The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H...

24
The Zarankiewicz problem in 3-partite graphs Michael Tait Carnegie Mellon University [email protected] AMS Eastern Fall Sectional University of Delaware September 29, 2018 Michael Tait (CMU) September 29, 2018 1 / 24

Transcript of The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H...

Page 1: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

The Zarankiewicz problem in 3-partite graphs

Michael Tait

Carnegie Mellon [email protected]

AMS Eastern Fall SectionalUniversity of Delaware

September 29, 2018

Michael Tait (CMU) September 29, 2018 1 / 24

Page 2: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Michael Tait (CMU) September 29, 2018 2 / 24

Page 3: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Michael Tait (CMU) September 29, 2018 3 / 24

Page 4: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

“How many edges can be in a 3-partite C4-free graph?”

Michael Tait (CMU) September 29, 2018 4 / 24

Page 5: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Turan numbers

The Turan number of a graph F is the maximum number of edges thatan n vertex graph may have under the condition that it does notcontain F as a subgraph, denoted

ex(n, F ).

Theorem (Erdos-Stone 1946)

Let χ(F ) ≥ 2 be the chromatic number of F . Then

ex(n, F ) =

(1− 1

χ(F )− 1

)(n

2

)+ o(n2).

Michael Tait (CMU) September 29, 2018 5 / 24

Page 6: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Theorem (Kovari-Sos-Turan 1954)

For integers 2 ≤ s ≤ t,

ex(n,Ks,t) ≤1

2(t− 1)1/sn2−1/s +

1

2(s− 1)n.

ex(n, F ) < n2−ε for bipartite F .

Michael Tait (CMU) September 29, 2018 6 / 24

Page 7: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

The Zarankiewicz problem

Given integers m,n, s, t, define

z(m,n, s, t)

to be the maximum number of 1s in a 0− 1 matrix with

size m× nhaving no s× t submatrix of all 1s.

Equivalent to asking for the maximum number of edges in an m× nbipartite graph with no Ks,t.

2ex(n,Ks,t) ≤ z(n, n, s, t) ≤ ex(2n,Ks,t).

Michael Tait (CMU) September 29, 2018 7 / 24

Page 8: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

General question

Given a graph F and an integer k ≥ 2 define

exχ≤k(n, F )

to be the maximum number of edges in an n-vertex F -free graph withchromatic number at most k.

exχ≤2(n, F ) ≤ exχ≤3(n, F ) ≤ · · · ≤ exχ≤n(n, F ) = ex(n, F ).

Casey’s Question: What is exχ≤3(n,C4)?

Michael Tait (CMU) September 29, 2018 8 / 24

Page 9: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Not just a novelty!

Conjecture (Erdos-Simonovits 1982)

Given any finite family of graphs F there exists an ` such that

ex(n,F ∪ C2`+1) ∼ exχ≤2(n,F).

Theorem (Erdos-Simonovits 1982)

ex(n, {C4, C5}) ∼ exχ≤2(n,C4) ∼1

2√

2n3/2.

Conjecture (Erdos 1975)

ex(n, {C4, C3}) ∼ exχ≤2(n,C4).

Michael Tait (CMU) September 29, 2018 9 / 24

Page 10: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Craig

Michael Tait (CMU) September 29, 2018 10 / 24

Page 11: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Results

Theorem (Tait-Timmons)

Let 2 ≤ s ≤ t be integers. Then

exχ≤3(n,Ks,t) ≤(

1

3

)1−1/s( t− 1

2+ o(1)

)1/s

n2−1/s.

exχ≤3(n,K2,2t+1) =

√t

3n3/2 + o(n3/2).

ex(n,Ks,t) ≤ 12(t− s+ 1 + o(1))1/sn2−1/s

ex(n,K2,2t+1) =√2t2 n3/2 + o(n3/2) ( 1√

3<√22 )

exχ≤2(n,K2,2t+1) =√t

2 n3/2 + o(n3/2) (12 <

1√3)

Michael Tait (CMU) September 29, 2018 11 / 24

Page 12: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Sunny

Michael Tait (CMU) September 29, 2018 12 / 24

Page 13: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Allen, Keevash, Sudakov, and Verstraete gave a nontrivial upper boundfor exχ≤k(n,F) for any “smooth” family using sparse regularity.

Theorem (Allen-Keevash-Sudakov-Verstraete 2014)

There are K2,2t+1 and triangle free graphs on n vertices with

t+ 1√t(t+ 2)

exχ≤2(n,K2,2t+1)

edges.

Conjecture (Allen-Keevash-Sudakov-Verstraete 2014)

Erdos’s conjecture is false, ie

ex(n, {C3, C4}) 6∼ exχ≤2(n,C4).

Michael Tait (CMU) September 29, 2018 13 / 24

Page 14: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Upper bound

To prove the upper bound: do the obvious thing! Let the partite setsbe A,B,C, then

(t− 1)

(|A|s

)≥∑v∈B

(dA(v)

s

)+∑v∈C

(dA(v)

s

).

Use convexity and optimize!

Michael Tait (CMU) September 29, 2018 14 / 24

Page 15: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Lower bound

How to construct dense K2,t free graphs? X = Y = Fq × Fq,(x1, x2) ∼ (y1, y2) if and only if x1y1 + x2y2 = 1.

Furedi’s idea: “mod out” by a subgroup. H a subgroup of F∗q of size t.

Let X = Y = (Fq × Fq \ (0, 0))/H,

(x1, x2) ∼ (y1, y2) if and only if x1y1 + x2y2 ∈ H.q2−1t vertices, degree q, no K2,t+1.

Michael Tait (CMU) September 29, 2018 15 / 24

Page 16: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Lower bound

Put copies of Furedi’s graph between parts? Too symmetric.

Michael Tait (CMU) September 29, 2018 16 / 24

Page 17: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Lower bound

We construct a similar bipartite graph to put between parts thatbreaks the symmetry. Let A ⊂ Zq2−1 be a Bose-Chowla Sidon set. Thismeans that if a+ b = c+ d for a, b, c, d ∈ A then {a, b} = {c, d}. Lett|q2 − 1 and let H be a subgroup of Zq2−1 of order t. Define a bipartitegraph with

Partite sets X = Y = Zq2−1/Hx ∼ y if and only if x− y ∈ A|A| = q regular, K2,t+1 free.

The non-bipartite version of this graph is similar to the non-bipartiteversion of Furedi’s graph. When q = 19 and t ∈ {1, 2, 3, 6} our graphhas one more edge than Furedi’s.

Michael Tait (CMU) September 29, 2018 17 / 24

Page 18: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Lower bound

Put this bipartite graph between parts in a “directed triangle”.

Symmetry broken! This graph is K2,2t+1 free.

The common neighborhood of a pair of vertices is determined byhow many solutions there are to a+ b = h with a, b ∈ A and h ∈ H.

Michael Tait (CMU) September 29, 2018 18 / 24

Page 19: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Forbidding C4

n3/2

2√

2≤ exχ≤3(n,C4) ≤

n3/2√6.

Michael Tait (CMU) September 29, 2018 19 / 24

Page 20: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Michael Tait (CMU) September 29, 2018 20 / 24

Page 21: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

A (v, k, λ)-difference family in a group Γ of order v is a collectionof sets {D1, · · · , Dt} each of size k such that(D1 −D1) ∪ · · · ∪ (Dt −Dt) contains every nonzero element of Γexactly λ times.

A = {0, 1} and 2A is a (5, 2, 1) difference family in Z5.A = {1, 10, 16, 18, 37} and 9A is a (41, 5, 1) difference family in Z41.

These difference families yield constructions where the counting inthe upper bound is tight! exχ≤3(15, C4) = 30 andexχ≤3(123, C4) = 615.

Michael Tait (CMU) September 29, 2018 21 / 24

Page 22: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Theorem (Tait-Timmons-Williford)

Let R be a finite ring, A ⊂ R an additive Sidon set, and c ∈ Rinvertible. Let B = cA = {ca : a ∈ A}.Then if (A−A) ∩ (B −B) = {0} there exists a 3-partite, C4 free graphon 3|R| vertices which is |A| regular between each pair of parts.

A+ i ∼ B + j if and only if − cj + i ∈ AMichael Tait (CMU) September 29, 2018 22 / 24

Page 23: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

If there is an infinite family of (2k2 − 2k + 1, k, 1)-differencefamilies in Z2k2−2k+1 where the blocks are translates of each otherthis would yield an infinite family of graphs where the upperbound is (exactly!) tight.

No (61, 6, 1)-difference family exists in F61.

Exact difference families too restrictive and not necessary for anasymptotic result.

Michael Tait (CMU) September 29, 2018 23 / 24

Page 24: The Zarankiewicz problem in 3-partite graphsmtait/3partitetalk.pdf · Partite sets X= Y = Z q2 1=H x˘yif and only if x y2A jAj= qregular, K 2;t+1 free. The non-bipartite version

Open Problems

Constructions for k > 3. Can’t break symmetry!

“Approximate” designs

K3,3 free 3-partite graphs?

Michael Tait (CMU) September 29, 2018 24 / 24