The value of Bayesian statistics for assessing comparability

27
The value of Bayesian statistics for assessing comparability Timothy Mutsvari (Arlenda) on behalf of EFSPI Working Group

Transcript of The value of Bayesian statistics for assessing comparability

The value of Bayesian statistics for assessing comparability

Timothy Mutsvari (Arlenda)

on behalf of EFSPI Working Group

โ€ข Bayesian Methods: General Principles โ€ข Direct Probability Statements โ€ข Posterior Predictive Distribution

โ€ข Biosimilarity Model formulation

โ€ข Sample Size Justification

โ€ข Multiplicity โ€ข Multiple CQAs

โ€ข Assurance (not Power)

Agenda

Bayesian Methods: General Principles

Two different ways to make a decision based on

A Pr ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐ž๐ ๐๐š๐ญ๐š ๐ง๐จ๐ญ ๐›๐ข๐จ๐ฌ๐ข๐ฆ๐ข๐ฅ๐š๐ซ )

Better known as the p-value concept

Used in the null hypothesis test (or decision)

This is the likelihood of the data assuming an hypothetical explanation (e.g. the โ€œnull hypothesisโ€)

Classical statistics perspective (Frequentist)

B Pr ๐›๐ข๐จ๐ฌ๐ข๐ฆ๐ข๐ฅ๐š๐ซ ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐ž๐ ๐๐š๐ญ๐š )

Bayesian perspective

It is the probability of similarity given the data

3 / 18

โ€ข After having observed the data of the study, the prior distribution of the treatment effect is updated to obtain the posterior distribution

โ€ข Instead of having a point estimate (+/- standard deviation), we have a complete distribution for any parameter of interest

Bayesian Principle

P(treatment effect > 5.5)= P(success)

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

PRIOR distribution STUDY data POSTERIOR distribution

+

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

โ€ข Given the model and the posterior distribution of its parameters, what are the plausible values for a future observation ๐‘ฆ ?

โ€ข This can be answered by computing the plausibility of the possible values of ๐‘ฆ conditionally on the available information:

๐‘ ๐‘ฆ ๐‘‘๐‘Ž๐‘ก๐‘Ž = ๐‘ ๐‘ฆ ๐œƒ ๐‘ ๐œƒ ๐‘‘๐‘Ž๐‘ก๐‘Ž ๐‘‘๐œƒ

โ€ข The factors in the integrant are

- ๐‘ ๐‘ฆ ๐œƒ : it is given by the model for given values of the parameters

- ๐‘(๐œƒ|๐‘‘๐‘Ž๐‘ก๐‘Ž) : it is the posterior distribution of the model parameter

Posterior Predictive Distribution

Posterior Predictive Distribution - Illustration 3rd , repeat this operation a large number of time to obtain the predictive distribution

1st , draw a mean and a variance from:

Posterior of mean ยตi

Posterior of Variance ฯƒยฒi given mean drawn

2nd , draw an observation from the resulting distribution Y~ Normal(ยตi, ฯƒยฒi )

X X X X

Difference: Simulations vs Predictions Monte Carlo Simulations

the โ€œnew observationsโ€ are drawn from distribution โ€œcenteredโ€ on estimated location and dispersion parameters (treated as โ€œtrue valuesโ€).

Bayesian Predictions

the uncertainty of parameter estimates (location and dispersion) is taken into account before drawing โ€œnew observationsโ€ from relevant distribution

Difference: Simulations vs Predictions Monte Carlo Simulations

the โ€œnew observationsโ€ are drawn from distribution โ€œcenteredโ€ on estimated location and dispersion parameters (treated as โ€œtrue valuesโ€).

Bayesian Predictions

the uncertainty of parameter estimates (location and dispersion) is taken into account before drawing โ€œnew observationsโ€ from relevant distribution

โ€ข What is the question: โ€ข what is the probability of being biosimilar given available data?

โ€ข what is the probability of having future lots within the limits given available data?

โ€ข The question becomes naturally Bayesian

โ€ข Many decisions can be deduced from the posterior and predictive distributions

โ€ข In addition โ€ข leverage historical data (e.g. on assay variability)

โ€ข Bayesian approach can easily handle multivariate problems

Why Bayesian for Biosimilarity?

Pr ๐…๐ฎ๐ญ๐ฎ๐ซ๐ž ๐ฅ๐จ๐ญ๐ฌ ๐ข๐ง ๐ฅ๐ข๐ฆ๐ข๐ญ๐ฌ ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐ž๐ ๐๐š๐ญ๐š)

vs Pr ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐ž๐ ๐๐š๐ญ๐š ๐ง๐จ๐ญ ๐›๐ข๐จ๐ฌ๐ข๐ฆ๐ข๐ฅ๐š๐ซ)

Pr ๐๐ข๐จ๐ฌ๐ข๐ฆ๐ข๐ฅ๐š๐ซ ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐ž๐ ๐๐š๐ญ๐š)

Biosimilar Model formulation

Biosimilarity Model - Univariate Case ๐ถ๐‘„๐ด๐‘‡๐‘’๐‘ ๐‘ก ~ ๐‘ ๐œ‡๐‘‡๐‘’๐‘ ๐‘ก, ๐œŽ๐‘‡๐‘’๐‘ ๐‘ก

2 Model for Biosimilar

๐ถ๐‘„๐ด๐‘…๐‘’๐‘“ ~ ๐‘ ๐œ‡๐‘…๐‘’๐‘“ , ๐œŽ๐‘Ÿ๐‘’๐‘“2 Model for Ref

๐œŽ๐‘‡๐‘’๐‘ ๐‘ก2 = ๐›ผ0 โˆ— ๐œŽ๐‘Ÿ๐‘’๐‘“

2 Test will not extremely different from Ref

๐›ผ0 ~ Uniform (๐‘Ž, ๐‘), for well chosen ๐‘Ž & ๐‘, e.g. 1/10 to 10

โ€ข From this model: โ€ข directly derive the PI/TI from predictive distributions

โ€ข easily extendable to multivariate model

โ€ข power computations are straight forward from predictive distributions

Model performance (compare to true pars)

Biosimilarity Model - Univariate Case โ€ข Variability can be decomposed to:

๐œŽ๐‘‡๐‘’๐‘ ๐‘ก2 + ๐œŽ๐‘Ž๐‘ ๐‘ ๐‘Ž๐‘ฆ

2 ๐œŽ๐‘…๐‘’๐‘“2 + ๐œŽ๐‘Ž๐‘ ๐‘ ๐‘Ž๐‘ฆ

2

โ€ข Synthesize assay historical data into informative prior for variability (all other pars being non-informative)

Bayesian PI/TI โ€“ Illustration (1)

Likelihood

(non-informative Prior on all parameters)

Predictive Distribution Tolerance Intervals (e.g.

Wolfinger)

Ref

Predictive Distributions

Bayesian PI/TI โ€“ Illustration (2)

Likelihood

Predictive Distribution Prediction Interval Predictive Distribution

Tolerance Intervals (e.g. Wolfinger)

Ref Test

Predictive Distributions (non-informative Prior on all parameters)

Bayesian PI/TI โ€“ Illustration (3)

Likelihood

Prior (informative on validated

assay variance)

Predictive Distribution Prediction Interval Predictive Distribution

Tolerance Intervals (e.g. Wolfinger)

Ref Test

Predictive Distributions

Sample Size Calculation

โ€ข Sample Test data from the predictive โ€ข How many new batches given past results to be within specs?

Sample size for Biosimilarity Evaluation

Multiplicity Extension of the univariate case

Bayesian - Multivariate CQA Model โ€ข Let

โ€ข ๐‘ฟ be ๐‘› ร— ๐‘˜ matrix of observations for test.

โ€ข ๐’€ be ๐‘š ร— ๐‘˜ matrix of observations for ref.

๐‘ฟ

๐’€ ~ ๐‘ด๐‘ฝ๐‘ต

๐๐‘ป

๐๐‘น,

๐œฎ๐‘ป ๐œฎ๐‘น๐‘ป

๐œฎ๐‘น๐‘ป ๐œฎ๐‘น

โ€ข Any test FDA Tier1, FDA Tier2 or PI/TI can be easily computed

โ€ข Pr [๐“๐ž๐ฌ๐ญ โˆ’ ๐‘๐ž๐Ÿ]|๐ƒ๐š๐ญ๐š ~ ๐‘ด๐‘ฝ๐‘ต ๐๐‘ป โˆ’ ๐๐‘น , [๐œฎ๐‘ป +๐œฎ๐‘น โˆ’ ๐Ÿ โˆ— ๐œฎ๐‘น๐‘ป]

Multivariate CQA Model โ€ข Use Ref. predictive to compute the limits of k CQAs

โ€ข Compare the Test data from k CQAs to the limits

โ€ข To get the joint test: โ€ข Calculate the joint acceptance probability

Assurance (not Power)

โ€ข Unconditional probability of significance given prior - Oโ€™Hagan et al. (2005)

โ€ข Expectation of the power averaged over the prior distribution โ€ข โ€˜True Probability of Successโ€™ of a trial

โ€ข In Frequentist power is based on a particular value of the effect โ€ข A very โ€˜strongโ€™ prior

Assurance (Bayesian Power)

โ€ข In order to reflect the uncertainty, a large number of effect sizes, i.e. (๐œ‡1โˆ’๐œ‡2)/๐œŽpooled, are generated using the prior distributions.

โ€ข A power curve is obtained for each

effect size

โ€ข the expected (weighted by prior beliefs) power curve is calculated

Power vs assurance independent samples t-test (H0: ๐œ‡1 = ๐œ‡2 vs H1: ๐œ‡1 โ‰  ๐œ‡2)

bayesian approach (assurance)

power assurance

โ€ข Using Bayesian approach: โ€ข I can directly derive probabilities of interest

โ€ข Uncertainties are well propagated

โ€ข Bayesian predictive distribution answers the very objective โ€ข probability of biosimilar given data

โ€ข future lots to remain within specs

โ€ข leverage historical data save costs

โ€ข Informative priors can be justified and recommended

โ€ข Correlated CQAs โ€ข Easily compute joint acceptance probability

Conclusions

When SIMILAR is not the SAME!