Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat...

48
Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. Associate Professor University of California San Diego Symposium on Energy Geotechnics, UPC Barcelona June 2 nd , 2015

Transcript of Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat...

Page 1: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Thermal Energy Storage in Borehole Heat Exchanger Arrays

John S. McCartney, Ph.D., P.E. Associate Professor

University of California San DiegoSymposium on Energy Geotechnics, UPC Barcelona

June 2nd, 2015

Page 2: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Acknowledgements

• Sponsor: NSF SEP Grant CMMI 1230237 • Collaborators:

– Ning Lu, Colorado School of Mines (geotech. eng.)– Shemin Ge, University of Colorado Boulder (hydrogeologist)– Kathleen Smits, Colorado School of Mines (env. science)– Adam Reed, University of Colorado Boulder (energy policy)

• Graduate Students:– Tugce Baser, UC San Diego– Nora Catolico, CU Boulder

2

2

Page 3: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Presentation Overview

• Overview of Soil‐Borehole Thermal Energy Storage (SBTES) systems

• Simulation of Drake Landing Solar Community SBTES system using TOUGH2

• Design simulations of a small‐scale SBTES in Golden, CO using COMSOL

• Field data from small‐scale SBTES in Golden, CO• Simulations of the scalability of SBTES systems• Upcoming large‐scale SBTES system in San Diego, CA

3

3

Page 4: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

District Heating using Solar Thermal Energy

Challenge: Heat storage

4

Drake Landing, Canada

Braedstrup, Denmark

Page 5: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Heat Storage Option: Geothermal Boreholes

5

Sheffield, UK

Drake Landing, Canada

Page 6: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

SBTES System Operation

6

Heat Injection Heat Extraction

Page 7: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

SBTES Systems within the Vadose Zone

7

Page 8: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Operation of SBTES Systems

8

Overall study goals:1. Understand the role of heat

exchanger array geometry 2. Calibrate models using field-

scale data from existing and new SBTES sites

3. Evaluate coupled heat transfer and water flow processes in the vadose zone

4. Understand scalability of SBTES arrays

5. Evaluate ways to improve the efficiency of heat extraction

Page 9: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Drake Landing Solar Community (DLSC)

Drake Landing Solar Community (DLSC) Okotoks, Alberta,

Canada

35mx35mx35m SBTES used to provide 95% of the heat to 52 homes

9

Page 10: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC SBTES Numerical Model Domain

10

Page 11: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC Numerical Model (TOUGH2)

11

Page 12: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Boundary Conditions and Calibrated Parameters

12

Parameter Value Unit

Soil Particle Density ƚ 2480 kg/m3

Soil Permeability 1.5x10‐14 m2

Soil Thermal Conductivity ƚ 2.03 w/m°C

Soil Porosity ƚ 0.50 m3/m3

Soil Heat Capacity ƚ 935.80 J/kg°C

Fluid Density  1000 kg/m3

Fluid Heat Capacity 4183 J/kg°CU‐tube Thermal Conductivity 0.51 w/m°C

Insulation Layer Thermal Conductivity ƚ 0.23 w/m°C

U‐tube Radius 0.055 mvan Genuchten m 0.5van Genuchten a 0.01 kPa‐1

Page 13: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC Simulated Seasonal Ground Temperatures

13

Page 14: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC Simulation vs. Measured Values

14

Page 15: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC Simulation vs. Measured Values

15

Page 16: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC Simulation vs. Measured Values

16

Page 17: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC Efficiency of Heat Extraction

17

Page 18: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Groundwater Flow Effects on SBTES Systems

18

Page 19: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

DLSC Parametric Evaluation (Perimeter Boreholes)

19

Page 20: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Convection Effects on SBTES Systems

20

Saturated Soil Conditions with a Water Table at the Surface

Page 21: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Convection Effects on SBTES Systems

21

Saturated Soil Conditions with a Water Table at the Surface

Page 22: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Pilot SBTES System at Colorado School of Mines

22

Page 23: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Simplified Numerical Analysis for DesignAssumptions‐ Heat transfer is governed by 

conduction

23

Boundary Conditions‐ Constant heat flux applied to the 

boreholes‐ Heat flux estimated as follows:

‐ Thermally insulated layer at top‐ Initial soil temperature of 10°C

Model Geometry

Baseline Model Inputs ( = 30 W/m)Parameter

Volumetric flow rate, 0.3 (m3/s)

Temperature difference, ΔT 2 °C

Borehole length 10 m

Heat exchanger diameter 0.025 m

∆2

Page 24: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Impact of Borehole Spacing24

5

10

15

20

25

30

35

0 10 20 30 40

Soil

tem

pera

ture

(°C

)

Distance (m)

1 23 45 7.510

q = 30 W/m2

90 daysSpacing (m)

.

Increasingspacing

Page 25: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Impact of Boundary Heat Flux 25

5

10

15

20

25

30

35

10 15 20 25 30

Soil

tem

pera

ture

(°C

)

Distance (m)

2025303540

90 daysλ = 1.0 W/mKSpacing: 1 m

q (W/m2).

5

10

15

20

25

30

35

10 15 20 25 30

Soil

tem

pera

ture

(°C

)

Distance (m)

2025303540

90 daysλ = 1.0 W/mKSpacing: 2 m

q (W/m2).

Spacing: 1.0 m Spacing: 2.0 m

Page 26: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Impact of Heating Duration26

Spacing: 1.0 m Spacing: 2.0 m

5

10

15

20

25

30

35

10 15 20 25 30

Soil

tem

pera

ture

(°C

)

Distance (m)

90100110120

q = 30 W/m2

λ = 1.0 W/mKSpacing: 1 m

Time (days).

5

10

15

20

25

30

35

10 15 20 25 30So

il te

mpe

ratu

re (°

C)

Distance (m)

90100110120

q = 30 W/m2

λ = 1.0 W/mKSpacing: 2 m

Time (days).

Page 27: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Impact of Thermal Conductivity27

Spacing: 1.0 m Spacing: 2.0 m

5

10

15

20

25

30

35

10 15 20 25 30

Soil

tem

pera

ture

(°C

)

Distance (m)

1.0

1.5

2.0

q = 30 W/m2

90 daysSpacing: 1 m

λ (W/mK).

Storagezone 5

10

15

20

25

30

35

10 15 20 25 30So

il te

mpe

ratu

re (°

C)

Distance (m)

1.0

1.5

2.0

q = 30 W/m2

90 daysSpacing: 2 m

λ (W/mK).

Storagezone

Page 28: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Performance Variables: Temperature Density

28

Temperature Density, TD ( /m3) is defined as follows

is the average temperature of the soil ( )(m3) is the heat storage volume

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 10

Tem

pt. d

ensi

ty, T

D (°

C/m

3 )

Array spacing (m)

1.0

1.5

2.0

q = 30 (W/m2)90 days

λ (W/mK).

Page 29: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Performance Variables: Heat Loss29

0.0

1.0

2.0

3.0

4.0

5.0

0 30 60 90 120

Late

ral h

eat l

oss (

GJ)

Time elapsed (days)

12345

q = 30 W/m2

90 daysλ = 1 W/mK

Spacing (m).

0.0

1.0

2.0

3.0

4.0

5.0

0 30 60 90 120La

tera

l hea

t los

s (G

J)

Time elapsed (days)

1.0

1.5

2.0

q =30 W/m2

90 daysSpacing: 1 m

λ (W/mK).

Lateral heat losses for: Different array spacing (left) 

Different soil thermal conductivity values (right)

Page 30: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Field Data from the CSM SBTES

Goals: 1. Perform a long‐term thermal response test on the system (Summer 2014)2. Monitor ambient cooling of system to evaluate losses (Fall 2014)

30

Page 31: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Construction Pictures

Geothermal boreholes

Foam insulation

60 mil HDPE hydraulic barrier

Site soil

Manifold

31

Page 32: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Heating Test Plan at Colorado School of Mines

32

Borehole 2 inletBorehole 2 outlet

Borehole 3 inletBorehole 3 outlet

Borehole 1 inletBorehole 1 outlet

Borehole 4 inletBorehole 4 outlet

Borehole 5 inletBorehole 5 outlet

Page 33: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Ambient and Fluid Temperatures

33

0

2

4

6

8

10

12

14

10

15

20

25

30

35

40

45

50

6/19/2014 8/28/2014 11/6/2014 1/15/2015

ΔT (°C)

Flui

d te

mpe

ratu

re (°

C)

InletOutletΔT

BH-2

0

2

4

6

8

10

12

14

10

15

20

25

30

35

40

45

50

6/19/2014 8/28/2014 11/6/2014 1/15/2015

ΔT (°C)

Flui

d te

mpe

ratu

re (°

C)

InletOutletΔT

BH-5

0100200300400500600700800900

1000

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Fluid flo

w ra

te (m

L/s)

BH‐1BH‐2BH‐3‐4‐5

0

2

4

6

8

10

12

14

10

15

20

25

30

35

40

45

50

6/19/2014 8/28/2014 11/6/2014 1/15/2015

ΔT (°C)

Flui

d te

mpe

ratu

re (°

C)

InletOutletΔT

BH-1

0

2

4

6

8

10

12

14

10

15

20

25

30

35

40

45

50

6/19/2014 8/28/2014 11/6/2014 1/15/2015

ΔT (°C)

Flui

d te

mpe

ratu

re (°

C) InletOutletΔT

BH-3

0

2

4

6

8

10

12

14

10

15

20

25

30

35

40

45

50

6/19/2014 8/28/2014 11/6/2014 1/15/2015

ΔT (°C)

Flui

d te

mpe

ratu

re (°

C)

InletOutletΔT

BH-4

Page 34: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Soil Temperatures 

34

10

15

20

25

30

35

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Gro

und

tem

pera

ture

(°C

) T-A 2.3 mT-A 6.0 mT-A 7.8 mT-A 9.0 m

10

15

20

25

30

35

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Gro

und

tem

pera

ture

(°C

) T-B 2.3 mT-B 6.0 mT-B 7.8 mT-B 9.0 m

10

15

20

25

30

35

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Gro

und

tem

pera

ture

(°C)

T-C 2.3 mT-C 6.0 mT-C 7.8 mT-C 9.0 m

10

15

20

25

30

35

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Gro

und

tem

pera

ture

(°C

) T-D 2.3 mT-D 6.0 mT-D 7.8 mT-D 9.0 m

10

15

20

25

30

35

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Gro

und

tem

pera

ture

(°C

) T-E 2.3 mT-E 6.0 mT-E 7.8 mT-E 9.0 m

-30

-20

-10

0

10

20

30

40

50

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Air

tem

pera

ture

(°C

)MaximumAverageMinimum

Page 35: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Temperature Profiles

35

0

2

4

6

8

10

0 5 10 15 20 25 30 35

Dep

th fr

om su

rfac

e (m

)

Ground temperature, T (°C)

6/19/147/1/147/14/148/8/149/2/149/27/1410/22/1411/16/1412/27/14

Time (days) T-A0

2

4

6

8

10

0 5 10 15 20 25 30 35

Dep

th fr

om su

rfac

e (m

)

Ground temperature, T (°C)

6/19/147/1/147/14/148/8/149/2/149/27/1410/22/1411/16/1412/27/14

Time (days) T-B0

2

4

6

8

10

0 5 10 15 20 25 30 35

Dep

th fr

om su

rfac

e (m

)

Ground temperature, T (°C)

6/19/147/1/147/14/148/8/149/2/149/27/1410/22/1411/16/1412/27/14

Time (days) T-C

0

2

4

6

8

10

0 5 10 15 20 25 30 35

Dep

th fr

om su

rfac

e (m

)

Ground temperature, T (°C)

6/19/147/1/147/14/148/8/149/2/149/27/1410/22/1411/16/1412/27/14

Time (days) T-D0

2

4

6

8

10

0 5 10 15 20 25 30 35

Dep

th fr

om su

rfac

e (m

)

Ground temperature, T (°C)

6/19/147/1/147/14/148/8/149/2/149/27/1410/22/1411/16/1412/27/14

Time (days) T-E0

2

4

6

8

10

0 5 10 15 20 25 30 35

Depth from

 surface (m

)

Ground temperature, T (°C)

06/01/1407/01/1408/01/1409/01/1410/01/1411/01/1412/01/1401/01/15

Tm,out = 12 °CTout = 15 °C = 0.54 W/mKCs = 1200 J/kgKs = 30 W/m2K=1.99×10‐7 s‐1

d=√(2a/)k=/(sd)=tan‐1(k/(1+k))

Page 36: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Results: Temperature Profiles with Radius

36

10

15

20

25

30

35

0 1 2 3 4 5 6

Gro

und

tem

pera

ture°

C

Distance from center borehole (m)

6/19/147/1/148/8/149/2/1410/22/1411/16/1412/27/14

Time (days) 2.3 m from surface

10

15

20

25

30

35

0 1 2 3 4 5 6

Gro

und

tem

pera

ture°

C

Distance from center borehole (m)

6/19/147/14/148/8/149/2/1410/22/1411/16/1412/27/14

Time (days) 7.8 m from surface

10

15

20

25

30

35

0 1 2 3 4 5 6

Gro

und

tem

pera

ture°

C

Distance from center borehole (m)

6/19/147/14/148/8/149/2/1410/22/1411/16/1412/27/14

Time (days) 6.0 m from surface

10

15

20

25

30

35

0 1 2 3 4 5 6

Gro

und

tem

pera

ture°

C

Distance from center borehole (m)

6/19/147/14/148/8/149/2/1410/22/1411/16/1412/27/14

Time (days) 9.0 m from surface

Page 37: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Heat Flux and Ground Properties

37

0

200

400

600

800

1000

1200

1400

6/19/2014 8/28/2014 11/6/2014 1/15/2015

Hea

t tra

nsfe

r rat

e (W

)

BoreholeAve. flow rate (0 to 49 days)

Ave. flow rate (49 to 75 days)*

Average heat injection rate

Thermal Conductivity (1‐4 days) 

Thermal conductivity (12‐17 days)

Thermal conductivity(49‐75 days)

(ml/s) (ml/s) (W/m) (W/m K) (W/m K) (W/m K)1 500 300 18.6 0.48 0.52 0.552 50 30 18.5 0.45 0.55 0.543 150 83 23.1 0.56 0.54 0.664 150 83 19.4 0.55 0.57 0.555 150 83 19.3 0.54 0.57 0.55

0

10

20

30

40

50

1 10 100 1000

T flu

id, m

ean

(°C

)

Elapsed time (hours)

outinfff TTCVQ

1

ln4

tddT

LQ

Page 38: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Analysis: Numerical vs Experimental

38

Page 39: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Analysis: Heat Balance

39

Conservation of Energy 

Injected Heat

Heat stored (Claesson and Hellstrom 1981) 

Page 40: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Scalability of SBTES Systems

40

T T T

Distance from center 

Distance from center 

Distance from center

Single borehole

Smallest‐scale array

Full‐scale array

End of heat 

injection period

End of rest period

Page 41: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Scalability of SBTES Systems: Arrays Considered

41

Page 42: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Scalability of SBTES Systems: Arrays Considered

42

1011121314151617181920

0 5 10 15 20 25 30

Soil

tem

pera

ture

(°C

)

Distance (m)

InjectionRestInitial

q = 30 W/m2

90 daysλ = 1.0 W/mK

.

1011121314151617181920

0 5 10 15 20 25 30

Soil

tem

pera

ture

(°C

)

Distance (m)

InjectionRestInitial

q = 30 W/m2

90 daysSpacing: 2.5 mλ = 1.0 W/mK

.

1011121314151617181920

0 5 10 15 20 25 30

Soil

tem

pera

ture

(°C

)

Distance (m)

InjectionRestInitial

q = 30 W/m2

90 daysSpacing: 2.5 mλ =1.0 W/mK

.

Array 1

Array 3

Array 2

Page 43: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Scalability of SBTES Systems: Arrays Considered

43

0

1

2

3

4

5

6

7

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Hea

t sto

red

afte

r inj

ectio

n (G

J)

λ (W/mK)

13 BHs5 BHsSingle BH

q = 30 W/m2

90 days injection

.

0

1

2

3

4

5

6

7

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Hea

t sto

red

afte

r res

ting

(GJ)

λ (W/mK)

13 BHs5 BHsSingle BH

q= 30 W/m2

90 days resting

.

Storage After Heat Injection Storage After Resting Period

Page 44: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Scalability of SBTES Systems: Arrays Considered

44

0

5

10

15

20

25

20 30 40 50 60 70 80 90 100

Hea

t sto

red

(GJ)

qin (W/m2)

13BHs90 daysSpacing: 2.5 mλ = 1.0 W/mK

Page 45: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

New SBTES Site at UCSD

45

Page 46: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Planned Borehole Array

46

1.5 m

Borehole heat exchanger

Thermistor string

0.75 m

3.0 m

1.5 m

6.0 m

0.75 m

Page 47: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Planned Borehole Array

47

Page 48: Thermal Energy Storage in Borehole Heat Exchanger Arrays · Thermal Energy Storage in Borehole Heat Exchanger Arrays John S. McCartney, Ph.D., P.E. ... new SBTES sites 3. Evaluate

Final Comments

• SBTES systems can effectively store heat in the subsurface

• Efficiency of heat extraction is low, but the heat source is renewable and nearly free

• Heat storage is best in soils with low thermal conductivity and with low permeability (low convection)

• Closer spacings (1‐2 m) will result in the greatest concentration of heat

• Sufficient boreholes are required in an array to retain elevated ground temperatures after a resting period

48

48