Thermal transfer Characteristics of TCM

30
THERMAL TRANSFER CHARACTERISTICS ON HEATER Jorge Hernandez PhD. Stundent DIMES -UNICAL

Transcript of Thermal transfer Characteristics of TCM

Page 1: Thermal transfer Characteristics of TCM

THERMAL TRANSFER CHARACTERISTICS ON HEATER

Jorge Hernandez PhD. Stundent DIMES -UNICAL

Page 2: Thermal transfer Characteristics of TCM

Heat Transfer

β€’ Temperature conduction is performed from a hot body to a cold body.

β€’ Thermal Equilibrium happens in two bodies have the same temperature.

Page 3: Thermal transfer Characteristics of TCM

Thermal Transfer Variables

Page 4: Thermal transfer Characteristics of TCM

Difference Temperature

β€’ Contact surface of two bodies experiences a difference in temperature.

β€’ While thermal equilibrium come to happen, the difference go to zero.

Page 5: Thermal transfer Characteristics of TCM

Material thermal characteristic

β€’ In previous example, heat was transferred from water through the metal to water.

β€’ The rate of heat transfer depends on material through heat is transferred.

β€’ Heat transfer coefficient (k) express thermal conduction characteristic of a material.

β€’ Large value of K means thermal conductor and a lower value means thermal isulators.

Page 6: Thermal transfer Characteristics of TCM

Material thermal characteristic

β€’ k is determined experimentally and its unit is π‘Š

π‘š. °𝐢

Source: http://www.roymech.co.uk/Related/Thermos/Thermos_HeatTransfer.html

Material k Material k

Aluminum 237 Porcelain 1.05

Brass 110 Wood 0.13

Copper 398 Water 0.58

Gold 315 Air 0.024

Page 7: Thermal transfer Characteristics of TCM

Material body characteristics

β€’ Area (A) – Wider areas conduct more heat and this means

greater heat dissipation. Not good for our project.

β€’ Thickness (d) – Thin walls conduct heat in faster way. This affect

the rate thermal transfer.

Page 8: Thermal transfer Characteristics of TCM

Mathematical Equation

Page 9: Thermal transfer Characteristics of TCM

Mathematical Equation β€’ Variables:

– Temperature difference: (T1 – T2) – Thermal Conductivity Coefficient of the Material: k – Area: A – Thickness: d

(1) π‘ƒπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = π‘„π‘Ÿ

= πœŽπ‘Ÿπ‘‘π‘‘ (𝑇𝑇 βˆ’ 𝑇𝑇) [π½π½π½π½π‘Ÿπ½π½

= π‘Š]

(2) πœŽπ‘Ÿπ‘‘π‘‘ = π‘˜ .𝐴𝑑

[π‘ŠΒ°πΆ

] Average Thermal Conductance (3) π‘…π‘Ÿπ‘‘π‘‘ = 1

πœŽπ‘‘π‘‘π‘‘ [°𝐢

π‘Š] Average Thermal Resistance

Information extracted from reference [1], assuming that areas are flat and regular.

Page 10: Thermal transfer Characteristics of TCM

Application Problem Case

Page 11: Thermal transfer Characteristics of TCM

Heater V1

Page 12: Thermal transfer Characteristics of TCM

Practical Considerations – Contact area of SafeFET

(heat source size) is smaller than the opposite side area and even the DUT contact area.

– Location of heat source is important to note because of thermal distribution on sink.

– Also, thermal resistance of electrical isulator must be considered.

Page 13: Thermal transfer Characteristics of TCM

Mathematical Resolution

β€’ Calculation of Total Thermal Resistance based on reference [1] and [2]. 1. Calculate π‘…π‘Ÿπ‘‘π‘‘. 2. Calculate 𝑅𝑅𝑅𝑐 3. Calculate 𝑅𝑅𝑅𝑅.

Page 14: Thermal transfer Characteristics of TCM

Calculation π‘…π‘Ÿπ‘‘π‘‘ according to [1] 𝐴 = 0.0𝑇8 π‘₯ 0.0𝑇𝑇 [π‘š2]

𝐴 = 3.96π‘₯𝑇0βˆ’4 [π‘š2]

𝑑 = 0.003 [π‘š]

π‘˜ = 𝑇𝑇0 [π‘Š

π‘š. °𝐢]

From (𝑇) and (3):

π‘…π‘Ÿπ‘‘π‘‘ = 𝑑

π‘˜. 𝐴=

0.003(𝑇𝑇0)(3.96π‘₯𝑇0βˆ’4)

Β°πΆπ‘Š

𝑹𝒕𝒕𝒕 = πŸ”πŸ”. πŸ”πŸ–πŸ–πŸπ’•βˆ’πŸ‘[Β°π‘ͺ𝑾

]

Page 15: Thermal transfer Characteristics of TCM

Equations for π‘…π‘Ÿπ‘‘π‘‘ β€’ In [2], Spreading Thermal Resistance (π‘…π‘Ÿπ‘‘π‘‘) is stablished

in function of π‘…π‘Ÿπ‘‘π‘‘ and the difference between size of the heating areas in each side of the sink.

β€’ π‘…π‘Ÿπ‘‘π‘‘ is an additional quantity that is needed for determining the maximum heat sink temperature.

β€’ Also, [2] considers the location of heating source on the sink surface. π‘ͺ𝒇 [ 𝟏

π’Ž]

β€’ Ideally, this should be in the center of the same. π‘ͺ𝒇 = 𝟏

Page 16: Thermal transfer Characteristics of TCM

Equations for π‘…π‘Ÿπ‘‘π‘‘ and π‘…π‘Ÿπ‘‘π‘Ÿ

(4) π‘…π‘Ÿπ‘‘π‘‘ = 𝐢𝑓 π‘₯ 𝐴𝑝. 𝐴𝐽

π‘˜ . πœ‹. 𝐴𝑝. 𝐴𝐽π‘₯

Ξ». π‘˜. 𝐴𝑝. π‘…π‘Ÿπ‘‘π‘‘ + tanh (Ξ». 𝑑)𝑇 + Ξ». π‘˜. 𝐴𝑝. π‘…π‘Ÿπ‘‘π‘‘. tanh (Ξ». 𝑑)

[Β°πΆπ‘Š

]

Where: Ξ»=

πœ‹32οΏ½

𝐴𝑝+

𝑇𝐴𝐽

β€’ 𝐴𝑝: Footprint area of the heat sink base-plate β€’ 𝐴𝐽: Contact area of the heat source

(5) π‘…π‘Ÿπ‘‘π‘Ÿ= π‘…π‘Ÿπ‘‘π‘‘ + π‘…π‘Ÿπ‘‘π‘‘

Page 17: Thermal transfer Characteristics of TCM

Calculation of π‘…π‘Ÿπ‘‘π‘‘ according to [2]

𝐴𝑝 = 0.0𝑇8 π‘₯ 0.0𝑇𝑇 = 3.96π‘₯𝑇0βˆ’4[π‘š2] 𝐴𝐽 = 0.0𝑇04 π‘₯ 0.0𝑇0𝑇 = 𝑇05.04π‘₯𝑇0βˆ’6[π‘š2]

Ξ» = πœ‹3

2οΏ½

𝐴𝑝+

𝑇𝐴𝐽

= 377.39 [π‘‡π‘š

]

Page 18: Thermal transfer Characteristics of TCM

Calculation of π‘…π‘Ÿπ‘‘π‘‘ according to [2] β€’ From (4) π‘Žπ‘›π‘‘ assuming that heat source is placed in the center of

the base-plate:

π‘…π‘Ÿπ‘‘π‘‘ = 𝐢𝑓 π‘₯ 𝐴𝑝. 𝐴𝐽

π‘˜ . πœ‹. 𝐴𝑝. 𝐴𝐽π‘₯

Ξ». π‘˜. 𝐴𝑝. π‘…π‘Ÿπ‘‘π‘‘ + tanh (Ξ». 𝑑)𝑇 + Ξ». π‘˜. 𝐴𝑝. π‘…π‘Ÿπ‘‘π‘‘. tanh (Ξ». 𝑑)

[Β°πΆπ‘Š

]

tanh 377.39 π‘₯ 0.003 = 0.8𝑇𝑇76 Ξ». π‘˜. 𝐴𝑝. π‘…π‘Ÿπ‘‘π‘‘ = 377.39 π‘₯ 𝑇𝑇0 π‘₯ 3.96π‘₯𝑇0βˆ’4 π‘₯ 68.87π‘₯𝑇0βˆ’3 = 𝑇.𝑇3𝑇𝑇

π‘…π‘Ÿπ‘‘π‘‘ = 𝑇 π‘₯ 3.96π‘₯𝑇0βˆ’4. 𝑇05.04π‘₯𝑇0βˆ’6

𝑇𝑇0 . πœ‹(3.96π‘₯𝑇0βˆ’4)(𝑇05.04π‘₯𝑇0βˆ’6)π‘₯

𝑇.944𝑇.9𝑇9

[Β°πΆπ‘Š

]

𝑹𝒕𝒕𝒕 = πŸ“. πŸπŸ–πŸπ’•βˆ’πŸ‘ [Β°π‘ͺ𝑾

]

Page 19: Thermal transfer Characteristics of TCM

Calculation of π‘…π‘Ÿπ‘‘π‘Ÿ according to [2] β€’ From (5):

π‘…π‘Ÿπ‘‘π‘Ÿ = π‘…π‘Ÿπ‘‘π‘‘ + π‘…π‘Ÿπ‘‘π‘‘

π‘…π‘Ÿπ‘‘π‘Ÿ = 68.87π‘₯𝑇0βˆ’3 + 5.𝑇π‘₯𝑇0βˆ’3 [Β°πΆπ‘Š

]

𝑹𝒕𝒕𝒕 = πŸ–πŸ•. π’•πŸ–πŸ–πŸπ’•βˆ’πŸ‘ [Β°π‘ͺ𝑾

]

Note.- Line graph shows the Cf variations in function of the distance from the center of the heat sink to the heat source placed along the center line at y=0 and -37.5 < x < 37.5 [mm]. Cf is case dependent.

Page 20: Thermal transfer Characteristics of TCM

THERMAL TRANSFER SAFEFET - DUT

Page 21: Thermal transfer Characteristics of TCM

How does the heat flow?

β€’ Considerations: – Contact temperature

between case SafeFET and right side of sink is 𝑇𝐢𝐢.

– Contact temperature between case DUT and left side of sink is 𝑇𝐢𝐢.

– Thermal resistence of the electrical isulator must be considered.

Page 22: Thermal transfer Characteristics of TCM

Case study extracted from Project β€’ Both SafeFET and DUT are heat

sources, but in practice SafeFET deliveres more heat than DUT.

β€’ All considerations are referenced to regime work. – SafeFET (DUT 2)

β€’ 𝑇𝑗𝐽 = 𝑇56.8𝑇 °𝐢 β€’ 𝑃𝐢𝐢 = 6.04 π‘Š

– DUT 2 β€’ 𝑃𝐢𝐢 = 0.𝑇4 π‘šπ‘Š β€’ 𝑇𝐢𝐢 = 𝑇50 °𝐢 (measured with LM35

and It will be demonstrated mathematically)

Page 23: Thermal transfer Characteristics of TCM

Analog focus for resolution

Page 24: Thermal transfer Characteristics of TCM

Case Temperature on SafeFET Adapting (𝑇) for this situation:

𝑇𝑗𝐽 βˆ’ 𝑇𝐢𝐢 = π‘…π‘Ÿπ‘‘π‘—π‘‘π½ βˆ— 𝑃𝐢

Where, from datasheet SafeFET : π‘…π‘Ÿπ‘‘π‘—π‘‘π½ = 0.6[°𝐢

π‘Š] : Thermal resistance junction-case of SafeFET

𝑇𝑗𝐽 = 𝑇56.8𝑇 °𝐢 It is important to note that because both devices are heat sources due to their power consumption:

𝑃𝐢 = 𝑃𝐢𝐢 + 𝑃𝐢𝐢 𝑃𝐢 = 6.040𝑇4 [π‘Š]

Therefore: 𝑇56.8𝑇 °𝐢 βˆ’ 𝑇𝐢𝐢 = 0.6

Β°πΆπ‘Š

βˆ— 6.040𝑇4 [π‘Š]

𝑻π‘ͺπ‘ͺ = πŸπŸ“πŸ‘. 𝟐 Β°π‘ͺ

Page 25: Thermal transfer Characteristics of TCM

Transfer Temperature between heat sink sides

Adapting (𝑇) for modified value of thermal resistance of the heat sink: 𝑃𝐢 = πœŽπ‘Ÿπ‘‘π‘Ÿ (𝑇𝐢𝐢 βˆ’ 𝑇𝐢𝑆) [π‘Š]

Where: πœŽπ‘Ÿπ‘‘π‘Ÿ = 1𝑅𝑑𝑑𝑑

= 𝑇3.5 π‘ŠΒ°πΆ

𝑇𝐢𝐢 = 𝑇53.𝑇 °𝐢 𝑇𝐢𝑆 ≑ Temperature in side contact between heat sink and insulator 𝑃𝐢 = 𝑃𝐢𝐢 + 𝑃𝐢𝐢 = 6.04π‘Š + 0.𝑇4π‘šπ‘Š = 6.040𝑇4π‘Š

𝑇𝐢𝑆 = 𝑇𝐢𝐢 βˆ’ π‘ƒπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœŽπ‘Ÿπ‘‘π‘Ÿ

𝑻π‘ͺ𝑺 = πŸπŸ“πŸ. πŸ–πŸ“ Β°π‘ͺ

Page 26: Thermal transfer Characteristics of TCM

Case Temperature on DUT transferred through insulator

Adapting (𝑇) for this situation: 𝑃𝐽 = πœŽπ‘Ÿπ‘‘π‘– (𝑇𝐢𝑆 βˆ’ 𝑇𝐢𝐢) [π‘Š]

Where: 𝑇𝐢𝑆 = 𝑇5𝑇.75 °𝐢 𝑇𝐢𝐢 ≑ Case temperature of DUT 𝑷π‘ͺ = 𝑷𝑫π‘ͺ + 𝑷𝑫𝑫 = πŸ”. π’•πŸ•π’•πŸπŸ•π‘Ύ Whit:

πœŽπ‘Ÿπ‘‘π‘– = π‘˜π‘– π‘₯ 𝐴𝑖

𝑅𝑖= 𝑇.6𝑇

π‘ŠΒ°πΆ

From the vendor site: π‘˜π‘– = 3.5 [ π‘Š

π‘š.°𝐢]

𝐴𝑖 = 0.0𝑇5 π‘₯ 0.0𝑇9 = 𝑇85π‘₯𝑇0βˆ’6 [π‘š2] 𝑅𝑖 = 38𝑇π‘₯𝑇0βˆ’6 [π‘š] Therefore:

𝑻π‘ͺ𝑫 = 𝑻π‘ͺ𝑺 βˆ’π‘·π‘ͺ

πœŽπ‘Ÿπ‘‘π‘–= πŸπŸ“π’•. πŸ•πŸ• Β°π‘ͺ

Page 27: Thermal transfer Characteristics of TCM

Junction Temperature on DUT Adapting (𝑇) for this situation, and considering that heat source is the SafeFET:

𝑇𝐢𝐢 βˆ’ 𝑇𝑗𝐢 = π‘…π‘Ÿπ‘‘π‘—π‘‘π½ βˆ— 𝑃𝐢 Where: 𝑇𝐢𝐢 = 𝑇50.44 °𝐢 𝑇𝑗𝐢 ≑ Junction temperature of DUT 𝑷π‘ͺ = 𝑷𝑫π‘ͺ + 𝑷𝑫𝑫 = πŸ”. π’•πŸ•π’•πŸπŸ•π‘Ύ π‘…π‘Ÿπ‘‘π‘—π‘‘πΆ = 0.5 °𝐢

Β°π‘Š

Therefore:

𝑻𝒋𝑫 = 𝑻π‘ͺ𝑫 βˆ’ 𝑷𝒔. 𝑹𝒕𝒕𝒋𝒕𝑫 = πŸπŸ•πŸ–. πŸ•πŸ Β°π‘ͺ

Page 28: Thermal transfer Characteristics of TCM

Conclusions β€’ Difference of junction temperatures for this case study analyzed.

βˆ†π‘‡π‘—πΆπΆ = 𝑇𝑗𝐢 βˆ’ 𝑇𝑗𝐢 = 𝑇56.8𝑇 °𝐢 βˆ’ 𝑇47.4𝑇 °𝐢 βˆ†π‘»π’‹π‘ͺ𝑫 = πŸ—. πŸ• Β°π‘ͺ

β€’ Error between temperature setpoint and 𝑇𝑗𝐢

%𝐸𝐸𝐸𝐸𝐸 =𝑇50°𝐢 βˆ’ 𝑇47.4𝑇°𝐢

𝑇50Β°πΆβˆ— 𝑇00 = 𝟏. πŸ–πŸ %

β€’ Thermal Resistance of Heat Sink

𝑹𝒕𝒕𝒕 = πŸ”πŸ”. πŸ”πŸ–πŸ–πŸπ’•βˆ’πŸ‘[Β°π‘ͺ𝑾

]

β€’ Total Thermal Resistance of Heat Sink according location of heat source criteria.

𝑹𝒕𝒕𝒕 = πŸ–πŸ•. π’•πŸ–πŸ–πŸπ’•βˆ’πŸ‘ [Β°π‘ͺ𝑾

]

β€’ Temperature aquisition of the system was adjusted with an LM35, which

performs a sensing of its case temperature, in this way this mathematic process shows this right adjustment with the case temperature value on DUT:

𝑻π‘ͺ𝑫𝑴 = πŸπŸ“π’•. πŸ•πŸ• Β°π‘ͺ (Mathematical value) 𝑻π‘ͺ𝑫𝑬 = πŸπŸ“π’•. 𝒕 Β°π‘ͺ (Experimental value)

Page 29: Thermal transfer Characteristics of TCM

References

β€’ The Physics Classroom http://www.physicsclassroom.com/class/thermalP/u18l1f.cfm

β€’ Calculating spreading resistance in heat sinks http://www.electronics-cooling.com/1998/01/calculating-spreading-resistance-in-heat-sinks/

Page 30: Thermal transfer Characteristics of TCM

ΒΏQUESTIONS?