    Fe 5.01(3) 0.006(3) 0.93(3)

    Mg 30(2) 35.0(1) 34(1)

    Mn 0.075(4) 0.003(1) 0.031(3)

    Na 0.0080(4) - -

    Ni 0.27(1) 0.005(3) 0.006(3)

    Sc 0.0040(2) - -

    Si 20(1) 19.3(1) 21.8(8)

    Mo 0 0.04(2) 0

    Ir 0 0 0.06(3)

    Chemical composition of the olivine powder samples Fo93Fa7 before

    and after KEMS up to 2084 K.

    Olivine – Impurities and Container Issues

  • National Aeronautics and Space Administration

    www.nasa.gov

    Temperature dependence of ion intensity ratios of Mg+,

    Fe+, SiO+, O+ and O2+ in the olivine sample.

    Measurements show good agreement with the phase

    diagram calculated by Bowen and Shairer.

    Fegley and Osborne, “Practical Chemical Thermodynamics

    For Geoscientists, Elsevier 2013, Fig. 12-11.

    4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

    7

    6

    5

    4

    3

    2

    1

    0

    Fe

    SiO

    Mg

    O

    O2

    104 T

    -1(K

    -1)1805 ºC

    2300 2200 2100 2000 1900 1800 1700

    -lo

    gP

    (kP

    a)

    T (K)

    N. L. Bowen and J. F. Schairer, Am. J. Sci. 29, 151-171 (1935).

    Complete van’t Hoff Plot

    Interesting discontinuity at melting

  • National Aeronautics and Space Administration

    www.nasa.gov

    4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8

    -1.4

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    log

    (aS

    iO)

    10-4T

    -1(K

    -1)

    2000 1950 1900 1850 1800 1750T (K)

    2/1

    2/1

    2/1

    p

    ][

    ][

    ][K

    2

    2

    2

    o

    O

    o

    M

    OM

    MO

    FeO

    OM

    PP

    PPa

    a

    PP

    Thermodynamic Activities in Olivine - (FexMg1-x)2SiO4

    MO(solution, a

  • National Aeronautics and Space Administration

    www.nasa.gov

    Rare earth Silicates

  • National Aeronautics and Space Administration

    www.nasa.gov

    Low Reactivity of Rare earth Silicates

    17

    Si(OH)4(g) , MOH(g) H2O(g)

    SiO2, MO(Underline indicates in solution)SiC + 3/2 O2(g) = SiO2 + CO(g)

    • SiO2 + 2 H2O(g) = Si(OH)4(g)

    Meschter and Opila., Annu Rev Mater Res 43, 559 (2013)

    N. S. Jacobson, J Am Ceram Soc 97, 1959 (2014)

    P[Si(OH)4] = K a SiO2 [P(H2O)]2

    Y and Yb silicates

    Need to be measured!

    Exposure Time (hrs)

    0102030405060708090100

    Wt. Change (mg/cm2 )

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    CVI (ACI)[1232 C]

    Ml[1232 C]

    CVI (ACI)[1274 C]

    MI[1107 C]

    SiC/SiC CMC HPBR Paralinear Weight Change

    (1100 -1300C, 6 atm; Robinson/Smialek 1998)

    Si(OH)4 volatility (Opila et al., 1998-2006)

  • National Aeronautics and Space Administration

    www.nasa.gov

    Key Parameters in Boundary Layer Limited Transport

    Modeling

    • SiO2(pure or in silicate soln) + 2 H2O(g) = Si(OH)4(g)

    • Reduce a(SiO2) reduce recession. Recession drives need for coatings

    4)(

    2)(

    33.0

    )(

    5.0

    )()(

    33.0

    )(

    5.0

    Si(OH) ofy diffusivit phase gasviscosity

    dimension sticcharacteridensity gas stream free velocitystream free

    664.0

    664.0

    4

    22

    4

    4

    44

    4

    OHSi

    OHSiO

    OHSi

    OHSi

    OHSiOHSi

    OHSi

    D

    L

    PaKLTR

    D

    D

    L

    LTR

    PD

    D

    LFlux

    L

    Combustion Gases

    Gas Boundary

    Layer

    Si(OH)4(g)

    SiO2

    ν = 0

    Free Stream

    Gas Velocity

    ν

  • National Aeronautics and Space Administration

    www.nasa.gov

    Calculated Y2O3-SiO2 Phase Diagram:

    Fabrichnaya-Seifert Database

    19

    Indirect evidence suggests that the SiO2 thermodynamic activity is

    lower in the Y2O3-Y2SiO5 and Y2SiO5-Y2Si2O7 regions

    But there are no direct measurements!

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    TE

    MP

    ER

    AT

    UR

    E_

    KE

    LV

    IN

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    MOLE_FRACTION SIO2

    THERMO-CALC (2010.08.10:09.24) : DATABASE:USER AC(O)=1, N=1, P=1.01325E5;

    Y2O3 + MSY2O3 + MS

    MS

    + D

    S

    MS

    + D

    S MS

    + S

    iO2

  • National Aeronautics and Space Administration

    www.nasa.gov

    • Vapor pressure of SiO2 too low to measure in temperature range of interest

    • Need measurable signal for SiO2—use reducing agent to make excess SiO(g). Tried

    several, selected Mo or Ta

    – For a(SiO2) < ~0.02

    • 2Ta(s) + 2SiO2(soln) = 2SiO(g) + TaO(g) + TaO2(g)

    – For a(SiO2) > ~0.02

    • Mo(s) + 3SiO2(soln) = 3SiO(g) + MoO3(g)

    – Note reducing agent must not change solid phase composition

    • Monosilicates + disilicates +Ta – leads to tantalates

    • Need to account for non-equilibrium vaporization

    • SiO overlaps with CO2 (m/e = 44)

    – Use LN2 cold finger for improved pumping

    – Shutter to distinguish vapor from cell and background

    – Gettering pump for CO2

    20

    Issues with Measuring a(SiO2) in RE Silicates

  • National Aeronautics and Space Administration

    www.nasa.gov

    Approaches use two phase regions

    Two cells:

    • Au

    • 3Ta + Y2O3 + Y2O3 SiO2

    2Ta(s) + 3SiO2(soln) = 3SiO(g) + TaO(g) + TaO2(g)

    - Using Peq(SiO) and FactSage (free energy minimization)

    - Correction for non-equilibrium vaporization

    21

    1 – Monosilicate + RE2O3 2 – Monosilicate + Disilicate

    33.0

    3

    3

    3

    3

    2

    33.0

    3

    3

    2

    32

    33.0

    3

    3

    2

    32

    3

    2

    3

    3

    )()(

    )()()(

    )()()(

    33

    )()(1)(

    33

    )(

    )()(

    MoOISiOI

    MoOISiOISiOa

    K

    MoOPSiOPSiOa

    MoOSiOSiOMo

    K

    MoOPSiOPSiOa

    MoOSiOSiOMo

    SiOa

    MoOPSiOPK

    oo

    oo

    Three cells:

    • Au (reference)

    • 3Mo + Y2O3 2SiO2 + Y2O3 SiO2

    • 3Mo + SiO2

    Mo(s) + 3SiO2(soln) = 3SiO(g) + MoO3(g)

    - Compare cells 1 and 2

    - Less data processing than with Ta

    - Correction is not needed.

    Cell 3

    Cell 2

    1 2

    3

    Cells are part of the system

  • National Aeronautics and Space Administration

    www.nasa.gov

    Monosilicate + RE2O3

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    TE

    MP

    ER

    AT

    UR

    E_

    KE

    LV

    IN

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    MOLE_FRACTION SIO2

    THERMO-CALC (2010.08.10:09.24) : DATABASE:USER AC(O)=1, N=1, P=1.01325E5;

    Y2O3-SiO2 Yb2O3-SiO2

  • National Aeronautics and Space Administration

    www.nasa.gov

    XRD after KEMS Measurements of RE Monosilicates + RE2O3 + Ta:

    Sample: 4-7-12A

    Position [°2Theta] (Copper (Cu))

    10 20 30 40 50 60 70

    Counts

    0

    2500

    10000

    22500

    NJ 4-7-12A

    Y2O3

    Y2O3.(SiO2)

    Ta

    Ta3Si

    41

    49

    4

    4

    wt (%)Phase

    Yb2O3

    Yb2O3.(SiO2)

    Ta

    Ta2Si

    24

    66

    2

    2

    wt (%)Phase

    Yttrium monosilicate + Y2O3 + Ta Ytterbium monosilicate + Yb2O3 + Ta

  • National Aeronautics and Space Administration

    www.nasa.gov 24

    Raw Data—log (IT) vs 1/T

    Cell (1): Au Reference Cell (2): Ta + Y2O3 + MS

    Tabulated 346.3 kJ/mol

  • National Aeronautics and Space Administration

    www.nasa.gov 25

    Y2O3 + Y2O3.(SiO2)

    *Liang et al. “Enthalpy of formation of rare-earth silicates Y2SiO5 and Yb2SiO5 and N-containing silicate Y10(SiO4)6N2”, J.

    Mater. Res. 14 [4], 1181-1185. **J. A. Duff, J. Phys. Chem. A 110, 13245 (2006)

    Yb2O3 + Yb2O3.(SiO2)

    RE2O3(s, 1600 K) + SiO2(s, 1600 K) RE2SiO5(s, 1600 K) H1 = measured in this work

    RE2SiO5(s, 1600 K) RE2SiO5(s, 298 K) H2 = H1600 K – H298 K

    RE2O3(s, 298 K) RE2O3(s, 1600 K) H3

    SiO2(s, 298 K) SiO2(s, 1600 K) H4

    2 RE(s, 298 K) + 3/2 O2(g, 298 K) RE2O3(s, 298 K) H5

    Si(s, 298 K) + O2(g, 298 K) SiO2(s, 298 K) H6

    2 RE(s, 298 K) + Si(s, 298 K) + 5/2 O2(g, 298 K) RE2SiO5(s, 298 K) H7 = ∆𝐻𝑓,𝑅𝐸2𝑆𝑖𝑂5,298 𝐾

    H(SiO2, 1600 K) = (5200.26)·R·2.303 = 99.57 kJ/mol

    Y2O3.(SiO2) -2907 ± 16 -2868.54 ± 5.34

    Yb2O3.(SiO2) -2744 ± 11 -2774.75 ±16.48

    KEMS Calorimetry*

    Hf, RE silicate, 298 K (kJ/mol)

    a(SiO2), 1650 KOptical basicity**

    0.786

    0.729

    0.000804

    6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7

    -4.0

    -3.5

    -3.0

    -2.5

    -2.0

    -1.5

    -1.0

    log

    [a(S

    iO2)]

    T-110

    -4(K

    -1)

    y = -1412.60(1/T)-1.67

    1650 1600 1550 1500

    T (K)

    H(SiO2, 1600 K) = (1412.60)·R·2.303 = 27.05 kJ/mol

    0.00298

  • National Aeronautics and Space Administration

    www.nasa.gov

    Monosilicate + Disilicate

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    TE

    MP

    ER

    AT

    UR

    E_

    KE

    LV

    IN

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    MOLE_FRACTION SIO2

    THERMO-CALC (2010.08.10:09.24) : DATABASE:USER AC(O)=1, N=1, P=1.01325E5;

    Y2O3-SiO2+ Y2O3-2SiO2 Yb2O3-SiO2+ Yb2O3-2SiO2

  • National Aeronautics and Space Administration

    www.nasa.gov

    XRD after KEMS Measurements of RE Monosilicates + Disilicates + Mo:

    Y2O3.(SiO2)

    Phase

    Yb2O3.(SiO2)

    Mo

    56

    36

    8

    wt (%)Phase

    Ytterbium monosilicate + disilicate + Mo

    Yb2O3.2(SiO2)

    Yttrium monosilicate + disilicate +Mo

    Position [°2Theta] (Copper (Cu))

    10 20 30 40 50 60 70

    Counts

    0

    400

    1600

    3600

    6400

    NJ 2-07824

    Peak List

    Y2 ( Si O4 ) O; Monoclinic; 04-007-4730

    Mo; Cubic; 04-004-8483

    Y2 Si2 O7; Monoclinic; 00-038-0440

    Ln2 Si2 O7; Monoclinic; 00-021-1014

    Y2 Si2 O7; Monoclinic; 00-042-0167

    Y2O3.2(SiO2)

    Mo

  • National Aeronautics and Space Administration

    www.nasa.gov

    Y2O3.(SiO2) + Y2O3.2(SiO2) Yb2O3.(SiO2) + Yb2O3.2(SiO2)

    5.30 5.35 5.40 5.45 5.50 5.55 5.60 5.65

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    log

    [a(S

    iO2)]

    T-1 10

    -4 (K

    -1)

    1880 1860 1840 1820 1800 1780

    T (K)

    a(SiO2), 1650 KOptical basicity**

    0.786

    0.729 0.194

    Y2O3.(SiO2)

    Yb2O3.(SiO2)

    Y2O3.2(SiO2)

    0.699

    0.657

    Yb2O3.2(SiO2)

    0.281

  • National Aeronautics and Space Administration

    www.nasa.gov 29

    L

    Combustion Gases

    Gas Boundary

    Layer

    Si(OH)4(g)

    SiO2

    ν = 0

    Free Stream

    Gas Velocity

    ν

    Now Have the Needed Quantities for Modeling Recession

    3.86E-4

    0.13488

    0.00143

    0.09312

    0.48

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    JS

    i(O

    H) 4(m

    g/c

    m2-h

    )

    – T = 1300C; P = 10 bar; P(H2O) = 1 bar

    – v = 20 m/s

    – L = 10 cm

    – = 5 x 10-4 g/cm-s

    – = 2.2 x 10-3 g/cc

    – DSi(OH)4 = 0.19 cm2/s

    – log K = -2851.2/T – 3.5249 (Si(OH)4(g) transpiration measurements)

    – a(SiO2) from activity measurements

    2)(33.0

    )(

    5.0

    22

    4

    4

    664.0 OHSiOOHSi

    OHSi

    PaKLTR

    D

    D

    LFlux

  • National Aeronautics and Space Administration

    www.nasa.gov

    Summary

    • The reduced SiO2 activity in Rare-earth silicates should limit their reactivity with water vapor

    • Solid State rare earth oxides—activity of SiO2

    – Need reducing agent to obtain a measurable signal for SiO(g), which in turn relates to activity of

    SiO2. Reducing agent must not change solid phase composition.

    – Method and choice of reducing agent depends on particular silicate

    • Thermodynamic data for gas phase hydroxides and solid candidate coating recession modeling input

    data

    30

    • Secondary phases of the olivine sample were removed at temperatures > 1060 C.

    • Mo and Re cell reacts with olivine sample. Ir must be used

    • The main vapor species of the olivine sample are Mg+, O+, O2+, SiO+ and Fe+ following this order of

    evaporation.

    • The melting point of the olivine sample was determined by the ion intensity discontinuity to be 1805 C.

    • Temperature dependence of partial pressures of the species were determined and their activities. Next

    steps

    • Vaporization coefficient measurements

    • Fundamental understanding of thermodynamic is critical to models and structure-property relationships

    – Vapor pressure techniques—Knudsen effusion mass spectrometry

    • Silicates are everywhere – from minerals to electronic materials to aircraft engines

    Olivine

    Rare-Earth Silicates

  • National Aeronautics and Space Administration

    www.nasa.gov

    Acknowledgements

    • Helpful discussions with B. Opila (Formerly NASA Glenn now

    University of Virginia)

    • Multiple cell and sampling system improvements to mass

    spectrometer: E. Copland (formerly NASA Glenn now CSIRO,

    Sydney, Australia)

    • XRD: R. Rogers (NASA Glenn)

    • NASA/ORAU Post-doctoral Fellowship Program