Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego,...

29
Theory of Ignition and Hydro-Equivalence for Inertial Confinement Fusion R. Betti Fusion Science Center and Laboratory for Laser Energetics University of Rochester 24th IAEA Fusion Energy Conference San Diego, CA 813 October 2012 Burn Compression Hot-spot ignition Hot spot ~4 mm FSC

Transcript of Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego,...

Page 1: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Theory of Ignition and Hydro-Equivalencefor Inertial Confinement Fusion

R. BettiFusion Science Center andLaboratory for Laser EnergeticsUniversity of Rochester

24th IAEA Fusion Energy Conference

San Diego, CA 8–13 October 2012

BurnCompression Hot-spot ignition

Hot spot

~4 mm

FSC

Page 2: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Inertial confinement fusion (ICF) ignition theory is used to assess National Iginition Facility (NIF) experiments and design ignition-scalable implosions on OMEGA

TC10290

FSC

Summary

• ICFignitiontheoryisusedtoderiveperformanceparametersthatcanbe measured in experiments

• ThetheoreticalresultscanbeeasilyrelatedtotheLawsoncriterion

• ApplicationstoNIFindirectdriveimplosionsshowPx up to 18 atm s, and pressures up to ~125 Gbar (~350 Gbar is required for ignition)

• Hydrodynamicscalingisusedtodesigndirect-drivesimilarityexperimentsbetweenOMEGAandtheNIF

• OMEGAimplosionsthatscaletoignitionatNIFenergiesrequire an areal density of ~0.3 g/cm2 and a neutron yield of ~4 × 1013

Page 3: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

FSC

ICF IGNITION THEORYFROM THE LAWSON CRITERION

Page 4: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Like in magnetic confinement fusion (MCF),theLawsoncriteriondeterminestheICFignitionconditionwhereignition occurs in the hot spot

TC10257

Alpha heating exceeds energy losses

" n P4 2

322vo f xa

Ignition parameter "/T

PP T

P24 ig

2/|vo fx

xx=

a ^ h

Ignition condition " | > 1

Hot spot

Rhsr

Ti

t

P ~ tT ~ constant

Sh

ell

Dense shell

Hotspot

FSC

Page 5: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

ICF implosions cannot achieve ~10-keV temperatures through compression alone

TC10258

• HighT requires high implosion velocity Vi

• HighVi requires thin shells

• Thinshellsbreakupinflightbecauseofhydrodynamic instabilities

FSC

7.5t (g/cc)

3.5

0.5

–5000

200

400

600

800

1000

–250 0

0

5

10

15

20

Implodingshell T ~ Vi

25

0

Px

(at

m s

)

5 10 15T (keV)

20 25 30

z (nm)

r (n

m)

250 500

Ignition| > 1

NIF

ITERICF must ignite at ~5 keV, requiring V ~ 400 km/s and Px > 25 atm s.

Page 6: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Unlike in MCF, heat conduction losses do not reduce thethermal energy (pressure) in the hot spot of ICF capsules

TC8536a

FSC

Hot spot

Rhs r

Ti

t

P ~ tT ~ constant

Sh

ell

Shell

Heat flux

Enthalpyflux

Massablation

q T T

T T02

heat - d

.

l

l l

=5

]]

gg

Mass ablation recycles the heat losses back into the hot spot.

.m Rm T

0 2/

hsa

i 0 05 2l

=o

q PV25

heat a=

Balanceheatfluxwithablationenthalpy*flux

Mass ablation rate from shell into the hot spot

*R. Betti et al. Phys. Plasmas 8, 5257 (2001).

Page 7: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Thehotspotisconfinedbyadenseshellwiththeconfinement time depending on the shell inertia

TC10259

FSC

• Thetemperaturedependsmainlyonimplosionvelocity

• TheconfinementtimecomesfromapplyingNewton’slawtotheshell

• The1-Dignitionparameter*P T

P

ig

/|xx^ h isrewritten

in terms of measurable quantities

~TV

R/

..i

02 7

1 20 2

lt^ h

~M R M R P R4sh sh hs22

xr=p ~ P R

M4 hs

shxr

.P TP R

T4 7/

..

igg cm

keV0 81 6

2/ .|xx t^ ch m

*C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008).

Page 8: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

One-dimensional simulations of gain = 1 targets confirm that the 1-D ignition condition depends on ion temperature and total areal density

TC10260

• Comparison*ofignitionconditionwithsimulationofgain= 1 targets

• Ignition-relevantparametersinferredfrom measurable quantities

FSC

4

Best simplefit for 3.5 < T < 7 keV

tR = 20/T2

0.5

0.0

1.0

1.5

2.0

5 6 7

Ignition

GtR

Hno

a (g

/cm

2 )n

GTHno a (keV)n

| > 1

| < 1

Ignition parameter

Lawson’sPx

D- .P TP R

T4 7/

..

igg cm

keV0 81 6

2/ .|xx t

1 ^ ch m

atmP R T s8 /.

g cm keV0 8

2 :.x t_ i

All hydrodynamic quantities are calculatedwithoutburn(no alphas).

*C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008).

Page 9: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

R3-D

Hot spotCold

Shell

R1-DGvoH ≈ 0

0.00.0

0.2

0.4

0.6

0.8

No

rmal

ized

gai

n G

/G1-

D

Minimizedspread

1.0

0.5 1.0|3-D

1.5 2.0

Three-dimensional effects1,2 are included through the yield over clean (YOC) and its relation to the hot-spot clean volume

TC10261

FSC

YOCY

YV

V

n1Dn3 D

1D

3 D/ .

-

-

-

-D- .

YOCRT4 7/

..

3fit

g cmno keV

no

no0.40 8

1 6

2| t= aa

aa ek o

3-D ignition condition

1 P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010). 2 R. Betti et al., Phys. Plasmas 17, 058102 (2010).

• Fusionreactionsoccurin the clean volume (red)

Page 10: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

The LLNL ignition threshold factor (ITFx) from fitting of LASNEXresultsisthecubicpower oftheLawsonparameter

TC8777

• RewritetheLawsoncriterionbyusingthe1-DyieldYN in the YOC1

• Theignitioncriterioncanbewrittenintermsofenergy

• CompareLLNLperformanceparameter2 ITFx withcubicpowerof| for MDT = 0.17 mg

.R

MY0 24

/.

.

3 D g cmno

fuelmg

N0 616 0 34

2.| t-a_ fi p

D- / . .ITFxY R0 32 1 5

.

NIFN16 2 3

1 tc m . .Y R0 35 1 5

.

3 DN316 1 8

/|t

- c m

1 R. Betti et al., Phys. Plasmas 17, 058102 (2010). 2 B. K. Spears et al., Phys. Plasmas 19, 056316 (2012).

FSC

~ ~ ~ ~P P PRM

P PRR R E /sh 3

1 3x ~ITFE

EPP

ig igmin

33.

xx |=^ h> H

Page 11: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

TheLawsonparameterisusedtoestimate P and Pxfor NIF indirect drive and OMEGA direct drive

TC10262

FSC

• Thehot-spotpressureisinferredfrom Px and the burn duration xburn

D-3 .GbarPT

27 4 7 .

burnns

ikeV

0 8.

x|^ eh o

NIF shot N120321 N120131 N110914 N111215

Px atm/s 18 12 15 15

| / Px/|Px|ig 0.48 0.37 0.45 0.44

P Gbar* 124 76 111 94

|3/ITFx 0.11/0.12 0.05/0.046 0.09/0.09 0.09/0.09

OMEGA shot 67290 67289 67288 67291

Px atm/s 3.6 3.5 3.1 3.3

| / Px/|Px|ig 0.086 0.082 0.080 0.083

P Gbar 34 33 29 31

*Similar values are inferred by C. Cerjan (LLNL), private communication.

Page 12: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

FSC

SCALING FROM OMEGA TO DIRECT-DRIVE NIF(assume symmetric drive and similar laser smoothing)

Page 13: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

OMEGA results can be scaled to NIF energies

TC10256

1.3 to1.8 MJ

Direct-driveNIF 1.8 MJ

Indirect-drive NIF

3.6 mm

2.2 mm

Hydrodynamic scaling

0.86 mm

OMEGA 26 kJ

Scale 1:70in energy

Scale 1:1

Scale 1:1

FSC

Page 14: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

• TheshellimplodeswithViandexpandswithCs

• TheMachnumberCVi

s is the only dimensionless parameter

• UseisentropicimplosionconditionPa ~ at5/3

• 1-DsimilarityrequiresequalMachnumbers

~MachIP

V/ /

a L

i23 5 2 5

2

a ^ h

One-dimensional implosion similarity requiresequal Mach numbers

TC10291

FSC

D

RVi

Page 15: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Multidimensional implosion similarity imposesadditional requirements on entropy and velocity

TC10265

• Themultidimensionalbehaviorisdeterminedprimarily by the Rayleigh–Taylor (RT) instability

• Numberofe-foldingsofRTgrowth*forwavenumbers ,k R.

– –d d d, ,N t kg kV tRR

R VV

3 3eRT

RT

t

a

t

i

a

0 0 0

1i i

c x= = = t

tp

t_ fi p# # #

• SimilarimplosionshavethesamedimensionlessR: R RR

0=t

• 3-Dsimilarityrequiressame" ~I

IVV

Vm

P

mV/

/

i

a

i

a

a L

a L

i3 5

3 5

ta=

o o

^^hh

FSC

*H. Takabe et al., Phys. Plasmas 28, 3676 (1985).

Page 16: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Hydrodynamic similarity leads to geometricand energy scaling of implosion performance

TC10266

FSC

Hydrodynamic equivalence:

Fixed Vi, a, IL, " EL ~ R3, PL ~ R2, M ~ R3, D ~ R, t ~ R

• 1-Dhydrodynamicsimilarity" ~MachIP

V/ /

a L

i23 5 2 5

2

a ^ h

• 3-Dhydrodynamicsimilarity" ~I

IVV

P

mV

/

/i

a

a L

a L

i

3 5

3 5ao

^^hh

• Laser-energyrequirement

• ThreeconstraintsforVi, a, IL " hydrodynamic equivalence requires same Vi, a, IL

I I IP R E R VR

P V34 4 3a L L

ia L i L0

302 0

$. .r h h r h= ^ h

1

2

3

Page 17: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

OMEGA 26 kJ Direct-driveNIF 1.8 MJ

3.6 mm

0.86 mm

00

5

10

15

20

1Time (ns)

Po

wer

(T

W)

2 00

100

200

300

4Time (ns)

Po

wer

(T

W)

8

Targets and laser pulses are designed for OMEGAto reproduce direct-drive NIF hydrodynamics

TC10267

FSC

Same Vi , a, IL and EL ~ R3, PL ~ R2, M ~ R3, D ~ R, t ~ R

~ ~R E /L1 3D

~ EP /L L

32

~Time E /L

31

Hydrodynamic scaling

Page 18: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Ignition theory and hydro-similarity provide the energyscaling of critical parameters

TC10270

• Energyscaling*ofarealdensity,iontemperature,andfuelmass for hydro-equivalent implosions

• Energyscalingforneutronyieldwithoutburn(no alphas)

• EnergyandYOCscalingforignitionparameterandITFx

FSC

tR ~ E0.33 T ~ E0.07 Mfuel ~ E

~Y E .nno 1 5a

|3-D ~ E0.37 YOC0.4 ~ITF YOCx E .1 3

5.EE . .

kJNIF

MJ

26

1 8 0 37

X

f p .EE

220. .

kJNIF

MJ

26

1 8 1 3

X

f p

*C. D. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007).

Page 19: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Hydro-equivalent ignition on OMEGArequires | / Px/(Px)ig á 0.16

TC10292

• TheenergyandYOCscalingis|3-D ~ E0.37 YOC0.4

• ExpectYOCimprovementof2× on NIF versus OMEGA because of larger hot-spot size, more beams, and equal ice roughness (see back-up slides for details)

YOCNIF ~ 2 × YOCX

• ApplyOMEGA-to-NIFscaling

kJkJ

261800 2 1.

..

DDMJ kJ1 8 26

0 370 4. .| |X b l

FSC

.0 16eq ignition .| -X

Page 20: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Hydro-equivalent implosions are designed usingcurrent OMEGA targets (butwithbetterperformance)

TC10293

FSC

CHDT ice

DT gas

OMEGA

378 nm

41 nm 10.5 nm

430 nm

CHDT ice

DT gas

NIF

1542 nm

185 nm 39 nm

1766 nm

EL kJ 26

Vi km/s 350

amin 1.5

IFAR2/3* 22

GtRHn g/cm2 0.3

YN (1-D) 1.8 × 1014

EL kJ 1800

Vi km/s 350

amin 1.5

IFAR2/3* 22

GtRHn g/cm2 1.3

YN (1-D)/gain 3.4 × 1019/52

*In-flightaspectratio

Page 21: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

The time evolution of implosion velocityand IFAR are the same for the NIF and OMEGA

TC10268

0.0

–300

–200

–100

0

0.4

Normalized time (tV/R)

Imp

losi

on

vel

oci

ty (

km/s

)

0.8

NIF 1.8 MJOMEGA 26 kJ

NIF 1.8 MJOMEGA 26 kJ

0.6

20

10

0

30

40

50

60

IFAR2/3 = 22

0.8

Normalized time (tV/R)

Same 1-D hydro Same RT growth (3-D)

IFA

R1.0

Page 22: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

0.00.0

0.5

1.0

1.5

0.8 1.0

Normalized time (tV/R)

tR ~ E1/3

Are

al d

ensi

ty (

g/c

m2 )

1.2 1.0

2

1

0

3

4

1.1

Normalized time (tV/R)

Comparison of scaled tR

Neu

tro

n r

ate

(102

6 /s)

1.2

NIF 1.8 MJOMEGA 26 kJ × RE

0.33NIF 1.8 MJOMEGA 26 kJ × RE

1.5

Comparison of scaled Yn

Yn ~ E3/2

The 1-D areal density and no-burn neutron ratescale as predicted

TC10271

R EENIF

E /X

Page 23: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

• | á 0.16 is required for hydro-equivalent ignition at 26 kJ

• UsetR = 0.3 g/cm2, MDT = 0.021 mg in .

RM

Y0 24/

..

g cmno

fuelmg

N0 6116 0 34

2.| t a_ fi p• Requiredneutronyieldat26kJis3.7× 1013

• 1.8-MJtargetsignite(gain = 1) with44%of1-Dno-burnneutronyield (use YOC model*)

• Requiredyieldat26kJis~22% of the 1-D yield (Y1-D = 1.8 × 1014); i.e., required yield is 4 × 1013

Sim

ula

tio

ns

The requirements for hydro-equivalent ignitionat 26 kJ are confirmed by simulations

TC10294

FSC

Hydro-equivalent ignition parameters for OMEGA: tR á 0.3 g/cm2 and YN á 4 × 1013

* P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010).

Th

eory

CHDT ice

DT gas

26 kJ

378 nm

41 nm 10.5 nm

CHDT ice

DT gas

1.8 MJ

1542 nm

185 nm 39 nm

Page 24: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

TC10290

Summary/Conclusions

Inertial confinement fusion (ICF) ignition theory is used to assess National Iginition Facility (NIF) experiments and design ignition-scalable implosions on OMEGA

• ICFignitiontheoryisusedtoderiveperformanceparametersthatcanbe measured in experiments

• ThetheoreticalresultscanbeeasilyrelatedtotheLawsoncriterion

• ApplicationstoNIFindirectdriveimplosionsshowPx up to 18 atm s, and pressures up to ~125 Gbar (~350 Gbar is required for ignition)

• Hydrodynamicscalingisusedtodesigndirect-drivesimilarityexperimentsbetweenOMEGAandtheNIF

• OMEGAimplosionsthatscaletoignitionatNIFenergiesrequire an areal density of ~0.3 g/cm2 and a neutron yield of ~4 × 1013 (a 1.6× improvement in areal density and 3× improvementinyieldwithrespect to best implosion to date)

FSC

Page 25: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Hydrodynamicscalingindicateslower3-Ddegradationin performance on NIF versus OMEGA

TC8660b

• Yield-over-clean(YOC): the required YOC on OMEGA is difficult to estimate. Use simple clean volume analysis:

D D=- - –R3 RT1R DR ~R GRT RT0vD G GRTNIF

RT. X

RT spike amplitude Growthfactor Hydro-equivalency

– –YOC 1 1 YOCE

E/

NIF/

NIF

NIF

L

L

0

0 1 3

31 3

.v

vX

X

Xf ap kR

T

SSSS

V

X

WWWW

Initial seed

FSC

Page 26: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

AYOCof30%onOMEGAextrapolates(approximately) toa60%YOConNIF

TC8661a

• SeedsfortheRTcomefromtheiceroughnessandthe

laser nonuniformities: ice laser02 2.v v v+

• BetalayeringmakesNIFtargetsassmoothasOMEGA’s: ice iceNIF.v vX

• Lasernonuniformitiesgrowwithsize E /L1 3_ i and are reduced by a larger

number of overlapping beams (Nb) ~ E N/ /laser b

1 2ZL1 3v

E

E

N

N1

1/NIF NIF

NIFb

b

L

L0

02 3

2

2.

v

v

v

v

+

+X

X

X

X

X

f fp p

ˆ

ˆˆ

ice

L/vv

vX X

X

1.0

0.8

0.6

0.4

0.2

0.00 1

YO

CN

IF

2 3

NIF YOC extrapolatedfrom measured

30% YOC on OMEGA

vXˆ

Page 27: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

Hot spot

R r

T t

mo

Sh

ell

Shell

R

R+

Hotspot

Shell

Heat fluxRadiation flux

Radiation flux . 0Heat flux . 0

mo < Dshell

The heat and radiation energy lost by the hot spot does not propagate through the dense cold shell; no heat orradiationfluxatthehot-spotboundary

TC8536

q T T T T

T h200 5

1000/

shelleV keV

02

3

heat Sp

mg cc

2

- d .

mo

t

l ll=

=on

5] ]

c e

g g

m o

q r R q r R0 0heat rad. .= =+ +` `j j

FSC

Page 28: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

The clean volume analysis is validated by comparing 2-D simulationswithinner-surfaceroughnessand1-Dsimulations having reduced GvoH→GvoHVclean/V1-D ≈ GvoHYOCno a

TC8553

• Inthe1-Dsimulations,GvoH is reduced by the YOC (or clean volume fraction) until the hot-spot temperature reaches 10 keV.

YOCno a (%) YOCno a (%)

Gai

n

Gai

n

Direct-drive 1.5-MJ all-DT target design

Direct-drive surrogate of NIF 1.0-MJ indirect drive

0 604020020

25

454035302520151050

20

15

10

5

06040 8080 100 100

1-D code2-D code

1-D code2-D code

FSC

Page 29: Theory of Ignition and Hydro-Equivalence for Inertial Confinement … · 2013-01-04 · San Diego, CA 8–13 October 2012 Compression Hot-spot ignition Burn Hot spot ~4 mm FSC. Inertial

FSC

Physics other than hydrodynamics (based on purely theoretical extrapolations)

• Laser-energy collisional absorption • Laser plasma instabilities and hot electron preheat • Cross-beam energy transfer • Radiation preheat

OMEGA NIF

Less Less Less More

More More More Less

better

worse

worse

better