Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D...

36
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND2017-6201 C Theory applied to Warm Dense Matter Luke Shulenburger

Transcript of Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D...

Page 1: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND2017-6201 C

TheoryappliedtoWarmDenseMatterLukeShulenburger

Page 2: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

WhatisWarmDenseMatter?§ WarmDenseMatterisgenerallyassociatedwithstronglycoupledions

(Gii >1)andmoderatelydegenerateelectrons(q ~1)

§ Itistypicallyfoundatthejunctionofsolid,liquid,gas,andplasma.ThecomplicatedinterplayofthephysicalprocessesthatWDMshareswithitsneighborscreatesconsiderabledifficultiesfortheory.

§ q >>1isequivalenttowhereL isthethermaldeBrogliewavelength§ Fermi-Diracstatisticsforelectronicdegreesoffreedomstarttakingon

moreofaMaxwell-Boltzmanncharacter

Page 3: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

WhereisWarmDenseMatterfound?

is closely connected with (P > 1 Mbar)

Page 4: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Somehistoryofthefield§ Conferencesdevotedtonon-idealplasmasandtheirstudy

havebeenaroundforalongtime§ ThePhysicsofNon-IdealPlasmasMeetingseriesstartedin1980informer

EastGermany§ TheStronglyCoupledCoulombSystemsmeetingshavealsohadalong-

standingcontingentinterestedinwhatisnowcalledWarmDenseMatter

§ Thefirst“WarmDenseMatter”meetingwasorganizedbyAndrewNg(whocoinedthename)andheldinVancouver,BCin2000.

4

Page 5: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Whatmakesitdifficult?§ Thereisnosmallparameter

§ Plasmaexpansionsing,theplasmaparameter,failforWDM

§ Manydifferentaspectsofthephysicscontributeatacomparablelevelandmustbeincluded§ strongcorrelations§ ionization§ bondformationandbreaking§ complexpressureandtemperaturedependentchemistry

§ Computations/simulationsareoftenquitedemanding§ Massivelyparallelcomputationsarethenorm§ Shortcutsareverytempting

§ Experimentalconditionsareshortlivedandhardtodiagnose§ Whichexperimentalresultsshouldyoubelieve?

5

Page 6: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

6

Better EOSPhase diagrams

Time/Path dependence Approach

to phase equilibrium

Transport and mechanical properties

Mixtures

Material structure, Electronic, Ionic

Non-LTE

Electronic Excitation

Heating the Material

Ionic ExcitationCompressing the

Material

ScientificneedsinWarmDenseMatterResearch

Experimentalapproaches

Page 7: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Considersomethingas“simple”asthedeuteriumHugoniot

7Pierre Henri Hugoniot

One of these thingsis not like the others

Page 8: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Theprogresscontinuestothisday

§ Experimentaltechniquescontinuetoimproveinprecisionandaccuracy§ Understandingofmaterial

propertiesbootstrapsitself

§ Startingtodiscriminatethelimitationsofcurrenttheoreticalapproximations

8

Knudson and Desjarlais, PRL 118, 035501 (2017)

Pres

sure

Page 9: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

• Equations governing the properties of a material under any conditions are known

• Just need to solve the 3N dimensional partial differential equations• Approximations are necessary for real materials

QuantumCalculationsofferanappealingroute

9

HΨ(r1…rN ) = EΨ(r1…rN )

ååå-

+-

-=¹ Ii iI

I

ji jii

i

rReZ

rre

mH

,

222

21

2ˆ !!!!

Page 10: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

• Equations governing the properties of a material under any conditions are known

• Just need to solve the 3N dimensional partial differential equations• Approximations are necessary for real materials

• If we could do this accurately and efficiently, we could calculate any physical property

QuantumCalculationsofferanappealingroute

10

HΨ(r1…rN ) = EΨ(r1…rN )

ååå-

+-

-=¹ Ii iI

I

ji jii

i

rReZ

rre

mH

,

222

21

2ˆ !!!!

Page 11: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Quantumcalculationsarenottrivial• RecastSchrodingerequationasanintegralproblemin3N

dimensions

● Massiveparallelismavailable,eachpointcanbecalculatedindependently

• Poorscaling

11

òò

YY

YY>=<

RRR

RRRR

d

dHH

)()(

)()(ˆ)(ˆ*

*

Page 12: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Quantumcalculationsarenottrivial• RecastSchrodingerequationasanintegralproblemin3N

dimensions

● Massiveparallelismavailable,eachpointcanbecalculatedindependently

• Poorscaling� 3dimensionsperelectron� 20pointsineachdirection� 209 ≈512billionpointsfor3electrons

� 3.8TBjusttostore!

12

òò

YY

YY>=<

RRR

RRRR

d

dHH

)()(

)()(ˆ)(ˆ*

*

Page 13: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

DFT– TheMostCommonApproximation§ Threeinsightsunderpinthedevelopmentofthemost

commonlyusedtheory§ PhysicalInsight

§ Wavefunctionisnotanobservablebutthedensityis§ Replacethe3Ndimensionalwavefunctionwiththe3dimensionaldensity

§ Canapproximatekineticenergyanddevelopasensibledensitybysolvingfornoninteracting electronsinaneffectivepotential

§ Areasonableapproximationistomaketheeffectivepotentialasimplefunctionofthedensity

13

N(r) = ∫Ψ(r,r2..rN)dr2���drN

V(r) ∝ 1/r

Ion

Page 14: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

DFT– TheMostCommonApproximation§ Threeinsightsunderpinthedevelopmentofthemost

commonlyusedtheory§ PhysicalInsight

§ Wavefunctionisnotanobservablebutthedensityis§ Replacethe3Ndimensionalwavefunctionwiththe3dimensionaldensity

§ Canapproximatekineticenergyanddevelopasensibledensitybysolvingfornoninteracting electronsinaneffectivepotential

§ Areasonableapproximationistomaketheeffectivepotentialasimplefunctionofthedensity§ Thisisthedensityfunctional

14

N(r) = ∫Ψ(r,r2..rN)dr2���drN

V(r) ∝ 1/r

Ion

Page 15: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

(Kohn-Sham)DFTinpractice§ Startbychoosingapproximation(functional)§ MakeBorn-Oppenheimerapproximation

§ Chooseachunkofmaterialtostudy(generallyperiodicboundaryconditions)

§ Solveforelectronsinpresenceofstaticions§ Note:Mermin approximationmeansthermalgroundstate

§ Hamiltonianisnowset.Solveforsingleparticlesolutionsinsomebasis(physiciststendtopreferplanewaves,chemistsgaussians)§ Note:allofthesesolutionsneedtobeorthogonalforFermionslike

electrons,soneedO(N3)diagonalizationofamatrix

§ Combinesingleparticlewavefunctionstogetdensityandthusinteractionpotential§ Usethistogetnewapproximationofpotentialanditeratetoself-

consistency 15

Page 16: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

WhatdoesDFTallowustocalculate?

§ Formally,wegetE(R)andrelatedquantitieslikeF(R)§ Ifweareintegratingovertheelectrons,thisisgenerally

enough§ Structure,Diffusion…

§ Forelectronicproperties,thingsaremorecomplicated§ Formallyspeaking,needanewtypeoffunctional§ Practically,weoftenuse(abuse)thesingleparticlewavefunctions

§ Conductivity,Opacity…

16

Page 17: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

DFTisaverysuccessfultechniqueforstudyingWDM

§ CarefulDFT/QMDcalculationscancomplementexperimentbyprovidingadditionalinformation

§ Thisisespeciallypowerfulwhenexperimentscanvalidateapproximations

17

Root, LNS, Lemke, Dolan, Mattsson and Desjarlais, PRL 115, 198501 (2015)

Shock melting of diamond Phase diagram of MgO

Knudson, Desjarlais and Dolan, Science 322, 1823 (2008)

Page 18: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

DFTisnotperfect

§ Scalingwithtemperature§ Memory~T3

§ CPUtime~T4.5

§ Approximationsarenotoriouslydifficulttoimprove

§ Theseshortcomingsarenotjustacademic!

18

Knudson, Desjarlais, Becker, Lemke, Cochrane, Savage, Bliss, Mattsson and

Redmer, Science 348, 1455 (2015)

D2 liquid-liquid phase transition

Page 19: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

FRONTIERSINCALCULATINGPROPERTIESOFWDM:EXTENDINGRANGEOFVALIDITY

19

Page 20: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

AverageAtomApproximation

§ Athightemperatures,thepresenceofnearbyatomsislessrelevant§ Solveforanisolated“averageatom”in

abackgroundofelectrons§ Selfconsistentlychangeionizationstate

withtemperature§ Fewerelectronson”atom”moreinbackground

§ InadditiontoEOS,ageneralizationtohandlevariousionicstatesinaplasmacanbeusedtocalculatetransportproperties

20

Bailey et al. Nature 517, 56 (2015)

Fe opacity at stellar conditions

Page 21: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

AverageAtomApproximation

§ Athightemperatures,thepresenceofnearbyatomsislessrelevant§ Solveforanisolated“averageatom”in

abackgroundofelectrons§ Selfconsistentlychangeionizationstate

withtemperature§ Fewerelectronson”atom”moreinbackground

§ InadditiontoEOS,ageneralizationtohandlevariousionicstatesinaplasmacanbeusedtocalculatetransportproperties

21

Bailey et al. Nature 517, 56 (2015)

Fe opacity at stellar conditions

What about higher densities / lower temperatures?See for example talk by C. Starrett

Page 22: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

OrbitalFreeDFT§ Kohn-Shamapproximationisnotonly

approachtoDFT§ Cansolveeverythingwithoutcalculating

singleparticlestates§ Approximationbecomesmuchmore

difficult§ Needtogetkineticenergyandelectronic

entropyfromdensityalone!§ Notoriouslydifficulttogetmoleculesto

bind§ However,thisisanoldtechnique

§ Thomas-Fermiapproximationisperhapsearliestexample

§ Typicallyworkswellathightemperatures

22

SiO2 from OFDFT and KSDFT

Sjostrom and Crockett, PRB 92, 115104 (2015)

Page 23: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

OrbitalFreeDFT§ Kohn-Shamapproximationisnotonly

approachtoDFT§ Cansolveeverythingwithoutcalculating

singleparticlestates§ Approximationbecomesmuchmore

difficult§ Needtogetkineticenergyandelectronic

entropyfromdensityalone!§ Notoriouslydifficulttogetmoleculesto

bind§ However,thisisanoldtechnique

§ Thomas-Fermiapproximationisperhapsearliestexample

§ Typicallyworkswellathightemperatures

23

SiO2 from OFDFT and KSDFT

Sjostrom and Crockett, PRB 92, 115104 (2015)

Work continues to improve functionals and implementationSee for example work of E. Carter, T. Sjostrom, S. Trickey and K. Burke

Page 24: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

PathIntegralMonteCarlo

§ ReturntodirectsolutionofmanybodySchrodingerequation

§ UseFeynmanformulationtocastasseriesofpathintegrals

§ SampleoverpathintegralsusingMonteCarlotechniques

§ Veryexpensive,potentiallyveryaccurate§ Difficultiesduetosymmetryof

particlesandergodicity(pathsgettangledatlowtemperatureorhighdensity)

24

Hugoniot of Deuterium

Militzer and Ceperley, PRL, 85, 1890 (2000)

Page 25: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

PathIntegralMonteCarlo

§ ReturntodirectsolutionofmanybodySchrodingerequation

§ UseFeynmanformulationtocastasseriesofpathintegrals

§ SampleoverpathintegralsusingMonteCarlotechniques

§ Veryexpensive,potentiallyveryaccurate§ Difficultiesduetosymmetryof

particlesandergodicity(pathsgettangledatlowtemperatureorhighdensity)

25

Hugoniot of Deuterium

Militzer and Ceperley, PRL, 85, 1890 (2000)

Work continues to improve approximations and expand validity for WDMSee for example work of Bonitz, Ceperely and talk by B. Militzer

Page 26: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

FRONTIERSINCALCULATINGPROPERTIESOFWDM:IMPROVINGAPPROXIMATIONS

26

Page 27: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

GroundstateMonteCarloApproaches§ Improvetreatmentof

electronicinteractionbystochasticsamplingofmanybodySchrodingerequation

§ Canbehighlyaccurate,butveryexpensive

§ Inaccuraciesareoftenduetoapproximationsnecessarytoimprovecomputationalcost§ Methodisverywellsuited

tosupercomputersthough,sothisshouldimprove

27

Mazzola and Sorella, PRL 114, 105701 (2015)

Page 28: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

BetterDFTfunctionals

§ DFTgets10’softhousandsofcitationsyearly§ Lotsofworkonimproving

functionalsforgroundstate/ambientproperties

§ Functionalsforfinitetemperature§ OlderworkbyDharma-

Wardana andPerrot(1984)§ RecentPIMCcalculationsfor

referencesystemhavespurredwork

§ Trickey groupandBurkegroupbothhavenewapproximations

28

Browne et al. PRL 110, 146405 (2013)

Page 29: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

FRONTIERSINCALCULATINGPROPERTIESOFWDM:BEYONDEQUATIONOFSTATE

29

Page 30: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

TransportProperties:Kubo-Greenwood

§ CancalculateelectronicandthermalconductivityusingDFT

§ CalculateimaginarypartofdielectricfunctionusingtheKubo-Greenwoodrelation§ Linearresponse§ Matrixelementsofsingle

particlewavefunctions

§ WorkswellinWDMregime§ Issuesifbandgapisnot

closed(Helium?)

30

Desjarlais, Kress, and Collins, Phys. Rev. E 66, 025401 (2002)

Aluminum electrical conductivity

Page 31: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Transportproperties:Energytransfer§ Stoppingafastmovingion§ Understandinghowionsareslowedisessentialtounderstanding

theenergybalanceininertialconfinementfusion§ Asatestproblem,wedragahydrogenionthroughaluminumat

constantvelocityandmeasuretheforceontheion§ Generationofplasmons necessarytocapturetheproperbehavior

31

Born-Oppenheimer TDDFT

Page 32: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Transportproperties:Energytransfer§ Stoppingafastmovingion§ Understandinghowionsareslowedisessentialtounderstanding

theenergybalanceininertialconfinementfusion§ Asatestproblem,wedragahydrogenionthroughaluminumat

constantvelocityandmeasuretheforceontheion§ Generationofplasmons necessarytocapturetheproperbehavior

32

Born-Oppenheimer TDDFT

Page 33: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Transportproperties:Energytransfer§ Stoppingafastmovingion§ Understandinghowionsareslowedisessentialtounderstanding

theenergybalanceininertialconfinementfusion§ Asatestproblem,wedragahydrogenionthroughaluminumat

constantvelocityandmeasuretheforceontheion§ Generationofplasmons necessarytocapturetheproperbehavior

33

Born-Oppenheimer TDDFT

Page 34: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

FRONTIERSINCALCULATINGPROPERTIESOFWDM:WHERETOFROMHERE

34

Page 35: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

Whatproblemsseemripe?

§ WhiteDwarfs§ Cosmochronology – ageofwhitedwarfsthroughcoolingrate

§ EquationsofstateforC,O,andHeatextremeconditions§ Thermalconductivities,viscosities,diffusioncoefficients

§ Asteroseismology – modelpulsatingwhitedwarf,toinfer§ Totalmassandmasscomposition§ Interiorrotationprofile§ Surfacetemperature§ Structuraldetails

35

Page 36: Theory applied to Warm Dense Matter · 2017. 7. 11. · Redmer, Science 348, 1455 (2015) D 2liquid-liquid phase transition. FRONTIERS IN CALCULATING PROPERTIES OF WDM: EXTENDING RANGE

SummaryComments

§ WarmDenseMatterresearchisgrowingrapidlyandaddressingimportantproblemsininertialfusion,planetaryscience,andmanyotherfields

§ WarmDenseMatterhasbeenveryslowtoyieldtopurelytheoreticaldescription

§ Advancesinelectronicstructureandmoleculardynamicsmethodshaveplayedanenormousroleinadvancingourunderstandingofwarmdensematter

§ Thisisgoingtobeaveryinterestingweek!36