THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of...

39
Progress In Electromagnetics Research, PIER 36, 21–59, 2002 THEORY OF OPTICAL BULLETS A. Biswas Department of Physics & Mathematics Tennessee State University Nashville, TN 37209-1561, USA Abstract—This paper is a theoretical study of solitons in multidimensions, also known as optical bullets, that is governed by the nonlinear Schrodinger’s equation in 1 + 3 dimensions. The parameter dynamics of such multidimensional solitons has been obtained. The study is extended to obtain the adiabatic evolution of soliton parameters in presence of the perturbation terms. Furthermore, the parameter dynamics for the vector multidimensional solitons and including the presence of the perturbation terms has been obtained. 1 Introduction 1.1 Integrals of Motion 2 Soliton Parameter Dynamics 2.1 Perturbation Terms 3 Vector Solitons 3.1 Perturbation Terms 4 Generalized Vector Solitons 4.1 Perturbation Terms 5 Conclusion References 1. INTRODUCTION The nonlinear Schrodinger’s equation (NLSE) plays a vital role in various areas physical, biological and engineering sciences. It appears in many applied areas like Fluid Dynamics, Nonlinear Optics, Plasma Physics and Protein Chemistry just to name a few. In this paper we

Transcript of THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of...

Page 1: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Progress In Electromagnetics Research, PIER 36, 21–59, 2002

THEORY OF OPTICAL BULLETS

A. Biswas

Department of Physics & MathematicsTennessee State UniversityNashville, TN 37209-1561, USA

Abstract—This paper is a theoretical study of solitons inmultidimensions, also known as optical bullets, that is governedby the nonlinear Schrodinger’s equation in 1 + 3 dimensions. Theparameter dynamics of such multidimensional solitons has beenobtained. The study is extended to obtain the adiabatic evolution ofsoliton parameters in presence of the perturbation terms. Furthermore,the parameter dynamics for the vector multidimensional solitons andincluding the presence of the perturbation terms has been obtained.

1 Introduction

1.1 Integrals of Motion

2 Soliton Parameter Dynamics

2.1 Perturbation Terms

3 Vector Solitons

3.1 Perturbation Terms

4 Generalized Vector Solitons

4.1 Perturbation Terms

5 Conclusion

References

1. INTRODUCTION

The nonlinear Schrodinger’s equation (NLSE) plays a vital role invarious areas physical, biological and engineering sciences. It appearsin many applied areas like Fluid Dynamics, Nonlinear Optics, PlasmaPhysics and Protein Chemistry just to name a few. In this paper we

Page 2: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

22 Biswas

are going to study an important generalization of the NLSE knownas the generalized nonlinear Schrodinger’s equation (GNLSE) in 1 + 3dimensions that is given by:

iqt +1

2∇2q + F

(|q|2

)q = 0 (1)

where, we have

∇2 ≡ ∂2

∂x2+

∂2

∂y2+

∂2

∂z2

and F is a real valued algebraic function. This is the elliptic form ofthe GNLSE. The other form of the GNLSE is non-elliptic [27, 48].Equation (1) is not integrable, in general. The nonintegrability isnot necessarily related to the nonlinear term in (1). Higher orderdispersion or birefringence, for example, can also make the systemnonintegrable while it still remains Hamiltonian. The special case,F (s) = s, also known as the Kerr law of nonlinearity, is integrablein 1 + 1 dimensions by the method of Inverse Scattering Transform(IST) first discovered by Zakharov and Shabat [1, 2]. The IST is thenonlinear analog of Fourier Transform that is used for solving linearpartial differential equations. Schematically, the technique of IST andthe Fourier transform are similar [2]. This special case falls in thecategory of S-integrable equations [24]. In this case, (1) is known asthe cubic NLSE. The solutions are known as solitons. It arises in FluidDynamics, Nonlinear Optics and α-helix proteins in Protein Chemistryand many other areas [50].

In the context of optics, with a special functional form of F in (1)the pulse beam propagates in three dimensions and these are knownas the ‘3-D envelope solitons’ or more commonly optical bullets [7].The term optical bullets was first coined by Silberberg in 1989 [7].The three dimensional generalization of the NLSE admits sphericalsolitary waves. The GNLSE given by (1) contains both dispersion andthe diffraction terms that will attempt to spread the pulse in boththe longitudinal and transverse directions. Conversely, self-focussingeffects will attempt to squeeze the pulse. It can thus be conceived thata stable self-trapped three-dimensional optical soliton could be formedwhen these opposing “forces” exactly balance. It is necessary to pointout that the mere existence of solitary waves and this hand-waving“balance of forces” argument does not mean that these pulses willpropagate without change. The standard nonlinear materials where therefractive index is strictly proportional to the intensity of the light donot allow stable light bullets. There are other refractive index models[7] that do permit the propagation of stable optical bullets. Whiletrue solitons, that are governed by the NLSE in 1 +1 dimensions with

Page 3: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 23

Kerr law, survive collisions with no loss of energy, optical bullets arefound to possess less energy than the input pulses. Thus optical bulletsare not true solitons in a strict Mathematical sense. However, in thePhysics literature and despite the protestations of a few pursuits, suchrobust pulses have pragmatically become to be known as solitons.

The stability problems for the Kerr law medium and for moregeneral nonlinear medium has already been addressed [7]. Equation(1) has several symmetries in 1 + 2 dimensions including the rotation,dilatation, Galelian transformations and Talanov lens transformations.On using the symmetry reductions, the exact solutions to (1) in 1 + 2dimensions was found for Kerr law case, in terms of Jacobi’s ellipticfunctions. In addition, there also exists exact solution for the self-focussing and the self-defocussing cases that are multivalued at eachpoint of real space. Moreover, non-stationary singular solutions werealso obtained to (1) [7].

The general case where F (s) 6= s takes us away from the ISTpicture as it is not of Painleve type [2]. Unlike the cubic NLSE whichhas an infinite number of conserved quantities, the GNLSE given by (1)has only a few. There are various types of non-Kerr law nonlinearitythat are studied. A detailed account of the various types of non-Kerrlaw nonlinearity can be found elsewhere [14].

1.1. Integrals of Motion

As mentioned that equation (1), as it appears, is not integrable andneither it has infinitely many conserved quantities. In fact, there existsat least four integrals of motion. They are

E =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz (2)

P =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∇q∗ − q∗∇q) dxdydz (3)

M =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞r × (q∇q∗ − q∗∇q) dxdydz (4)

H =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[1

2(∇q) · (∇q∗) − f

(|q|2

)]dxdydz (5)

where

f(s) =

∫ s

0F (s)ds

Here, in (4), r represents the position vector namely r = (x, y, z). Theintegrals of motion are respectively known as the energy (E), linearmomentum (P), angular momentum (M) and the Hamiltonian (H).

Page 4: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

24 Biswas

We note that the first integral of motion, (2), is also known as themass, wave action, plasmon number while in optics it is known as thewave power. Also, the conserved quantity related to the Talanov lenstransformation was found in 1985 [2, 48]. It is important to remarkhere that in the special case of the power law of nonlinearity we have,an additional conserved quantity [48] that is given by

C =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(|rq + 2it∇q|2 − 4t2

p + 1|q|2p+2

)dxdydz (6)

In fact, it was first pointed out by Kuznetsov and Turitsyn in 1985that the invariant (C) in (6) is a consequence of the Noether’s theorem[48].

2. SOLITON PARAMETER DYNAMICS

Since there is no inverse scattering solution to (1), we shall derive,in this section, the dynamics of soliton parameters from theircorresponding definitions. For this, we shall assume that the solitonsolution of (1), although not integrable, is given in the form [12–14]:

q(x, y, z; t) = A(t)g [B1(t){x−x(t)} , B2(t) {y−y(t)} , B3(t) {z−z(t)}]exp[−iκ1(t) {x−x(t)}−iκ2(t) {y−y(t)}−iκ3(t) {z−z(t)}+ iθ(t)] (7)

where g represents the shape of the soliton described by the GNLSEand it depends on the type of nonlinearity in (1). Also here, in (7),A(t) represents the amplitude of the soliton, while Bj(t) for j = 1, 2, 3represents the width in the x, y and z direction respectively. We thenhave κj(t) (j = 1, 2, 3) as the frequency of the soliton in the x, y and zdirection respectively. Finally, (x(t), y(t), z(t)) is the coordinate of thecenter of mass of the soliton. For convenience, we define the followingintegral:

Iα,β,γa,b,c,p =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(τ1)

a(τ2)b(τ3)

cgp(τ1, τ2, τ3)

·(

∂g

∂τ1

)α (∂g

∂τ2

)β (∂g

∂τ3

dτ1dτ2dτ3 (8)

with non-negative integers a, b, c, p, α, β and γ where τ1 = B1(t)(x−x(t)), τ2 = B2(t)(y−y(t)) and τ3 = B3(t)(z−z(t)). For such a generalform of the soliton given by (7), we have the integrals of motion, from

Page 5: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 25

(2), (3), (4) and (5), respectively given by:

E =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz =

A2

B1B2B3I0,0,00,0,0,2 (9)

P =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∇q∗ − q∗∇q) dxdydz

= −A2

B1B2B3I

0,0,00,0,0,2(κ1, κ2, κ3) (10)

M =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞r × (q∇q∗ − q∗∇q) dxdydz

=A2

B1B2B3

(κ2

B3I0,0,00,0,1,2 −

κ3

B2I0,0,00,1,0,2,

κ3

B1I0,0,01,0,0,2 −

κ1

B3I0,0,00,0,1,2,

κ1

B2I0,0,00,1,0,2 −

κ2

B1I0,0,01,0,0,2

)(11)

H =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[1

2(∇q) · (∇q∗) − f

(|q|2

)]dxdydz

=A2

2B1B2B3

[B2

1I2,0,00,0,0,0 + B2

3I0,2,00,0,0,0 + B2

3I0,0,20,0,0,0

+(κ2

1 + κ22 + κ2

3

)I0,0,00,0,0,2

]−

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ I

0f(s)dsdxdydz (12)

where the intensity I is given by |q|2. The soliton parameters aredefined as follows:

A(t) =

I0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|4dxdydz

I0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

12

(13)

B1(t) =

I0,0,02,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

I0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ21 |q|2dxdydz

12

(14)

B2(t) =

I0,0,00,2,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

I0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ22 |q|2dxdydz

12

(15)

Page 6: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

26 Biswas

B3(t) =

I0,0,00,0,2,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

I0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ23 |q|2dxdydz

12

(16)

κ1(t) =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(qq∗x − q∗qx) dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

(17)

κ2(t) =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(qq∗y − q∗qy

)dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

(18)

κ3(t) =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(qq∗z − q∗qz) dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

(19)

x(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x|q|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

(20)

y(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y|q|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

(21)

z(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z|q|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2dxdydz

(22)

Now, differentiating these parameters with respect to t and using (7) wearrive at the following evolution equations for the soliton parameters:

dE

dt= 0 (23)

dA

dt= 0 (24)

dB1

dt=

dB2

dt=

dB3

dt= 0 (25)

dκ1

dt=

dκ2

dt=

dκ3

dt= 0 (26)

Page 7: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 27

dx

dt= −κ1 (27)

dy

dt= −κ2 (28)

dz

dt= −κ3 (29)

dt=−κ2

1 + κ22 + κ2

3

2

+1

2I0,0,00,0,0,2

(B2

1I2,0,00,0,0,0 + B2

2I0,2,00,0,0,0 + B2

3I0,0,20,0,0,0

)

− 1

I0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2(τ1, τ2, τ3)F

(A2g2(τ1, τ2, τ3)

)dτ1dτ2dτ3

(30)

Thus, from (23)–(26), we notice that the energy, amplitude, width andthe frequency of the solitons remains constant. However, the centerof mass and the phase of the soliton undergo a change as governed by(27)–(30). Here, (30) is obtained by differentiating (7) with respect tot and subtracting from its conjugate while utilizing (1). Thus, we haveobtained the parameter dynamics for the solitons due to non-Kerr lawnonlinearity. In particular, the case of Kerr-law nonlinearity whereF (s) = s, we have, specially in 1 + 1 dimension, the sech profile of thesoliton that has already been studied elsewhere using the variationalprinciple [28].

2.1. Perturbation Terms

We shall now consider the GNLSE along with its perturbation termsthat is given by

iqt +1

2∇2q + F

(|q|2

)q = iεR[q, q∗] (31)

Here, R is a spatio-differential operator and ε is a perturbationparameter with 0 < ε ¿ 1. The perturbation parameter dependson the type of nonlinearity. For example, in the context of fiber opticswhere F (s) = sp, (0 < p < 2) in general, this perturbation parameteris called the relative width of the spectrum that arises due to quasi-monochromaticity [28]. In presence of the perturbation terms, we havethe adiabatic dynamics of the soliton parameters as

dE

dt= ε

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R + qR∗)dxdydz (32)

Page 8: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

28 Biswas

dA

dt=

ε

I0,0,00,0,0,4

B1B2B3

2A3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q|2 (q∗R + qR∗)dxdydz (33)

dB1

dt=

ε

I0,0,00,0,0,2

B2B3

2A2B21

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R + qR∗)dxdydz

−ε

I0,0,02,0,0,2

B2B3

2A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ21 (q∗R + qR∗)dxdydz (34)

dB2

dt=

ε

I0,0,00,0,0,2

B1B3

2A2B22

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R + qR∗)dxdydz

−ε

I0,0,00,2,0,2

B1B3

2A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ22 (q∗R + qR∗)dxdydz (35)

dB3

dt=

ε

I0,0,00,0,0,2

B1B2

2A2B23

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R + qR∗)dxdydz

−ε

I0,0,00,0,2,2

B1B2

2A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ23 (q∗R + qR∗)dxdydz (36)

dκ1

dt=

I0,0,00,0,0,2

B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗xR − qxR∗)dxdydz

−ε

I0,0,00,0,0,2

κ1B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R + qR∗)dxdydz (37)

dκ2

dt=

I0,0,00,0,0,2

B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗yR − qyR

∗)dxdydz

−ε

I0,0,00,0,0,2

κ2B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R + qR∗)dxdydz (38)

dκ3

dt=

I0,0,00,0,0,2

B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗zR − qzR

∗)dxdydz

− ε

I0,0,00,0,0,2

κ3B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R + qR∗)dxdydz (39)

dx

dt= −κ1 +

ε

I0,0,00,0,0,2

B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x(q∗R + qR∗)dxdydz

(40)

dy

dt= −κ2 +

ε

I0,0,00,0,0,2

B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y(q∗R + qR∗)dxdydz

(41)

Page 9: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 29

dz

dt= −κ3 +

ε

I0,0,00,0,0,2

B1B2B3

A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z(q∗R + qR∗)dxdydz

(42)

dt= −κ2

1 + κ22 + κ2

3

2

+1

2I0,0,00,0,0,2

(B2

1I2,0,00,0,0,0 + B2

2I0,2,00,0,0,0 + B2

3I0,0,20,0,0,0

)

− 1

I0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2(τ1, τ2, τ3)F

(A2g2(τ1, τ2, τ3)

)dτ1dτ2dτ3

+iε

I0,0,00,0,0,2

B1B2B3

2A2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(q∗R − qR∗)dxdydz (43)

Here, equations (32)–(42) are obtained by differentiating (9) and (13)–(22) respectively while using (31). However, (43) was obtained bydifferentiating (7) with respect to t and subtracting from its conjugateand using (31). We shall now rewrite (32)–(43) in the following formusing the form of the soliton given by (7):

dE

dt= 2ε

A

B1B2B3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3 (44)

dA

dt=

ε

I0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g3(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3 (45)

dB1

dt=

ε

I0,0,00,0,0,2

1

AB31

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

− ε

I0,0,02,0,0,2

1

AB1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ 21g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

(46)

dB2

dt=

ε

I0,0,00,0,0,2

1

AB32

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

−ε

I0,0,00,2,0,2

1

AB2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ 22g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

(47)

dB3

dt=

ε

I0,0,00,0,0,2

1

AB33

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

− ε

I0,0,00,0,2,2

1

AB3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞τ 23g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

(48)

Page 10: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

30 Biswas

dκ1

dt= − 2ε

I0,0,00,0,0,2

κ1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

−2ε

I0,0,00,0,0,2

1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

{κ1g(τ1, τ2, τ3)<

[Re−iφ

]

+ B1∂g

∂τ1=

[Re−iφ

]}dτ1dτ2dτ3 (49)

dκ2

dt= −

I0,0,00,0,0,2

κ2

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

−2ε

I0,0,00,0,0,2

1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

{κ2g(τ1, τ2, τ3)<

[Re−iφ

]

+ B2∂g

∂τ2=

[Re−iφ

]}dτ1dτ2dτ3 (50)

dκ3

dt= −

I0,0,00,0,0,2

κ3

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

− 2ε

I0,0,00,0,0,2

1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

{κ3g(τ1, τ2, τ3)<

[Re−iφ

]

+ B3∂g

∂τ3=

[Re−iφ

]}dτ1dτ2dτ3 (51)

dx

dt= −κ1 +

I0,0,00,0,0,2

1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞xg(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

(52)

dy

dt= −κ2 +

I0,0,00,0,0,2

1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞yg(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

(53)

dz

dt= −κ3 +

I0,0,00,0,0,2

1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞zg(τ1, τ2, τ3)<

[Re−iφ

]dτ1dτ2dτ3

(54)

dt= −

κ21 + κ2

2 + κ23

2

+1

2I0,0,00,0,0,2

(B2

1I2,0,00,0,0,0 + B2

2I0,2,00,0,0,0 + B2

3I0,0,20,0,0,0

)

− 1

I0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2(τ1, τ2, τ3)F

(A2g2(τ1, τ2, τ3)

)dτ1dτ2dτ3

Page 11: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 31

I0,0,00,0,0,2

1

A

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g(τ1, τ2, τ3)=

[Re−iφ

]dτ1dτ2dτ3 (55)

where < and = represent the real and imaginary parts respectively and

φ = κ1(t) {x − x(t)} + κ2(t) {y − y(t)} + κ3(t) {z − z(t)} − θ(t)

Equations (44)–(55) represent the adiabatic dynamics of perturbedmultidimensional solitons or optical bullets that are governed by theNLSE with non-Kerr law nonlinearity.

3. VECTOR SOLITONS

The multidimensional vector solitons or vector optical bullets that aregoverned by the generalized NLSE that are going to be studied in thispaper are of the following form:

iut +1

2∇2u +

{F

(|u|2

)+ αF

(|v|2

)}u = 0 (56)

ivt +1

2∇2v +

{F

(|v|2

)+ αF

(|u|2

)}v = 0 (57)

Here, in equations (56) and (57) we have α is a constant. Theseequations also arise in other areas of Physics and MathematicalPhysics. The phenomenon of soliton fusion and soliton fission canbe explained by means of these mathematical models.

Equations (56) and (57) do not have infinitely many conservedquantities. In fact, they have at least three integrals of motion thatare given by

E =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(|u|2 + |v|2

)dxdydz (58)

P =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞{(u∇u∗ − u∗∇u) + (v∇v∗ − v∗∇v)}dxdydz (59)

M =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞[{r × (u∇u∗ − u∗∇u)}

+{r × (v∇v∗ − v∗∇v)}]dxdydz (60)

In this section we shall derive the dynamics of vector soliton parametersfrom their corresponding definitions. For this, we shall assume that thesolitons of (56) and (57), although not integrable, are given in the form[12, 13]:

u(x, y, z; t) = A(1)(t)g[B

(1)1 (t)

{x − x(1)(t)

}, B

(1)2 (t)

{y − y(1)(t)

},

Page 12: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

32 Biswas

B(1)3 (t)

{z − z(1)(t)

}]exp

[−iκ

(1)1 (t)

{x − x(1)(t)

}

− iκ(1)2 (t)

{y − y(1)(t)

}− iκ

(1)3 (t)

{z−z(1)(t)

}+ iθ(1)(t)

]

(61)

v(x, y, z; t) = A(2)(t)g[B

(2)1 (t)

{x − x(2)(t)

}, B

(2)2 (t)

{y − y(2)(t)

},

B(2)3 (t)

{z − z(2)(t)

}]exp

[−iκ

(2)1 (t)

{x − x(2)(t)

}

− iκ(2)2 (t)

{y − y(2)(t)

}− iκ

(2)3 (t)

{z−z(2)(t)

}+ iθ(2)(t)

]

(62)

where g represents the shape of the soliton described by the GNLSEand it depends on the type of nonlinearity in (56) and (57). Also

here, in (61) and (62), A(l)(t) with l = 1, 2 represents the amplitude

of the solitons, while B(l)j (t) for j = 1, 2, 3 represents the width in

the x, y and z directions respectively. We then have κ(l)j (t) as the

frequency of the soliton in the x, y and z directions respectively.Finally, (x(l)(t), y(l)(t), z(l)(t)) represent the coordinates of the centerof masses of the solitons. For convenience, we define the followingintegral:

I l,α,β,γa,b,c,p =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)1

)a (τ

(l)2

)b (τ

(l)3

)c

gp(τ

(l)1 , τ

(l)2 , τ

(l)3

)(∂g

∂τ(l)1

)α (∂g

∂τ(l)2

)β (∂g

∂τ(l)3

dτ(l)1 dτ

(l)2 dτ

(l)3

(63)

with non-negative integers a, b, c, p, α, β, γ and l = 1, 2 where τ(l)1 =

B(l)1 (t)(x − x(l)(t)), τ

(l)2 = B

(l)2 (t)(y − y(l)(t)) and τ

(l)3 = B

(l)3 (t)(z −

z(l)(t)). For such a general form of the soliton given by (61) and (62),we have the integrals of motion, (58), (59) and (60), respectively reduceto:

E =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(|u|2 + |v|2

)dxdydz

=

(A(1)

)2

B(1)1 B

(1)2 B

(1)3

I1,0,0,00,0,0,2 +

(A(2)

)2

B(2)1 B

(2)2 B

(2)3

I2,0,0,00,0,0,2 (64)

P =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞{(u∇u∗ − u∗∇u) + (v∇v∗ − v∗∇v)}dxdydz

Page 13: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 33

= −I1,0,0,00,0,0,2

(A(1)

)2

B(1)1 B

(1)2 B

(1)3

(1)1 , κ

(1)2 , κ

(1)3

)

−I2,0,0,00,0,0,2

(A(2)

)2

B(2)1 B

(2)2 B

(2)3

(2)1 , κ

(2)2 , κ

(2)3

)(65)

M =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞[{r × (u∇u∗ − u∗∇u)}

+{r × (v∇v∗ − v∗∇v)}]dxdydz

=

(A(1)

)2

B(1)1 B

(1)2 B

(1)3

(1)2

B(1)3

I1,0,0,00,0,1,2 −

κ(1)3

B(1)2

I1,0,0,00,1,0,2 ,

κ(1)3

B(1)1

I1,0,0,01,0,0,2 − κ

(1)1

B(1)3

I1,0,0,00,0,1,2 ,

κ(1)1

B(1)2

I1,0,0,00,1,0,2 − κ

(1)2

B(1)1

I1,0,0,01,0,0,2

)

+

(A(2)

)2

B(2)1 B

(2)2 B

(2)3

(2)2

B(2)3

I2,0,0,00,0,1,2 −

κ(2)3

B(2)2

I2,0,0,00,1,0,2 ,

κ(2)3

B(2)1

I2,0,0,01,0,0,2 −

κ(2)1

B(2)3

I2,0,0,00,0,1,2 ,

κ(2)1

B(2)2

I2,0,0,00,1,0,2 −

κ(2)2

B(2)1

I2,0,0,01,0,0,2

)(66)

The soliton parameters for (61) are defined as follows [12, 13]:

A(1)(t) =

I1,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|4dxdydz

I1,0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

12

(67)

B(1)1 (t) =

I1,0,0,02,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

I1,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)1

)2|u|2dxdydz

12

(68)

B(1)2 (t) =

I1,0,0,00,2,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

I1,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)2

)2|u|2dxdydz

12

(69)

Page 14: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

34 Biswas

B(1)3 (t) =

I1,0,0,00,0,2,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

I1,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)3

)2|u|2dxdydz

12

(70)

κ(1)1 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(uu∗

x − u∗ux) dxdydz∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

(71)

κ(1)2 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(uu∗

y − u∗uy

)dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

(72)

κ(1)3 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(uu∗

z − u∗uz) dxdydz∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

(73)

x(1)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x|u|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

(74)

y(1)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y|u|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

(75)

z(1)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z|u|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2dxdydz

(76)

Now, differentiating these parameters with respect to t and using (61)and (62) we arrive at the following evolution equations for the solitonparameters:

dE

dt= 0 (77)

dA(1)

dt= 0 (78)

dB(1)1

dt=

dB(1)2

dt=

dB(1)3

dt= 0 (79)

Page 15: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 35

dκ(1)1

dt=

dκ(1)2

dt=

dκ(1)3

dt= 0 (80)

dx(1)

dt= −κ

(1)1 (81)

dy(1)

dt= −κ

(1)2 (82)

dz(1)

dt= −κ

(1)3 (83)

dθ(1)

dt= −

(1)1

)2+

(1)2

)2+

(1)3

)2

2− αF

((A(2)

)2g2

(2)1 , τ

(2)2 , τ

(2)3

))

+1

2I1,0,0,00,0,0,2

{(B

(1)1

)2I1,2,0,00,0,0,0 +

(B

(1)2

)2I1,0,2,00,0,0,0 +

(B

(1)3

)2I1,0,0,20,0,0,0

}

− 1

I1,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(1)1 , τ

(1)2 , τ

(1)3

)

·F((

A(1))2

g2(τ

(1)1 , τ

(1)2 , τ

(1)3

))dτ

(1)1 dτ

(1)2 dτ

(1)3 (84)

For the soliton in (57) we have the corresponding parameters defined

A(2)(t) =

I2,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|4dxdydz

I2,0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

12

(85)

B(2)1 (t) =

I2,0,0,02,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

I2,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)1

)2|v|2dxdydz

12

(86)

B(2)2 (t) =

I2,0,0,00,2,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

I2,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)2

)2|v|2dxdydz

12

(87)

B(2)3 (t) =

I2,0,0,00,0,2,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

I2,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)3

)2|v|2dxdydz

12

(88)

Page 16: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

36 Biswas

κ(2)1 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(vv∗x − v∗vx) dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

(89)

κ(2)2 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(vv∗y − v∗vy

)dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

(90)

κ(2)3 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(vv∗z − v∗vz) dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

(91)

x(2)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x|v|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

(92)

y(2)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y|v|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

(93)

z(2)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z|v|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2dxdydz

(94)

Again, differentiating these parameters with respect to t we arrive atthe following evolution equations for the soliton parameters:

dA(2)

dt= 0 (95)

dB(2)1

dt=

dB(2)2

dt=

dB(2)3

dt= 0 (96)

dκ(2)1

dt=

dκ(2)2

dt=

dκ(2)3

dt= 0 (97)

dx(2)

dt= −κ

(2)1 (98)

dy(2)

dt= −κ

(2)2 (99)

Page 17: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 37

dz(2)

dt= −κ

(2)3 (100)

dθ(2)

dt= −

(2)1

)2+

(2)2

)2+

(2)3

)2

2− αF

((A(1)

)2g2

(1)1 , τ

(1)2 , τ

(1)3

))

+1

2I2,0,0,00,0,0,2

{(B

(2)1

)2I2,2,0,00,0,0,0 +

(B

(2)2

)2I2,0,2,00,0,0,0 +

(B

(2)3

)2I2,0,0,20,0,0,0

}

−1

I2,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(2)1 , τ

(2)2 , τ

(2)3

)

·F((

A(2))2

g2(τ

(2)1 , τ

(2)2 , τ

(2)3

))dτ

(2)1 dτ

(2)2 dτ

(2)3 (101)

Thus, from (77)–(80), we notice that the energy, amplitude, width andthe frequency of the solitons remains constant. However, the centerof mass and the phase of the soliton undergo a change as governed by(81)–(84). Here, (84) is obtained by differentiating (61) with respectto t and subtracting from its conjugate while utilizing (56). We havea similar situation for the soliton parameters of (57). Thus, we haveobtained the parameter dynamics for the solitons due to non-Kerr lawnonlinearity.

3.1. Perturbation Terms

We shall now consider the GNLSE along with its perturbation termsthat are given by

iut +1

2∇2q +

{F

(|u|2

)+ αF

(|v|2

)}u = iεR1[u, u∗; v, v∗] (102)

ivt +1

2∇2v +

{F

(|v|2

)+ αF

(|u|2

)}v = iεR2[v, v∗;u, u∗] (103)

Here, R1 and R2 are, once again, spatio-differential operators and εis a perturbation parameter with 0 < ε ¿ 1. In equations (102) and(103), the second nonlinear term on the left side is known as the cross-phase modulation (XPM) term in the context of optics. So, treatingthese XPM terms as the perturbation terms in addition to the regularperturbation terms that is already on the right side of (102), we arriveat the adiabatic parameter dynamics of the solitons as:

dE

dt= ε

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞{(u∗R1 + uR∗

1) + (v∗R2 + vR∗2)} dxdydz

(104)

Page 18: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

38 Biswas

dA(1)

dt=

ε

I1,0,0,00,0,0,4

B(1)1 B

(1)2 B

(1)3

2(A(1)

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|u|2 (u∗R1 + uR∗

1) dxdydz

(105)

dB(1)1

dt=

ε

I1,0,0,00,0,0,2

B(1)2 B

(1)3

2(A(1)

)2(B

(1)1

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗R1 + uR∗

1) dxdydz

− ε

I1,0,0,02,0,0,2

B(1)2 B

(1)3

2(A(1)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)1

)2(u∗R1+ uR∗

1) dxdydz

(106)

dB(1)2

dt=

ε

I1,0,0,00,0,0,2

B(1)1 B

(1)3

2(A(1)

)2(B

(1)2

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗R1 + uR∗

1) dxdydz

−ε

I1,0,0,00,2,0,2

B(1)1 B

(1)3

2(A(1)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)2

)2(u∗R1+ uR∗

1) dxdydz

(107)

dB(1)3

dt=

ε

I1,0,0,00,0,0,2

B(1)1 B

(1)2

2(A(1)

)2(B

(1)3

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗R1 + uR∗

1) dxdydz

−ε

I1,0,0,00,0,2,2

B(1)1 B

(1)2

2(A(1)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)3

)2(u∗R1+ uR∗

1) dxdydz

(108)

dκ(1)1

dt=

I1,0,0,00,0,0,2

B(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗

xR1 − uxR∗1) dxdydz

− ε

I1,0,0,00,0,0,2

κ(1)1 B

(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗R1+uR∗

1) dxdydz

(109)

dκ(1)2

dt=

I1,0,0,00,0,0,2

B(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(u∗

yR1 − uyR∗1

)dxdydz

−ε

I1,0,0,00,0,0,2

κ(1)1 B

(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗R1+uR∗

1) dxdydz

(110)

Page 19: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 39

dκ(1)3

dt=

I1,0,0,00,0,0,2

B(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗

zR1 − uzR∗1) dxdydz

−ε

I1,0,0,00,0,0,2

κ(1)1 B

(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗R1+uR∗

1) dxdydz

(111)

dx(1)

dt= −κ

(1)1 +

ε

I1,0,0,00,0,0,2

B(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x (u∗R1 + uR∗

1) dxdydz (112)

dy(1)

dt= −κ

(1)2 +

ε

I1,0,0,00,0,0,2

B(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y (u∗R1 + uR∗

1) dxdydz (113)

dz(1)

dt= −κ

(1)3 +

ε

I1,0,0,00,0,0,2

B(1)1 B

(1)2 B

(1)3(

A(1))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z (u∗R1 + uR∗

1) dxdydz (114)

dθ(1)

dt= −

(1)1

)2+

(1)2

)2+

(1)3

)2

2− αF

((A(2)

)2g2

(2)1 , τ

(2)2 , τ

(2)3

))

+1

2I1,0,0,00,0,0,2

{(B

(1)1

)2I1,2,0,00,0,0,0 +

(B

(1)2

)2I1,0,2,00,0,0,0 +

(B

(1)3

)2I1,0,0,20,0,0,0

}

−1

I1,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(1)1 , τ

(1)2 , τ

(1)3

)

·F((

A(1))2

g2(τ

(1)1 , τ

(1)2 , τ

(1)3

))dτ

(1)1 dτ

(1)2 dτ

(1)3

+iε

I1,0,0,00,0,0,2

B(1)1 B

(1)2 B

(1)3

2(A(1)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(u∗R1−uR∗

1)dτ(1)1 dτ

(1)2 dτ

(1)3

(115)

Page 20: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

40 Biswas

Similarly, for the soliton in (103) we have the adiabatic parameterdynamics given by:

dA(2)

dt=

ε

I2,0,0,00,0,0,4

B(2)1 B

(2)2 B

(2)3

2(A(2)

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|v|2 (v∗R2 + vR∗

2) dxdydz

(116)

dB(2)1

dt=

ε

I2,0,0,00,0,0,2

B(2)2 B

(2)3

2(A(2)

)2(B

(2)1

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗R2 + vR∗

2) dxdydz

− ε

I2,0,0,02,0,0,2

B(2)2 B

(2)3

2(A(2)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)1

)2(v∗R2+ vR∗

2) dxdydz

(117)

dB(2)2

dt=

ε

I2,0,0,00,0,0,2

B(2)1 B

(2)3

2(A(2)

)2(B

(2)2

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗R2 + vR∗

2) dxdydz

−ε

I2,0,0,00,2,0,2

B(2)1 B

(2)3

2(A(2)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)2

)2(v∗R2+ vR∗

2) dxdydz

(118)

dB(2)3

dt=

ε

I2,0,0,00,0,0,2

B(2)1 B

(2)2

2(A(2)

)2(B

(2)3

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗R2 + vR∗

2) dxdydz

−ε

I2,0,0,00,0,2,2

B(2)1 B

(2)2

2(A(2)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)3

)2(u∗R2+ uR∗

2) dxdydz

(119)

dκ(2)1

dt=

I2,0,0,00,0,0,2

B(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗xR2 − vxR∗

2) dxdydz

− ε

I2,0,0,00,0,0,2

κ(2)1 B

(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗R2+vR∗

2) dxdydz

(120)

dκ(2)2

dt=

I2,0,0,00,0,0,2

B(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(v∗yR2 − vyR

∗2

)dxdydz

− ε

I2,0,0,00,0,0,2

κ(2)1 B

(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗R2+vR∗

2) dxdydz

(121)

Page 21: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 41

dκ(2)3

dt=

I2,0,0,00,0,0,2

B(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗zR2 − vzR

∗2) dxdydz

−ε

I2,0,0,00,0,0,2

κ(2)1 B

(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗R2+vR∗

2) dxdydz

(122)

dx(2)

dt= −κ

(2)1 +

ε

I2,0,0,00,0,0,2

B(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x (v∗R2 + vR∗

2) dxdydz (123)

dy(2)

dt= −κ

(2)2 +

ε

I2,0,0,00,0,0,2

B(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y (v∗R2 + vR∗

2) dxdydz (124)

dz(2)

dt= −κ

(2)3 +

ε

I2,0,0,00,0,0,2

B(2)1 B

(2)2 B

(2)3(

A(2))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z (v∗R2 + vR∗

2) dxdydz (125)

dθ(2)

dt= −

(2)1

)2+

(2)2

)2+

(2)3

)2

2− αF

((A(1)

)2g2

(1)1 , τ

(1)2 , τ

(1)3

))

+1

2I2,0,0,00,0,0,2

{(B

(2)1

)2I2,2,0,00,0,0,0 +

(B

(2)2

)2I2,0,2,00,0,0,0 +

(B

(2)3

)2I2,0,0,20,0,0,0

}

−1

I2,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(2)1 , τ

(2)2 , τ

(2)3

)

·F((

A(2))2

g2(τ

(2)1 , τ

(2)2 , τ

(2)3

))dτ

(2)1 dτ

(2)2 dτ

(2)3

+iε

I2,0,0,00,0,0,2

B(2)1 B

(2)2 B

(2)3

2(A(2)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞(v∗R2−vR∗

2)dτ(2)1 dτ

(2)2 dτ

(2)3

(126)

Here, equations (104)–(114) are obtained by differentiating (58) and(67)–(76) respectively while using (102). However, (115) was obtained

Page 22: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

42 Biswas

by differentiating (61) with respect to t and subtracting from itsconjugate and using (102). Similarly, the set (116)–(126) was obtained.We can, subsequently, rewrite these set of equations in the followingconvenient form:

dE

dt= 2ε

A(1)

B(1)1 B

(1)2 B

(1)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3

+2εA(2)

B(2)1 B

(2)2 B

(2)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (127)

dA(1)

dt=

ε

I1,0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g3

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (128)

dB(1)1

dt=

ε

I1,0,0,00,0,0,2

1

A(1)(B

(1)1

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3

−ε

I1,0,0,02,0,0,2

1

A(1)B(1)1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)1

)2g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (129)

dB(1)2

dt=

ε

I1,0,0,00,0,0,2

1

A(1)(B

(1)2

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3

− ε

I1,0,0,00,2,0,2

1

A(1)B(1)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)2

)2g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (130)

dB(1)3

dt=

ε

I1,0,0,00,0,0,2

1

A(1)(B

(1)3

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3

Page 23: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 43

− ε

I1,0,0,00,0,2,2

1

A(1)B(1)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)3

)2g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (131)

dκ(1)1

dt= −

I1,0,0,00,0,0,2

κ(1)1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3

−2ε

I1,0,0,00,0,0,2

1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)1 g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]+ B

(1)1

∂g

∂τ(1)1

=[R1e

−iφ1

]}dτ

(1)1 dτ

(1)2 dτ

(1)3 (132)

dκ(1)2

dt= −

I1,0,0,00,0,0,2

κ(1)2

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3

−2ε

I1,0,0,00,0,0,2

1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)2 g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]+ B

(1)2

∂g

∂τ(1)2

=[R1e

−iφ1

]}dτ

(1)1 dτ

(1)2 dτ

(1)3 (133)

dκ(1)3

dt= −

I1,0,0,00,0,0,2

κ(1)3

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3

− 2ε

I1,0,0,00,0,0,2

1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(1)3 g

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]+ B

(1)3

∂g

∂τ(1)3

=[R1e

−iφ1

]}dτ

(1)1 dτ

(1)2 dτ

(1)3 (134)

dx(1)

dt= −κ

(1)1 +

I1,0,0,00,0,0,2

1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞xg

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (135)

dy(1)

dt= −κ

(1)2 +

I1,0,0,00,0,0,2

1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞yg

(1)1 , τ

(1)2 , τ

(1)3

)

Page 24: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

44 Biswas

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (136)

dz(1)

dt= −κ

(1)3 +

I1,0,0,00,0,0,2

1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞zg

(1)1 , τ

(1)2 , τ

(1)3

)

<[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (137)

dθ(1)

dt= −

(1)1

)2+

(1)2

)2+

(1)3

)2

2

−αF

((A(2)

)2g2

(2)1 , τ

(2)2 , τ

(2)3

))

+1

2I1,0,0,00,0,0,2

{(B

(1)1

)2I1,2,0,00,0,0,0 +

(B

(1)2

)2I1,0,2,00,0,0,0 +

(B

(1)3

)2I1,0,0,20,0,0,0

}

−1

I1,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(1)1 , τ

(1)2 , τ

(1)3

)

·F((

A(1))2

g2(τ

(1)1 , τ

(1)2 , τ

(1)3

))dτ

(1)1 dτ

(1)2 dτ

(1)3

I1,0,0,00,0,0,2

1

A(1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(1)1 , τ

(1)2 , τ

(1)3

)

=[R1e

−iφ1

]dτ

(1)1 dτ

(1)2 dτ

(1)3 (138)

Similarly, for the soliton in (103) we have the adiabatic parameterdynamics, in the convenient form given by:

dA(2)

dt=

ε

I2,0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g3

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)2 dτ

(2)2 dτ

(2)3 (139)

dB(2)1

dt=

ε

I2,0,0,00,0,0,2

1

A(2)(B

(2)1

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3

− ε

I2,0,0,02,0,0,2

1

A(2)B(2)1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)1

)2g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (140)

Page 25: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 45

dB(2)2

dt=

ε

I2,0,0,00,0,0,2

1

A(2)(B

(2)2

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3

−ε

I2,0,0,00,2,0,2

1

A(2)B(2)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)2

)2g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (141)

dB(2)3

dt=

ε

I2,0,0,00,0,0,2

1

A(2)(B

(2)3

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3

− ε

I2,0,0,00,0,2,2

1

A(2)B(2)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)3

)2g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (142)

dκ(2)1

dt= − 2ε

I2,0,0,00,0,0,2

κ(2)1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3

− 2ε

I2,0,0,00,0,0,2

1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)1 g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]+ B

(2)1

∂g

∂τ(2)1

=[R2e

−iφ2

]}dτ

(2)1 dτ

(2)2 dτ

(2)3 (143)

dκ(2)2

dt= − 2ε

I2,0,0,00,0,0,2

κ(2)2

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3

− 2ε

I2,0,0,00,0,0,2

1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)2 g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]+ B

(2)2

∂g

∂τ(2)2

=[R2e

−iφ2

]}dτ

(2)1 dτ

(2)2 dτ

(2)3 (144)

dκ(2)3

dt=

I2,0,0,00,0,0,2

κ(2)3

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

Page 26: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

46 Biswas

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3

− 2ε

I2,0,0,00,0,0,2

1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(2)3 g

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]+ B

(2)3

∂g

∂τ(2)2

=[R2e

−iφ2

]}dτ

(2)1 dτ

(2)2 dτ

(2)3 (145)

dx(2)

dt= −κ

(2)1 +

I2,0,0,00,0,0,2

1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞xg

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (146)

dy(2)

dt= −κ

(2)2 +

I2,0,0,00,0,0,2

1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞yg

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (147)

dz(2)

dt= −κ

(2)3 +

I2,0,0,00,0,0,2

1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞zg

(2)1 , τ

(2)2 , τ

(2)3

)

<[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (148)

dθ(2)

dt= −

(2)1

)2+

(2)2

)2+

(2)3

)2

2

−αF

((A(1)

)2g2

(1)1 , τ

(1)2 , τ

(1)3

))

+1

2I2,0,0,00,0,0,2

{(B

(2)1

)2I2,2,0,00,0,0,0 +

(B

(2)2

)2I2,0,2,00,0,0,0 +

(B

(2)3

)2I2,0,0,20,0,0,0

}

−1

I2,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(2)1 , τ

(2)2 , τ

(2)3

)

·F((

A(2))2

g2(τ

(2)1 , τ

(2)2 , τ

(2)3

))dτ

(2)1 dτ

(2)2 dτ

(2)3

I2,0,0,00,0,0,2

1

A(2)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(2)1 , τ

(2)2 , τ

(2)3

)

=[R2e

−iφ2

]dτ

(2)1 dτ

(2)2 dτ

(2)3 (149)

Here we have used the notation

φl = κ(l)1 (t)

{x − x(l)(t)

}+ κ

(l)2 (t)

{y − y(l)(t)

}

+κ(l)3 (t)

{z − z(l)(t)

}− θ(l)(t)

Page 27: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 47

Thus, we have the dynamical system or the parameter dynamics of thevector multidimensional solitons. These can be used to study variousphenomenon in optical bullets like the soliton fusion, soliton fission,soliton tunnelling and soliton repulsion, and other aspects in presenceof the perturbation terms.

4. GENERALIZED VECTOR SOLITONS

The multidimensional generalized vector solitons that are governed bythe generalized NLSE that are going to be studied in this section areof the following form:

iq(l)t +

1

2∇2q(l) +

F

(∣∣∣q(l)∣∣∣2)

+N∑

m6=l

αmF

(∣∣∣q(m)∣∣∣2)

q(l) = 0 (150)

Here, in (150) we have αm are constants. These equations also arise invarious other areas of Physics and Mathematical Physics. In particular,it can be used in the study of the dynamics of vector optical bullets inNonlinear Optics.

Equation (150) does not have infinitely many conserved quantities.In fact, it has at least three integrals of motion that are given by

E =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

N∑

l=1

∣∣∣q(l)∣∣∣2dxdydz (151)

P =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

N∑

l=1

(q(l)∇q(l)∗ − q(l)∗∇q(l)

)dxdydz (152)

M =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

N∑

l=1

r ×(q(l)∇q(l)∗ − q(l)∗∇q(l)

)dxdydz (153)

In this section we shall derive the dynamics of soliton parameters for(150) from their corresponding definitions. For this, we shall assumethat the solitons of (150) although not integrable, are given in the form[9, 10]:

q(l)(x, y, z; t) = A(l)(t)g[B

(l)1 (t)

{x− x(l)(t)

},

B(l)2 (t)

{y − y(l)(t)

}, B

(l)3 (t)

{z − z(l)(t)

}]

exp[−iκ

(l)1 (t)

{x− x(l)(t)

}− iκ

(l)2 (t)

{y − y(l)(t)

}

− iκ(l)3 (t)

{z − z(l)(t)

}+ iθ(l)(t)

](154)

Page 28: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

48 Biswas

where g represents the shape of the soliton described by the GNLSEand it depends on the type of nonlinearity in (150). Also here, in

(154), A(l)(t) with for 1 ≤ l ≤ N represents the amplitude of the

solitons, while B(l)j (t) for j = 1, 2, 3 represents the width in the x, y

and z directions respectively. We then have κ(l)j (t) as the frequency

of the soliton in the x, y and z directions respectively. Finally,(x(l)(t), y(l)(t), z(l)(t)) represent the coordinates of the center of massesof the solitons. In this section we shall use, for convenience, the integralgiven by (63) with the exception that here we have 1 ≤ l ≤ N . Thus,the integrals of motion are given by

E =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

N∑

l=1

∣∣∣q(l)∣∣∣2dxdydz =

N∑

l=1

(A(l)

)2

B(l)1 B

(l)2 B

(l)3

I l,0,0,00,0,0,2 (155)

P =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

N∑

l=1

(q(l)∇q(l)∗ − q(l)∗∇q(l)

)dxdydz

= −N∑

l=1

I l,0,0,00,0,0,2

(A(l)

)2

B(l)1 B

(l)2 B

(l)3

(l)1 , κ

(l)2 , κ

(l)3

)(156)

M =i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞r ×

N∑

l=1

(q(l)∇q(l)∗ − q(l)∗∇q(l)

)dxdydz

=N∑

l=1

(A(l)

)2

B(l)1 B

(l)2 B

(l)3

(l)2

B(l)3

Il,0,0,00,0,1,2 −

κ(l)3

B(l)2

Il,0,0,00,1,0,2,

κ(l)3

B(l)1

I l,0,0,01,0,0,2 −

κ(l)1

B(l)3

I l,0,0,00,0,1,2,

κ(l)1

B(l)2

I l,0,0,00,1,0,2 −

κ(l)2

B(l)1

I l,0,0,01,0,0,2

)(157)

The soliton parameters for (150) are defined as follows:

A(l)(t) =

I l,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|4dxdydz

Il,0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

12

(158)

B(l)1 (t) =

I l,0,0,02,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

I l,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)1

)2|q(l)|2dxdydz

12

(159)

Page 29: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 49

B(l)2 (t) =

I l,0,0,00,2,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

I l,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)2

)2|q(l)|2dxdydz

12

(160)

B(l)3 (t) =

Il,0,0,00,0,2,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

I l,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)3

)2|q(l)|2dxdydz

12

(161)

κ(l)1 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)q(l)∗

x − q(l)∗q(l)x

)dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

(162)

κ(l)2 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)q(l)∗

y − q(l)∗q(l)y

)dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

(163)

κ(l)3 (t) =

i

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)q(l)∗

z − q(l)∗q(l)z

)dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

(164)

x(l)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x|q(l)|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

(165)

y(l)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y|q(l)|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

(166)

z(l)(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z|q(l)|2dxdydz

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2dxdydz

(167)

We note that, these definitions of the soliton parameters are definedfor 1 ≤ l ≤ N . Now, differentiating these parameters with respect to tand using (154) we arrive at the following evolution equations for thesoliton parameters:

dE

dt= 0 (168)

Page 30: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

50 Biswas

dA(l)

dt= 0 (169)

dB(l)1

dt=

dB(l)2

dt=

dB(l)3

dt= 0 (170)

dκ(l)1

dt=

dκ(l)2

dt=

dκ(l)3

dt= 0 (171)

dx(l)

dt= −κ

(l)1 (172)

dy(l)

dt= −κ

(l)2 (173)

dz(l)

dt= −κ

(l)3 (174)

dθ(l)

dt= −

(l)1

)2+

(l)2

)2+

(l)3

)2

2

−N∑

m6=l

αmF

((A(m)

)2g2

(m)1 , τ

(m)2 , τ

(m)3

))

+1

2Il,0,0,00,0,0,2

{(B

(l)1

)2Il,2,0,00,0,0,0 +

(B

(l)2

)2I l,0,2,00,0,0,0 +

(B

(l)3

)2I l,0,0,20,0,0,0

}

−1

Il,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(l)1 , τ

(l)2 , τ

(l)3

)

·F((

A(l))2

g2(τ

(l)1 , τ

(l)2 , τ

(l)3

))dτ

(l)1 dτ

(l)2 dτ

(l)3 (175)

Thus, from (168)–(171), we notice that the energy, amplitude, widthand the frequency of the solitons remains constant. However, the centerof mass and the phase of the soliton undergo a change as governedby (172)–(175). Here, (175) is obtained by differentiating (154) withrespect to t and subtracting from its conjugate while utilizing (150).

4.1. Perturbation Terms

In this section, we shall now consider the GNLSE along with itsperturbation terms that are given by

Page 31: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 51

iq(l)t +

1

2∇2q(l)+

F

(∣∣∣q(l)∣∣∣2)

+N∑

m6=l

αmF

(∣∣∣q(m)∣∣∣2) q(l) = iεRl

[q(l), q(l)∗

]

(176)Here, again, Rl (1 ≤ l ≤ N) are spatio-differential operators and ε isa perturbation parameter with 0 < ε ¿ 1. In equation (176), onceagain, the second nonlinear term on the left side is known as the cross-phase modulation (XPM) term in the context of optics. So, treatingthese XPM terms as the perturbation terms in addition to the regularperturbation terms that is already on the right side of (176), we arriveat the adiabatic parameter dynamics of the soliton as:

dE

dt= ε

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

N∑

l=1

(q(l)∗Rl + q(l)R∗

l

)dxdydz (177)

dA(l)

dt=

ε

I l,0,0,00,0,0,4

B(l)1 B

(l)2 B

(l)3

2(A(l)

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|q(l)|2

(q(l)∗Rl+q(l)R∗

l

)dxdydz

(178)

dB(l)1

dt=

ε

I l,0,0,00,0,0,2

B(l)2 B

(l)3

2(A(l)

)2(B

(l)1

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗Rl+q(l)R∗

l

)dxdydz

− ε

I l,0,0,02,0,0,2

B(l)2 B

(l)3

2(A(l)

)2∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)1

)2(q(l)∗Rl+q(l)R∗

l

)dxdydz

(179)

dB(l)2

dt=

ε

I l,0,0,00,0,0,2

B(l)1 B

(l)3

2(A(l)

)2 (B

(l)2

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗Rl+q(l)R∗

l

)dxdydz

−ε

I l,0,0,00,2,0,2

B(l)1 B

(l)3

2(A(l)

)2∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)2

)2(q(l)∗Rl+q(l)R∗

l

)dxdydz

(180)

dB(l)3

dt=

ε

I l,0,0,00,0,0,2

B(l)1 B

(l)2

2(A(l)

)2 (B

(l)3

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗Rl+q(l)R∗

l

)dxdydz

−ε

I l,0,0,00,0,2,2

B(l)1 B

(l)2

2(A(l)

)2∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)3

)2(q(l)∗Rl+q(l)R∗

l

)dxdydz

(181)

Page 32: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

52 Biswas

dκ(l)1

dt=

I l,0,0,00,0,0,2

B(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗x Rl − q(l)

x R∗l

)dxdydz

−ε

Il,0,0,00,0,0,2

κ(l)1 B

(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗Rl+q(l)R∗

l

)dxdydz

(182)

dκ(l)2

dt=

Il,0,0,00,0,0,2

B(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗y Rl − q(l)

y R∗l

)dxdydz

− ε

I l,0,0,00,0,0,2

κ(l)1 B

(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗Rl+q(l)R∗

l

)dxdydz

(183)

dκ(l)3

dt=

I l,0,0,00,0,0,2

B(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗z Rl − q(l)

z R∗l

)dxdydz

−ε

I l,0,0,00,0,0,2

κ(l)1 B

(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗Rl+q(l)R∗

l

)dxdydz

(184)

dx(l)

dt= −κ

(l)1 +

ε

Il,0,0,00,0,0,2

B(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞x

(q(l)∗Rl + q(l)R∗

l

)dxdydz (185)

dy(l)

dt= −κ

(l)2 +

ε

Il,0,0,00,0,0,2

B(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞y

(q(l)∗Rl + q(l)R∗

l

)dxdydz (186)

dz(l)

dt= −κ

(l)3 +

ε

Il,0,0,00,0,0,2

B(l)1 B

(l)2 B

(l)3(

A(l))2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞z

(q(l)∗Rl + q(l)R∗

l

)dxdydz (187)

dθ(l)

dt= −

(l)1

)2+

(l)2

)2+

(l)3

)2

2

Page 33: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 53

−N∑

m6=l

αmF

((A(m)

)2g2

(m)1 , τ

(m)2 , τ

(m)3

))

+1

2I l,0,0,00,0,0,2

{(B

(l)1

)2I l,2,0,00,0,0,0 +

(B

(l)2

)2I l,0,2,00,0,0,0 +

(B

(l)3

)2I l,0,0,20,0,0,0

}

− 1

Il,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(l)1 , τ

(l)2 , τ

(l)3

)

·F((

A(l))2

g2(τ

(l)1 , τ

(l)2 , τ

(l)3

))dτ

(l)1 dτ

(l)2 dτ

(l)3

+iε

Il,0,0,00,0,0,2

B(l)1 B

(l)2 B

(l)3

2(A(l)

)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(q(l)∗Rl−q(l)R∗

l

)dτ

(l)1 dτ

(l)2 dτ

(l)3

(188)

Here, equations (177)–(187) are obtained by differentiating (151)and (158)–(167) respectively while using (176). However, (188) wasobtained by differentiating (164) with respect to t and subtractingfrom its conjugate and using (176). Introducing the notation,

φl = κ(l)1 (t)

{x − x(l)(t)

}+ κ

(l)2 (t)

{y − y(l)(t)

}

+κ(l)3 (t)

{z − z(l)(t)

}− θ(l)(t)

we can, subsequently, reduce these set of equations to the followingform:

dE

dt= 2ε

N∑

l=1

A(l)

B(l)1 B

(l)2 B

(l)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (189)

dA(l)

dt=

ε

I l,0,0,00,0,0,4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g3

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (190)

dB(l)1

dt=

ε

Il,0,0,00,0,0,2

1

A(l)(B

(l)1

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3

− ε

I l,0,0,02,0,0,2

1

A(l)B(l)1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)1

)2g

(l)1 , τ

(l)2 , τ

(l)3

)

Page 34: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

54 Biswas

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (191)

dB(l)2

dt=

ε

I l,0,0,00,0,0,2

1

A(l)(B

(l)2

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3

−ε

I l,0,0,00,2,0,2

1

A(l)B(l)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)2

)2g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (192)

dB(l)3

dt=

ε

I l,0,0,00,0,0,2

1

A(l)(B

(l)3

)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3

−ε

I l,0,0,00,0,2,2

1

A(l)B(l)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)3

)2g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (193)

dκ(l)1

dt= − 2ε

I l,0,0,00,0,0,2

κ(l)1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3

−2ε

I l,0,0,00,0,0,2

1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)1 g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]+ B

(l)1

∂g

∂τ(l)1

=[Rle

−iφl

]}dτ

(l)1 dτ

(l)2 dτ

(l)3 (194)

dκ(l)2

dt= − 2ε

I l,0,0,00,0,0,2

κ(l)2

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3

−2ε

I l,0,0,00,0,0,2

1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)2 g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]+ B

(l)2

∂g

∂τ(l)2

=[Rle

−iφl

]}dτ

(l)1 dτ

(l)2 dτ

(l)3 (195)

Page 35: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 55

dκ(l)3

dt=

I l,0,0,00,0,0,2

κ(l)3

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3

−ε

Il,0,0,00,0,0,2

1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(l)3 g

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]+ B

(l)3

∂g

∂τ(l)3

=[Rle

−iφl

]}dτ

(l)1 dτ

(l)2 dτ

(l)3 (196)

dx(l)

dt= −κ

(l)1 +

I l,0,0,00,0,0,2

1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞xg

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (197)

dy(l)

dt= −κ

(l)2 +

I l,0,0,00,0,0,2

1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞yg

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (198)

dz(l)

dt= −κ

(l)3 +

I l,0,0,00,0,0,2

1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞zg

(l)1 , τ

(l)2 , τ

(l)3

)

<[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (199)

dθ(l)

dt= −

(l)1

)2+

(l)2

)2+

(l)3

)2

2

−N∑

m6=l

αmF

((A(m)

)2g2

(m)1 , τ

(m)2 , τ

(m)3

))

+1

2Il,0,0,00,0,0,2

{(B

(l)1

)2I

l,2,0,00,0,0,0 +

(B

(l)2

)2I

l,0,2,00,0,0,0 +

(B

(l)3

)2I

l,0,0,20,0,0,0

}

− 1

I l,0,0,00,0,0,2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g2

(l)1 , τ

(l)2 , τ

(l)3

)

·F((

A(l))2

g2(τ

(l)1 , τ

(l)2 , τ

(l)3

))dτ

(l)1 dτ

(l)2 dτ

(l)3

Il,0,0,00,0,0,2

1

A(l)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞g

(l)1 , τ

(l)2 , τ

(l)3

)

=[Rle

−iφl

]dτ

(l)1 dτ

(l)2 dτ

(l)3 (200)

Page 36: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

56 Biswas

5. CONCLUSION

In this paper we have obtained, for the first time, the parameterdynamics of the multidimensional solitons in 1 + 3 dimensionsthat are governed by the generalized NLSE. In addition, we haveobtained the adiabatic parameter dynamics of the solitons in presenceof the perturbation terms. These parameter dynamics of themultidimensional solitons can be also derived using the variationalprinciple. The Dynamical System of the soliton parameters, thusobtained, is very useful in various areas of applied nonlinear sciencelike Fluid Dynamics, Non-linear Optics, Plasma Physics. For example,in the case of Nonlinear Optics, one can use these parameter dynamicsto study dromions [3] and optical bullets analytically.

We note that, besides the deterministic perturbation terms thatare considered here, one encounters, in reality, the stochastic typeperturbation. The adiabatic soliton parameter dynamics due to suchtype of perturbations will be reported in a future publication.

REFERENCES

1. Abdullaev, F., S. Darmanyan, and P. Khabibullaev, OpticalSolitons, Springer Verlag, New York, 1993.

2. Ablowitz, M. J. and H. Segur, Solitons and the Inverse ScatteringTransform, SIAM, Philadelphia, USA, 1981.

3. Ablowitz, M. J., G. Biondini, and S. Blair, “Localized multidimen-sional optical pulses in non-resonant quadratic materials,” Math-ematics and Computers in Simulation, Vol. 56, Issue 6, 511–519,2001.

4. Afanasjev, V. V., P. L. Chu, and Y. S. Kivshar, “Breathing spatialsolitons in non-Kerr media,” Optics Letters.

5. Akhmediev, N. N., V. I. Korneev, and R. F. Nabiev, “Modulationinstability of the ground state of the nonlinear wave equation:optical machine gun,” Optics Letters, Vol. 15, 393–395, 1992.

6. Akhmediev, N. N. and J. M. Soto-Crespo, “Generation of a trainof three-dimensional nonlinear Schrodinger equation,” PhysicalReview A, Vol. 47, Issue 2, 1358–1364, 1993.

7. Akhmediev, N. N. and A. Ankiewicz, Solitons Nonlinear Pulsesand Beams, Chapman and Hall, UK, 1997.

8. Akhmediev, N. N., A. Ankiewicz, and R. Grimshaw,“Hamiltonian-versus-energy diagrams in soliton theory,” PhysicalReview E, Vol. 59, No. 5, 6088–6096, 1999.

Page 37: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 57

9. Akhmediev, N. N., “Spatial solitons in Kerr and Kerr-like media,”Optical and Quantum Electronics, Vol. 30, 535–569, 1998.

10. Bang, O., J. J. Rasmussen, and P. L. Christiansen, “Subcriticallocalization in the discrete nonlinear Schrodinger equation witharbitrary power nonlinearity,” Nonlinearity, Vol. 7, No. 1, 205–218, 1994.

11. Biswas, A., “Perturbation of solitons due to power lawnonlinearity,” Chaos, Solitons and Fractals, Vol. 12, Issue 3, 579–588, 2001.

12. Biswas, A., “Solitons in multiple-core couplers,” Journal ofNonlinear Optical Physics and Materials, Vol. 10, No. 3, 2001.

13. Biswas, A., “Solitons in nonlinear fiber arrays,” Journal ofElectromagnetic Waves and Applications, Vol. 15, No. 9, 1189–1196, 2001.

14. Biswas, A., “Perturbation of solitons with non-Kerr lawnonlinearity,” Chaos, Solitons and Fractals, Vol. 13, Issue 4, 815–823, 2002.

15. Blagoeva, A. B., S. G. Dinev, A. A. Dreischuh, and A. Naidenov,“Light bullets formation in a bulk media,” IEEE Journal ofQuantum Electronics, Vol. QE-27, 2060–2062, 1991.

16. Busalev, V. S. and V. E. Grikurov, “Simulation of instability ofbright solitons for NLS with saturating nonlinearity,” Mathematicsand Computers in Simulation, Vol. 56, Issue 6, 539–546, 2001.

17. Desyatnikov, A., A. Maimistov, and B. Malomed, “Threedimensional spinning solitonsin dispersive media with cubic-quintic nonlinearity,” Physical Review E, Vol. 61, No. 3, 3107–3113, 2000.

18. Emundson, D. E. and R. H. Enns, “The particle-like nature ofcolliding light bullets,” Physical Review A, Vol. 51, Issue 3, 2491–2498, 1995.

19. Emundson, D. E. and R. H. Enns, “Bistable light bullets,” OpticsLetters, Vol. 17, 586–588, 1992.

20. Enns, R. H. and D. E. Emundson, “Guide to fabricatingbistablesoliton-supporting media,” Physical Review A, Vol. 47,Issue 5, 4524–4527, 1993.

21. Enns, R. H. and S. S. Rangnekar, “Bistable spheroidal opticalsolitons,” Physical Review A, Vol. 45, No. 5, 3354–3357, 1992.

22. Enns, R. H. and S. S. Rangnekar, “Variational approach tobistable solitary waves in d dimensions,” Physical Review E,Vol. 48, No. 5, 3998–4007, 1993.

23. Faddeev, L. D. and L. A. Takhtajan, Hamiltonian Methods in the

Page 38: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

58 Biswas

Theory of Solitons, Springer Verlag, New York, 1987.

24. Fokas, A. S. and V. E. Zakharov, Important Developments inSoliton Theory, Springer Verlag, New York, 1993.

25. Forest, M. G., D.W. McLaughlin,D. J. Muraki, and O.C.Wright,“Nonfocusing instabilities in coupled, integrable nonlinearSchrodinger pdes,” Journal of Nonlinear Science, Vol. 10,291–331, 2000.

26. Gagnon, L. and P. A. Belanger, “Adiabatic amplification of opticalsolitons,” Physical Review A, Vol. 43, No. 11, 6187–6193, 1991.

27. Ghidaglia, J. M. and J. C. Saut, “Nonexistence of travelling wavesolutions to nonelliptic nonlinear Schrodinger equations,” Journalof Nonlinear Science, Vol. 6, No. 2, 139–145, 1996.

28. Hasegawa, A. and Y. Kodama, Solitons in Optical Communica-tions, Oxford University Press, UK, 1995.

29. Hayata, K. and M. Koshiba, “Solution of self-trapped multidi-mensional optical beams by Galerkin’s method,” Optics Letters,Vol. 17, 841–843, 1992.

30. Hayata, K. and M. Koshiba, “Bright-dark solitary-wave solutionsof a multi-dimensional nonlinear Schrodinger’s equation,” PhysicalReview E, Vol. 48, Issue 3, 2312–2315, 1993.

31. Hayata, K. and M. Koshiba, “Algebraic solitary-wave solutions ofa nonlinear Schrodinger’s equation,” Physical Review E, Vol. 51,No. 2, 1499–1502, 1995.

32. Infield, E. and G. Rowlands, Nonlinear Waves, Solitons andChaos, Cambridge University Press, 1990.

33. Jovanoski, Z. and R. A. Sammut, “Propagation of Gaussian beamsin a nonlinear saturable medium,” Physical Review E, Vol. 50,No. 5, 4087–4093, 1994.

34. Karpman, V. I. and A. G. Shagalov, “Stability of solitonsdescribed the nonlinear Schrodinger-type equations with higherorder dispersion,” Physica D, Vol. 144, Issue 1–2, 194–210, 2000.

35. Kivshar, Y. S. and B. A. Malomed “Dynamics of solitons in nearlyintegrable systems,” Reviews in Modern Physics, Vol. 61, No. 4,765–915, 1989.

36. Kivshar, Y. S., “Bright and dark spatial solitons in non-Kerrmedia,” Optical and Quantum Electronics, Vol. 30, 535–569, 1998.

37. Kivshar, Y. S. and B. Luther-Davis, “Dark optical solitons:physics and applications,” Physics Reports, Vol. 298, 81–197, 1998.

38. Kivshar, Y. S. and D. E. Pelinovsky, “Self-focusing and transverseinstabilities of solitary waves,” Physics Reports, Vol. 331, 117–195,2000.

Page 39: THEORY OF OPTICAL BULLETSTheory of optical bullets 23 Kerr law, survive collisions with no loss of energy, optical bullets are foundto possess lessenergy thanthe input pulses. Thusoptical

Theory of optical bullets 59

39. Manassah, J. T., P. L. Baldeck, and R. R. Alfano, “Self-focusing,self-phase modulation, and diffraction in bulk homogenousmaterial,” Optics Letters, Vol. 13, 1090–1092, 1988.

40. Mcleod, R., K. Wagner, and S. Blair, “(3+1)-dimensional opticalsoliton dragging logic,” Physical Review A, Vol. 52, No. 4, 3254–3278, 1995.

41. Mihalache, D., D. Mazilu, L. C. Crasovan, B. A. Malomed, andF. Lederer, “Three-dimensional spinning solitons in the cubic-quintic nonlinear medium,” Physical Review E, Vol. 61, No. 6,7142–7145, 2000.

42. Mihalache, D., M. Bertolotti, and C. Cibilia, “Nonlinear wavepropagation in planar structures,” Progress in Optics, Vol. XXVII,228–309, 1989

43. Pelinovsky, D. E., V. V. Afanasjev, and Y. S. Kivshar, “Nonlineartheory of oscillating, decaying and collapsing solitons in thegeneralized nonlinear Schrodinger’s equation,” Physical Review E,Vol. 53, No. 2, 1940–1953, 1996.

44. Silberberg, Y., “Collapse of optical pulses,” Optics Letters,Vol. 15, 1282–1284, 1990.

45. Sonar, S., J. Kumar, and P. K. Sen, “Suppression of solitoninstability by higher order nonlinearity in long haul opticalcommunication systems,” Journal of Nonlinear Optical Physicsand Materials, Vol. 8, No. 4, 497–502, 1999.

46. Skarka, V., V. I. Berezhiani, and R. Miklaszewski, “Generation oflight spatiotemporal solitons from asymmetric pulses in saturatingnonlinear media,” Physical Review E, Vol. 59, No. 1, 1270–1273,1999.

47. Snyder, A. W. and D. J. Mitchell, “Spatial solitons of the power-law nonlinearity,” Optics Letters, Vol. 18, No. 2, 101–103, 1993.

48. Sulem, C. and P. L. Sulem, The Nonlinear Schrodinger’s Equation,Springer Verlag, New York, 1999.

49. Yang, J. and D. J. Kaup, “Stability and evolution of solitary wavesin perturbed generalized nonlinear Schrodinger’s equation,” SIAMJournal of Applied Mathematics, Vol. 60, No. 3, 967–989, 2000.

50. Zhou, C., X. T. He, and T. Cai, “Pattern structures on generalizednonlinear Schrodinger’s equations with various nonlinear terms,”Physical Review E, Vol. 50, No. 5, 4136–4155, 1994.