Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ......

62
Munich Summer School at University of Applied Sciences Prof. Kim A. Shollenberger Theory and Applica>on of Gas Turbine Systems Part I: Ideal Sha- Power Cycles

Transcript of Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ......

Page 1: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

MunichSummerSchoolatUniversityofAppliedSciencesProf.KimA.Shollenberger

TheoryandApplica>onofGasTurbineSystems

PartI:IdealSha-PowerCycles

Page 2: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

OutlineforTheoryofGasTurbineSystems

Introduc6onI.   IdealSha-PowerCyclesII.  ActualShaBPowercyclesIII.  CentrifugalFlowCompressorsIV.  AxialandRadialFlowTurbinesV.  Combus>onSystemsVI.  PerformancePredic>on

Page 3: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

References1.  Moran,MJandHNShappiro,FundamentalsofEngineering

Thermodynamics,8thedi>on,JohnWiley&Sons,2014.2.  Munson,BR,Young,DF,andTFOkiishi,Fundamentalsof

FluidMechanics,7thedi>on,JohnWiley&Sons,Inc.,2013.3.  SaravanamuZoo,HIH,Rogers,GFC,Cohen,H,andP

Straznicky,GasTurbineTheory,6thedi>on,Pren>ceHall(PearsonEduca>onLTD),2009.

4.  Boyce,MP,GasTurbineEngineeringHandbook,4rdedi>on,Elsevier(BuZerworthHeinemann),2012.

Page 4: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

heat transfer rates specific entropyT temperaturev specific volumeV velocityV volume

work ratez elevationρ density

BasicNomenclaturecp specificheatat

constantpressurecv specificheatat

constantvolumeĖ energy rateg gravitation accelerationh specific enthalpyk specific heats ratio

mass flowratep pressure

!Q

!W

!m

Page 5: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Introduc>ontoGasTurbines

Usedtoproducemechanicalpowerbyexpandingahighenergygasacrossaturbinewithoutreciproca>ngmembers(suchasapiston/cylinderassembly),thustheyhavethefollowingadvantages:•  Highpowerproduc=onfortheirsizeandweight•  Highreliabilityduetoreducedrubbingmembers,fewbalancingproblems,andlowlubrica>ngoilconsump>on

•  Simpleu>liza>onofmul=plefuels

Page 6: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

HistoryofWater/SteamTurbines

•  Firstturbinesusedwaterastheworkingfluidtoproducehydro-electricpower;s>llasignificantcontributortoworld’senergyresources

•  Steamturbinesintroducedaround1900;widelyusedforelectricitygenera>on(currentunitscanhaveover1GWofshaBpowerand40%efficiency)

•  Steamturbineswerealsowidelyusedformarinepropulsionupun>lmid1970’s(whenmoreefficientdieselenginestookover)exceptfornuclear-poweredaircraBcarriersandsubmarines

Page 7: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

DisadvantagesofSteamTurbines

•  Produc>onofhigh-pressurehigh-temperaturesteamrequiresbulkyandexpensivesteamgenera>ngequipment

•  Hotgasesproducedinboilerornuclearreactorcorecanneverreachtheturbine;insteadanintermediatefluid,typicallysteam,flowsthroughtheturbine

•  Satura>ontemperatureofsteam,evenathighpressures,limitsmaximumthermalefficiencytheore>callypossible

Page 8: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

HistoryofGasTurbines

•  Seriousdevelopmentbeganinthe1940’s;mainlyonturbojetengineforaircraBpropulsion

•  Significantuseforotherfields,includingelectricalpowerproduc>on,beganinthe1950’s

•  Wideusetoday(currentunitscanhaveover0.5GWofshaBpowerand45%efficiency)hasbeendrivenbyimprovingtwomainperformancelimi>ngfactors:–  Componentefficienciesthroughaerodynamicsresearch–  Hightemperaturematerialsdevelopedthroughadvancesinmetallurgy

Page 9: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

GasTurbineCycles

Twomainclassifica>ons:1.  ShaCPowerCyclesusedforlandbasedelectric

powergenera>on,marinepropulsion,mechanicaldrivesystems,processheat,compressedair,etc.

2.  AircraCPropulsionCycleswhereperformancedependsonforwardspeedandal>tude

ThiscoursewillfocusonshaBpowercycles.

Page 10: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ShaBPowerCycles

Twomainconfigura>ons:a.  Opentotheatmosphere– Mostcommonforpowergenera>onandengines– Heataddi>ontypicallyinacombus>onchamber

b.  Closedloop– Foundinnuclearpowerplants– Heataddi>onandheatrejec>ondonebyheatexchangersatconstantpressure

Page 11: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

OpenShaBPowerCycle

Page 12: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

OpenShaBPowerCycleOpera>on

1.  Freshairisdrawnintothecompressorwherebothitspressureandtemperatureareincreased

2.  Fuelismixedwithcompressedairatanappropriatefuel/airra>oandignitedinthecombus=onchambertoproducehighenergygases

3.  Combus>onproductsareexpandedacrossaturbinetoalowerpressureandtemperaturewhichproducesshaCpowerthatisusedtooperatethecompressorandgenerateelectricity

Page 13: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ClosedShaBPowerCycleReplacecombus>onchamberwithheatexchangerandcloseloopbyaddingasecondheatexchanger

Page 14: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

IdealCondi>onsforGasTurbines

Assumethefollowing:1.  Compressionandexpansionprocessesare

reversibleandadiaba>c,thusisentropic2.  Kine>cenergyandpoten>alenergychangesforgas

arenegligible3.  Pressurelossesforgasarenegligible4.  Idealgaswithconstantproper>esandcomposi>on

atconstantmassflowrate(steadyopera>on)5.  “Complete”heattransfer(temperatureriseoncold

sideequalstemperaturedroponhotside)

Page 15: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

IdealGasPowerCycle(AlsoCalledBraytonorJouleCycle)

NamedaBeranAmericanengineer,GeorgeBrayton,whoproposedthecycleforareciproca>ngoilburningenginearound1870Process1-2:isentropiccompression(compressor)Process2-3:constantpressureheataddi>onProcess3-4:isentropicexpansion(turbine)Process4-1:constantpressureheatrejec>onNOTE:For“idealcycle”thatassumes“constantworkingfluid,”openandclosedcyclesarethesame.

Page 16: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCycle

turbine

compressor heatexchanger

heatexchanger

Pressure(p)–SpecificVolume(v)Diagram

Temperature(T)-Entropy(s)Diagram

Page 17: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

1stLawofThermodynamics

Forcontrolvolume(CV)withinletat(1)andoutletat(2):

Forsteadystateandwherechangesinkine>cenergy(KE)andpoten>alenergy(PE)negligible:

NOTE:Signconven>onisheattransferintotheCVandworkoutoftheCVareposi>ve,thusnega>vesignabove

dEcv

dt= !Qcv − !Wcv + !m h1 − h2( )+V1

2 −V22

2+ g z1 − z2( )

"

#$

%

&'

0 = !Qcv − !Wcv + !m h1 − h2( )

Page 18: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Process 1stLawAnalysis Descrip6on Symbols

1-2 compressorworkratein

2-3 heataddi>on

3-4 turbineworkrateout

4-1 heatrejec>on

1stLawofThermodynamicsAnalysis

!W12 = !m h1 − h2( )

!Q23 = !m h3 − h2( )

!W34 = !m h3 − h4( )

!Q41 = !m h1 − h4( )

!Qin = !Q23

!Wt = !W34

!Qout = − !Q41

!Wc = − !W12

Page 19: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCycleAnalysis

Networkrateforcycle:

Netheattransferforcycle:

NOTE:Asexpectedforaclosedcycle:

!Wcycle = !W12 + !W34 = − !Wc + !Wt = !m h1 − h2 + h3 − h4( )

!Qcycle = !Q23 + !Q41 = !Qin − !Qout = !m h3 − h2 + h1 − h4( )

!Wcycle = !Qcycle

Page 20: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ProcessDefini>ons

BackWorkRa=o–ra>oofcompressorworkinputtoturbineworkoutputCompressorPressureRa=o–ra>ooftheexitandinletpressuresforthecompressor

NOTE:ForBraytoncycle

bwr =!Wc !m!Wt !m

=!W12

!W34

=h2 − h1h3 − h4

rp =p2p1

p2p1=p3p4

Page 21: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

CyclePerformance

Thermalefficiency-desiredpowerorworkrateoutputdividedbyrequiredheatinputNOTE:Bythe2ndLawofThermodynamicspowercyclemustrejectheattoproducework,thusηth<1.

ηth =!Wcycle !m!Qin !m

=!Q23 + !Q41!Q23

=1−!Qout!Qin

ηth =1−h4 − h1h3 − h2

Page 22: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ColdAir-StandardAnalysis

Foridealgaswithconstantspecificheats:Useisentropicrela>onshipforProcess1-2and3-4:

T2T1=

p2p1

!

"#

$

%&

k−1( ) k

= rpk−1( ) k

T4T3=

p4p3

!

"#

$

%&

k−1( ) k

=1

rpk−1( ) k =

T1T2

h1 − h2 = cp T1 −T2( )

Page 23: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ColdAir-StandardAnalysisforCycleSpecificWorkOutput

Recallcycleworkratefromearlier:

Calculateop>mumrpformaximumusing:

!Wcycle = !m h1 − h2 + h3 − h4( ) = !m cp T1 1−T2T1

"

#$

%

&'+T3 1−

T4T3

"

#$

%

&'

(

)*

+

,-

!Wcycle

!m cp T1= 1− rp

k−1( ) k"#

$%+T3T11− 1

rpk−1( ) k

"

#&&

$

%''

∂ !Wcycle ∂rp = 0

rp, optk−1( ) k = T3 T1

Page 24: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCycleNetWorkRate

ForfixedT1 = Tmin andT3 = Tmax ,networkratefirstincreaseswithpressurera>o,reachesmaximumatrp, opt,andthendecreases.

Page 25: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ColdAir-StandardAnalysisforBackWorkRa>o

Recallfromearlier:NOTE:Minimizecompressorversusturbineworkbydecreasingcompressortemperatures(T1andT2)andincreasingturbinetemperatures(T3andT4)

bwr = h2 − h1h3 − h4

=cp T2 −T1( )cp T3 −T4( )

=T1 T2 T1 −1( )T4 T3 T4 −1( )

bwr = T1T4=T2T3=T1T3rpk−1( ) k

Page 26: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Cold-AirStandardAnalysisforThermalEfficiency

Recallfromearlier:NOTE:Efficiencyincreaseswithpressurera>o.

ηth =1−h4 − h1h3 − h2

=1−cp T4 −T1( )cp T3 −T2( )

=1−T1 T4 T1 −1( )T2 T3 T2 −1( )

ηth =1−T1T2

=1− T4T3

=1− 1rpk−1( ) k

Page 27: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Example#1Airentersthecompressorofanidealgasturbinesystemat100kPaand27°C.Thepressurera>ois5andthemaximumtemperatureis867°C.Foryourcalcula>onsusethecold-airstandardandlistanyaddi>onalassump>ons.a.  SketchtheT-sdiagramforthiscycle.b.  Calculatethethermalefficiency.c.  Calculatethebackworkra>o.d.  Calculatethespecificworkoutput.

Page 28: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclePerformance

0.0

0.2

0.4

0.6

0.8

0%

20%

40%

60%

80%

0 5 10 15 20 25 30

Specific Work O

utputTher

mal

Effi

cien

cy

Pressure Ratio

k = 1.4, T1 = 300 K, T3 = 1000 K

typical pressure ratios for gas- turbine engines

Page 29: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

NotesonBraytonCycle

•  Effectofpressurera=oonefficiencycanbeobservedbyconsideringareasonT-sdiagram

•  Maximumtemperature(T3)limitedbyturbineblades(approximately1750K)–oBencalledthe“metallurgicallimit”

•  Minimumtemperature(T1)usuallyambient(approximately300K),thusnotconsideredanindependentvariable

•  Tradeoffbetweenop>mumthermalefficiencyandmaximumworkoutput

Page 30: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ImprovingGasTurbinePerformance

1. Regenera=on-useturbineexhausttopreheatairenteringcombustor

2. Reheat-reheatturbineexhaustandaddaddi>onalturbine(s)

3.  Intercooling-coolcompressorexhaustandaddaddi>onalcompressor(s)

Page 31: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Regenera>veGasTurbine

Page 32: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithRegnera>on

Page 33: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithRegenera>on

•  TurbineexhaustatState(4)isusedtopreheatairfromState(2)toState(x)beforeenteringcombustor

•  Reducesheataddi>on:•  Reducesheatrejec>on:•  Addi>onalheatexchangerincreasescapitalcosts•  Canincreasethermalefficiencyatlowerrp

!Qin = !Qx3 < !Q23

!Qout = !Qy1 < !Q41

ηth =!Wcycle !m!Qin !m

=!W12 + !W34!Qx3

=h1 − h2( )+ h3 − h4( )

h3 − hx( )

Page 34: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

RegeneratorPerformance

RegeneratorEffec=veness–ra>oofactualtomaximumtheore>calenthalpyincrease

IdealRegenerator–foraheatexchangerwithinfinitearea:ηreg=100%,Tx=T4,Ty=T2,andNOTE:Specificworkoutputandbwrareunchanged.

ηreg =actual heat transfer

maximum heat transfer=hx − h2

h4 − h2

!Q2 x = − !Q4y

Page 35: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithRegenera>onThermalEfficiency

Forcoldair-standardanalysis:Foranidealregenerator:

NOTE: Forrp=1,ηthequals Carnotefficiency

ηth =h1 − h2( )+ h3 − h4( )

h3 − hx( )=1−

T2 −T1( )+ T4 −Tx( )T3 −Tx( )

ηth =1−T2 1−T1 T2( )T3 1−T4 T3( )

=1− T1T3

"

#$

%

&'T2T1

"

#$

%

&'

ηth =1−T1T3

"

#$

%

&'rp

k−1( )/k

Page 36: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Example#2Airentersthecompressorofanidealgasturbinesystemat100kPaand27°Cwithidealregenera=on.Thepressurera>ois5andthemaximumtemperatureis867°C.Foryourcalcula>onsusethecold-airstandardandlistanyaddi>onalassump>ons.a.  SketchtheT-sdiagramforthiscycle.b.  Calculatethethermalefficiency.c.  Calculatethebackworkra>o.d.  Calculatethespecificworkoutput.

Page 37: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

0%

20%

40%

60%

80%

0 5 10 15 20 25 30

Ther

mal

Effi

cien

cy

Pressure Ratio

k = 1.4

T3 / T1 = 5T3 / T1 = 4T3 / T1 = 3T3 / T1 = 2Simple Cycle

ComparisonofThermalEfficiencyforBraytonCyclewithRegenera>on

NOTE:Curvesstopatsimplecyclebecauseaddi>onalregenera>onheattransferisnotpossible.

Page 38: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithReheatUsername: Kim ShollenbergerBook: Fundamentals of Engineering Thermodynamics, 8th Edition. No part of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use (other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Page 39: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithReheat

•  Excessairisusedforcombus>onbecauseoftemperaturelimitsimposedbyturbineblades

•  Secondturbineusesexcessairandaddi>onalfuelformorecombus>on

•  Foridealreheat(maximumworkrate)forfixedrpandT3 = Tb, pressurera>oacrosseachstagecanbeshowntobeequalwherepa=pb=pi: rp =

p2p1=

p3pa

⎝⎜

⎠⎟

2

=pbp4

⎝⎜

⎠⎟

2

Page 40: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithReheatSpecificWorkOutput

Forcoldair-standardanalysis:

!Wcycle = !m h1 − h2( )+ !m h3 − ha( )+ !m hb − h4( )

!Wcycle

!m cp T1= 1− T2

T1

⎝⎜

⎠⎟+

T3T11− Ta

T3

⎝⎜

⎠⎟+

TbT11− T4

Tb

⎝⎜

⎠⎟

!Wcycle

!m cp T1= 1− rp

k−1( ) k⎡⎣

⎤⎦+T3T12− pi

p3

⎝⎜

⎠⎟

k−1( ) k

−p4pi

⎝⎜

⎠⎟

k−1( ) k⎡

⎢⎢

⎥⎥

Page 41: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithReheatSpecificWorkOutput,cont.

Determinepiforidealreheatusing

∂ !Wcycle ∂ pi = 0

T3T1

−k −1k

⎝⎜

⎠⎟pip3

⎝⎜

⎠⎟

−1 k1p3

⎝⎜

⎠⎟−

k −1k

⎝⎜

⎠⎟p4pi

⎝⎜

⎠⎟

−1 k

−p4pi2

⎝⎜

⎠⎟

⎣⎢⎢

⎦⎥⎥= 0

pip3

⎝⎜

⎠⎟

−1 kpip3

⎝⎜

⎠⎟=

p4pi

⎝⎜

⎠⎟

−1 kp4pi

⎝⎜

⎠⎟ →

pip3=p4pi= rp

!Wcycle

!m cp T1= 1− rp

k−1( ) k⎡⎣

⎤⎦+ 2

T3T11− 1

rpk−1( ) 2 k( )

⎣⎢⎢

⎦⎥⎥

Page 42: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithReheatSpecificWorkOutput,cont.

Calculateop>mumrpformaximumusing

−k −1k

⎝⎜

⎠⎟ rp

−1 k − 2 T3T1

⎝⎜

⎠⎟ −

k −12k

⎝⎜

⎠⎟ rp

1−3k( ) 2 k( ) = 0

rp, opt3 k−1( ) 2k( ) =

T3T1

∂ !Wcycle ∂rp = 0

∂∂rp

1− rpk−1( ) k⎡

⎣⎤⎦+ 2

T3T1

⎝⎜

⎠⎟∂∂rp

1− 1rpk−1( ) 2 k( )

⎣⎢⎢

⎦⎥⎥= 0

Page 43: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithReheatThermalEfficiency

Forcoldairstandardanalysis:Foridealreheat:

ηth =1−1 rp

k−1( )/ 2k( ) − T1 T3( )2− T1 T3( )rp

k−1( )/k −1 rpk−1( )/ 2k( )

ηth =h1 − h2( )+ h3 − ha( )+ hb − h4( )

h3 − h2( )+ hb − ha( )=1−

T4 −T1( )T3 −T2( )+ Tb −Ta( )

Page 44: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Example#3Airentersthecompressorofanidealgasturbinesystemat100kPaand27°Cwithidealreheat.Thepressurera>ois5andthemaximumtemperatureis867°C.Foryourcalcula>onsusethecold-airstandardandlistanyaddi>onalassump>ons.a.  SketchtheT-sdiagramforthiscycle.b.  Calculatethethermalefficiency.c.  Calculatethebackworkra>o.d.  Calculatethespecificworkoutput.

Page 45: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ComparisonofSpecificWorkOutputforBraytonCyclewithReheat

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30

Spec

ific

Wor

k O

utpu

t

Pressure Ratio

k = 1.4, T1 = 300 K, T3 = 1000 K

Reheat CycleSimple Cycle

Page 46: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ComparisonofThermalEfficiencyforBraytonCyclewithReheat

0%

20%

40%

60%

80%

0 5 10 15 20 25 30

Ther

mal

Effi

cien

cy

Pressure Ratio

k = 1.4

Simple CycleT3 / T1 = 20T3 / T1 = 6T3 / T1 = 4T3 / T1 = 3

Page 47: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithIntercooling

2704601 2015/07/10 75.128.66.176

Username: Kim ShollenbergerBook: Fundamentals of Engineering Thermodynamics, 8th Edition. No part of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use (other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

2704601 2015/07/10 75.128.66.176

Username: Kim ShollenbergerBook: Fundamentals of Engineering Thermodynamics, 8th Edition. No part of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use (other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Page 48: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithIntercooling

•  Lessworkisrequiredtocompressacoolgas•  Compensatesforlowtemperaturelimitedbynature(examples:airoroceantemperature)

•  Limiteduseinprac>cebecauserequiresbulkyequipmentandhugeamountsofcoolingwater

•  Foridealintercooling(minimumworkrate)forfixedrpandT1 = Td, pressurera>oacrosseachstagecanbeshowntobeequalwherepa=pb=pi:

rp =p2p1=

pcp1

!

"#

$

%&

2

=p2pd

!

"#

$

%&

2

Page 49: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithIntercoolingSpecificWorkOutput

Forcoldair-standardanalysis:Foridealintercooling:

!Wcycle = !m h1 − hc( )+ !m hd − h2( )+ !m h3 − h4( )

!Wcycle

!m cp T1= 2 1− rp

k−1( ) 2 k( )"#

$%+T3T11− 1

rpk−1( ) k

"

#&&

$

%''

!Wcycle

!m cp T1= 1− Tc

T1

"

#$

%

&'+

TdT11− T2

Td

"

#$

%

&'+

T3T11− T4

T3

"

#$

%

&'

rp, opt3 k+1( ) 2k( ) = T3 T1

Page 50: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithIntercoolingThermalEfficiency

Forcoldairstandardanalysis:Foridealintercooling:

ηth =1−1 rp

k−1( )/k + T1 T3( ) rpk−1( )/ 2k( ) − 2"

#$%

1− T1 T3( ) rpk−1( )/k

ηth =h1 − hc( )+ hd − h2( )+ h3 − h4( )

h3 − h2( )=1−

T4 −T1( )+ hc − hd( )T3 −T2( )

Page 51: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ComparisonofSpecificWorkOutputforBraytonCyclewithIntercooling

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30

Spec

ific

Wor

k O

utpu

t

Pressure Ratio

k = 1.4, T1 = 300 K, T3 = 1000 K

IntercoolingSimple Cycle

Page 52: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

ComparisonofThermalEfficiencyforBraytonCyclewithIntercooling

0%

20%

40%

60%

80%

0 5 10 15 20 25 30

Ther

mal

Effi

cien

cy

Pressure Ratio

k = 1.4

Simple CycleT3 / T1 = 20T3 / T1 = 6T3 / T1 = 4T3 / T1 = 3

Page 53: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

GasTurbinewithRegenera>on,Reheat,andIntercooling

•  Whilereheatandintercoolingaloneincreaseworkoutput,theyalsodecreasethermalefficiency:– Forreheat,needextraheatforhea>ngbetweenstagesandheatrejec>onathighertemperatures

– Forintercooling,needtoheatupmoreaBercompression

•  However,reheatandintercoolingincreasethepoten>alforregenera>on;combined,theoveralleffectcanbeanincreaseinthethermalefficiency

Page 54: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

GasTurbinewithRegenera>on,Reheat,andIntercooling

Page 55: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

BraytonCyclewithRegenera>on,Reheat,andIntercooling

Page 56: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

Example#4Airentersthefirstcompressorstageofanidealgasturbinesystemwithidealregenera>on,reheat,andintercoolingat100kPaand27°C.Thepressurera>ois5acrossbothcompressorsandthemaximumtemperatureis867°C.Foryourcalcula>onsusethecold-airstandardandlistanyaddi>onalassump>ons.a.  SketchtheT-sdiagramforthiscycle.b.  Calculatethethermalefficiency.c.  Calculatethebackworkra>o.d.  Calculatethespecificworkoutput.

Page 57: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

EricsonCycle

•  IdealcycleforgasturbineengineswithanefficiencyequaltotheCarnotefficiency

•  Theore>callyaccomplishedinthelimitwhereregenera>onisusedwithaninfinitenumberofstagesofreheatandintercooling

Page 58: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

CombinedGasTurbine-VaporPowerCycle

Wasteheatfromgasturbinepowercycle(toppingcycle)isusedasheatinputforvaporpowercycle,thusthethermalefficiencybecomes:wheresubscriptgisforthegascycleandthesubscriptvisforthevaporcycle.

ηth =!Wg !mg + !Wv !mv

!Qin,g !mg

Page 59: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

CombinedBrayton-IdealVaporPowerCycle

Page 60: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

CombinedBrayton-IdealVaporPowerCycleAnalysis

1stLawCVanalysisofheatexchangerbetweencycles(assumeadiaba>c,negligibleKEandPE)Subs>tuteintothermalefficiencyandreducetoget:NOTE:Thermalefficiencyistypicallymuchhigherthanthermalefficiencyofgascyclealone.

0 = !mg h8 − h9( )+ !mv h2 − h3( ) → !mg !mv = h8 − h9( ) h3 − h2( )

ηth =ηth,g +h8 − h9h7 − h6

"

#$

%

&'ηth,v

Page 61: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

CombinedBrayton-IdealVaporPowerCycleAnalysis,Cont.

Forcoldairstandard:•  Ideally,T9wouldbeaslowaspossiblesuchthatT9=T5,then

(T8-T9)wouldbeapproximatelythesameas(T7-T6)andηthwouldbethesumofthetwoindividualcycles

•  Inprac>ce,ηthisgenerallyhigherthaneithercyclewouldhaveindividuallybecauseofbothhightemperatureheataddi>onandlowtemperatureheatrejec>on

•  Efficienciesofover60%arecurrentlyobtainedbymoderncombinedplantstoday

ηth =ηth,g +T8 −T9T7 −T6

"

#$

%

&'ηth,v

Page 62: Theory and Applicaon of Gas Turbine SystemsTheory and Applicaon of Gas Turbine Systems Part I: ... over 1 GW of sha power and 40% efficiency) ... depends on forward speed and al>tudekshollen/GasTurbine/Lecture_GT_Part_I.pdf ·

GasTurbinesForAircraBPropulsion

S>lluseBraytoncyclewiththefollowingchanges:•  Diffuserde-acceleratesincomingflowtozerovelocity(incomingflowhassignificantKE)

•  Nozzleacceleratesexi>ngflowtosignificantKE

•  TurbineworkproducedequalscompressorworkandminoraircraBpowerneeds

h1 = hair +Vair2

2

V5 ≈ 2 h4 − h5( )

h3 − h4 ≈ h2 − h1