Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar...

16
11/7/2018 1 http://space‐geodesy.nasa.gov Thermal‐Optical Performance of the GPS III Laser Retroreflector Array S. M. Merkowitz, J. Crow, J. Esper, E. D. Hoffman, D. Steinfeld, S. Wall NASA Goddard Space Flight Center P. Lyons Sigma Space Corporation J. Griffiths, C. Moore, M. Nurnberger, L. Thomas, L. Willstatter Naval Research Laboratory 21st International Workshop on Laser Ranging November 7, 2018

Transcript of Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar...

Page 1: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 1http://space‐geodesy.nasa.gov

Thermal‐Optical Performance of the GPS III Laser Retroreflector Array

S. M. Merkowitz, J. Crow, J. Esper, E. D. Hoffman, D. Steinfeld, S. Wall NASA Goddard Space Flight Center

P. Lyons Sigma Space Corporation

J. Griffiths, C. Moore, M. Nurnberger, L. Thomas, L. Willstatter Naval Research Laboratory

21st International Workshop on Laser Ranging

November 7, 2018

Page 2: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 2http://space‐geodesy.nasa.gov

GPS Laser Retroreflector Array

SLR to GPS will contribute significantly towards improving the accuracy and stability of the International and WGS84 Terrestrial Reference Frames.

GPS will then provide a means to accurately and uniformly distribute this new accuracy to all systems utilizing GPS.

Delivery of at least 22 arrays for GPS IIIF (SV‐11 launch availability in 2026). 

Page 3: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 3http://space‐geodesy.nasa.gov

Geodetic Objectives

Achieve a stable geodetic reference frame with accuracy at least ten times better than the anticipated user requirements for positioning, navigation, and timing.

Maintain a close alignment of the WGS‐84 reference frame with the ITRF. Provide a quality assessment capability independent of current radiometric measurements used to determine GPS orbits and clock performance.

Ensure interoperability of GPS with other GNSS’s (GLONASS, Galileo) through a common, independent measurement technique.

Page 4: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 4http://space‐geodesy.nasa.gov

Cross Section Requirement

ILRS Standard for an “Effective Cross‐Section” of 100 million square meters for satellites at GNSS altitudes.https://ilrs.cddis.eosdis.nasa.gov/docs/retroreflector_specification_070416.pdf

Page 5: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 5http://space‐geodesy.nasa.gov

Array Design Overview

Planar Array – 16 inch diameter 48 recessed 1.6 inch diameter Suprasil‐1 cubes Random clocking Slight 0.2 arcsec dihedral angle spoiling Uncoated back sides Front surfaces coated with an antireflection coating optimized for 532nm and 1064nm

Total array weight: 17.5 lbs. Thermally isolated from the spacecraft (standoffs & blanketing)

Page 6: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 6http://space‐geodesy.nasa.gov

Predicted Cross Section/FFDP

Velocity Aberration: 22‐26 μrad

Page 7: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 7http://space‐geodesy.nasa.gov

Incident Angle ‐ Predicted Cross Section

Page 8: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 8http://space‐geodesy.nasa.gov

Engineering Qualification Model (EQM)

EQM Vibration Verification

EQM After Assembly

Page 9: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 9http://space‐geodesy.nasa.gov

Thermal‐Optical Testbed Salient Features 32” ID x 48” L vacuum chamber with roughing, turbo and 

cryo pumps 16 inch clear aperture window Controlled thermal environment via blanketed and painted 

shroud, actively cooled (LN2) and heated Solar simulator providing 12 inch diameter 0.8 suns through 

window Thermal monitoring via thermocouples Simulate orbit orientation (variable AOI) via internal vertical 

axis rotation stage driven by a stepper motor 532 nm CW, power stabilized laser source ‐ currently linear 

polarized Source plate optics feeding a 16 inch off‐axis parabola 

(OAP) providing a collimated 16 inch beam through the chamber window

Return beam focuses onto a 10x objective feeding a 3.69 micron pixel CCD

Page 10: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 10http://space‐geodesy.nasa.gov

Testbed Optical Layout

Page 11: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 11http://space‐geodesy.nasa.gov

Individual Cube Models and Measurements

Page 12: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 12http://space‐geodesy.nasa.gov

Ambient FFDP Measurements

0° Laser AOIMean OCS = 152x106 m2

14° Laser AOIMean OCS = 119x106 m2

16° Laser AOIMean OCS = 109x106 m2

Page 13: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 13http://space‐geodesy.nasa.gov

Mean Cross Section vs Laser Angle of Incidence

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

0 2 4 6 8 10 12 14 16

Optical Cross Sectio

n (106

m2 )

Angle of Incidence (deg)

OCS vs AOI

Preliminary result ‐ some pixel count to OCS calibration issues remain

Page 14: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 14http://space‐geodesy.nasa.gov

FFDP vs Solar AOI (Steady State)

0° AOIMean OCS = 151x106 m2

19° AOIMean OCS = 187x106 m2

25° AOIMean OCS = 161x106 m2

Page 15: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 15http://space‐geodesy.nasa.gov

Mean Cross Section vs Solar AOI (Steady State)

Preliminary result ‐ some pixel count to OCS calibration issues remain

Solar breakthrough occurs around 19°

0

20

40

60

80

100

120

140

160

180

200

0 15 19 25 45

Optical Cross Sectio

n (106

m2 )

Solar Angle of Incidence (deg)

OCS vs Solar AOI

9‐Aug

30‐Aug

Page 16: Thermal‐Optical Performance of the GPS III Laser ......Transient Test ‐sweeping through solar beam at orbital speeds Deliberate Gradient Test ‐thermal gradients generated across

11/7/2018 16http://space‐geodesy.nasa.gov

Conclusions

Demonstrated the GPS‐LRA meets the ILRS cross section requirement over the range of SLR incidence angles.

The cross section remains stable throughout the full range of solar incidence, including past the breakthrough angle.

Full thermal‐optical performance verification will be performed over the coming weeks, including:Cold Test ‐ soak the array to ‐18°CTransient Test ‐ sweeping through solar beam at orbital speedsDeliberate Gradient Test ‐ thermal gradients generated across the LRA with heaters