Theory of turbo machinery / Turbomaskinernas teori … / Kraftverksteknik / JK A real engine…...

27
Theory of turbo machinery / Turbomaskinernas teori Gas turbines

Transcript of Theory of turbo machinery / Turbomaskinernas teori … / Kraftverksteknik / JK A real engine…...

Theory of turbo machinery / Turbomaskinernas teori

Gas turbines

LTH / Kraftverksteknik / JK

Gas turbineVolvo VT 4400

– Fuel: Natural Gas– P = 12.5– Tin = 660 K– Massflow = 20 kg/s

LTH / Kraftverksteknik / JK

Simple Cycle

Compressor

h

Expander

s

p1

p2

Air

Combustor

Fuel

LTH / Kraftverksteknik / JK

Ideal Cycle

a) Compression and expansion are reversible and adiabatic, i.e. isentropic

b) The change of kinetic energy of the working fluid between the inlet and outlet of each component is negligable.

c) Pressure losses are neglected.d) The working fluid is the same in the entire cycle and it is a

perfect gas with constant specific heats.e) The mass flow of gas is the same throughout the cyclef) The heat-exhanger is a counterflow type with “complete”

heat transfer

LTH / Kraftverksteknik / JK

Ideal Cycle

0ΔQ h W= +

( ) ( ) ( )12 02 01 2 1 2 1pW h h h h c T T= − − = − − = − −

( ) ( )23 3 2 3 2pQ h h c T T= − = −

( ) ( )34 3 4 3 4pW h h c T T= − = −

Compressor

Combustor

Expander (turbine)

steady flow energy equation

LTH / Kraftverksteknik / JK

Ideal Cycle

( )1 32

1 4

TT rT T

γ γ−= =

32

1 4

pprp p

= =where r is pressure ratio

The efficiency equals the ratio of net work output and supplied heat

( ) ( )( )

3 4 2 134 12

23 3 2

p p

p

c T T c T TW WQ c T T

η− − −−

= =−

Cycle efficiancy

LTH / Kraftverksteknik / JK

Ideal Cycle

( ) ( )4

14 1 1 1

24 4 22

1 1 1

111 1 1 1

1 1

TT T T T

T rT T TTT T T

γ γ

η−

⎛ ⎞−⎜ ⎟− ⎛ ⎞⎝ ⎠= − = − = − = − ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

i.e. a function of r and γ only!

LTH / Kraftverksteknik / JK

Ideal Cycle

( ) ( )( )

( )( )13 4 2 1 31

1 1 1

11 1P

T T T T TW rc T T T r

γ γγ γ

−−

− − − ⎛ ⎞= = − − −⎜ ⎟⎝ ⎠

( ) ( )34 12 3 4 2 1p pW W W c T T c T T= − = − − −

Normalising with 1PC T

Net work

3

1

T tT

=

LTH / Kraftverksteknik / JK

Ideal Cycle

LTH / Kraftverksteknik / JK

Recuperated Cycle

Compressor Expander

Heat Exchanger

LTH / Kraftverksteknik / JK

Evaporative Cycle

Compressor Expander

Liquid water

Evaporator

LTH / Kraftverksteknik / JK

O2 fired cycle Cycle

ASU

Air

O2

N2

Compressor Expander

EGR

LTH / Kraftverksteknik / JK

H2 fired Cycle

Reformer

Air

CmHnH2O(Air)

Compressor Expander

H2, CO2, (N2)

CO2Separation

Combustor

H2 (N2)

LTH / Kraftverksteknik / JK

Recuperated Cycle

LTH / Kraftverksteknik / JK

Recuperated Cycle

LTH / Kraftverksteknik / JK

Physics of combustion

• Spray formation• Evaporation• Mixing• Ignition• Combustion• Emission formation• Temperature

distribution• ……..

Air blast atomizer, diffusion combustion

LTH / Kraftverksteknik / JK

Schematic combustor

FUEL INJECTOR

DILUTION ZONE

AIR

DIFFUSERAIR SWIRLER

COOLING SLOTAIR CASING

LINER

INTERMEDIATE ZONE

PRIMARY ZONE

LTH / Kraftverksteknik / JK

Spray formation, breakup and vaporization in cross-flow duct typical for LPP modules

LPP module of VT4400

LTH / Kraftverksteknik / JK

Combined cycles

Magnus Genrup 19

Steam Turbine (condensing)

100 % fuel

15 °CGas Turbine

2-pressure HRSG

520…540 °C

27 °C

31 °C

Courtesy to Alstom

LTH / Kraftverksteknik / JK

Type of propulsion plant

2009-10-12 Magnus Genrup 20

Rolls-Royce, The Jet Engine

LTH / Kraftverksteknik / JK

Whittle W1

2009-10-12 Magnus Genrup 21

LTH / Kraftverksteknik / JK

TurbojetRolls-Royce Olympus

2009-10-12 Magnus Genrup 22

LTH / Kraftverksteknik / JK

JAS Gripen engine - RM12

2009-10-12 Magnus Genrup 23

Courtesy to Volvo Aero

LTH / Kraftverksteknik / JK

Turboprop

2009-10-12 Magnus Genrup 24

LTH / Kraftverksteknik / JK

Rolls-Royce Trent 500A340-500/600

2009-10-12 Magnus Genrup 25

LTH / Kraftverksteknik / JK

HSS Passenger shipsSiemens SGT-500

2009-10-12 Magnus Genrup 26

Stena Carisma

Luciano FedericoSiemens SGT-500

LTH / Kraftverksteknik / JK

A real engine…

2009-10-12 Magnus Genrup 27

Opt pressure ratio’sCOT=1643K

• S/C η: 25.06

• C/C η: 18:08

• Spec. work: 14.36

2 stage compressor turbine, rotor blade temp <900°C, COT-SOT = 70°C

.3

.32

.34

.36

.38

.4

Ther

mal

Effi

cien

cy

300 350 400 450 500

Specific Power [kW/(kg/s)]

Pressure Ratio = 10 ... 26 Burner Exit Temperature = 1473 ... 1773 [K]

147

3

152

3

157

3

162

3

167

3

172

3

177

3

0.51 0.52

0.53

0.54

0.55

0.56

Dotted Lines = (PWSD*0.985*0.985+cp_val7)/(WF* [g/(kN*s)]

10

12

14

16

18

20 22

24 26 WCLTq2 iterated for T_m_T=1173ZW2Rstd iterated for W2=100WCLNq2 iterated for cp_val1=70

Example!ηcc