The Type Ia Supernova Rate and Progenitor from...

36
The Type Ia Supernova Rate and Progenitor from Transient Survey Jun Ernesto Okumura@SN+SNR 16/10/2012 Yutaka Ihara, Mamoru Doi , Tomoki Morokuma, Reynald Pain , Tomonori Totani, Kyle Barbary, Naohiro Takanashi, Naoki Yasuda, Greg Aldering, Kyle Dawson, Gerson Goldhaber, Isobel Hook, Chris Lidman, Saul Perlmutter, Anthony Spadafora, Nao Suzuki, Lifan Wang

Transcript of The Type Ia Supernova Rate and Progenitor from...

The Type Ia Supernova Rate and Progenitor from Transient Survey

Jun Ernesto Okumura@SN+SNR 16/10/2012

Yutaka Ihara, Mamoru Doi , Tomoki Morokuma, Reynald Pain , Tomonori Totani, Kyle Barbary, Naohiro Takanashi,

Naoki Yasuda, Greg Aldering, Kyle Dawson, Gerson Goldhaber, Isobel Hook, Chris Lidman, Saul Perlmutter,

Anthony Spadafora, Nao Suzuki, Lifan Wang

Contents

1. IntroductionSN Ia progenitor, SN Ia rate and Delay Time Distribution

2. Rate Calculation from Subaru/XMM-Newton Deep SurveyTransient Surveys (SXDS)

Rate Calculation

Classification

3. Results and FutureRate ResultFuture Survey

Type Ia Supernova

‣ Thermonuclear Explosion of White Dwarf (WD) which exceeds Chandrasekhar limit

‣ Progenitor system forms binary‣ ~ 1051 erg, MBmax= -19.1mag

‣ Spectrum is basically “Black Body+lines”

‣ Homogeneous LC→Cosmology

C+OWD? Ni

Si, S, Ca

Supectrum

Type Ia Supernova

‣ Thermonuclear Explosion of White Dwarf (WD) which exceeds Chandrasekhar limit

‣ Progenitor system forms binary‣ ~ 1051 erg, MBmax= -19.1mag

‣ Spectrum is basically “Black Body+lines”

‣ Homogeneous LC→Cosmology

? Ni

Si, S, Ca

Supectrum

Kim97’

SN Ia Progenitor models

‣ Companion: Main Sequence, Sub-Giant

‣ mass accretion from Roche-love overflow

‣ Recurrent Nova > stable nuclear burning

Single Degenerate (SD)

C+OWD

MSSub-G

Double Degenerate (DD)

C+OWD

C+OWD

‣ Companion: WD

‣ gravitational wave radiation

‣ merge of two WDs > SN Ia1. Gravitational Wave

1. Mass Transfer

2. Exceed ChandrasekharMass (~1.4 Msun)

2. Shrinkage

Observational Constraints on the progenitor

MSSub-G

C+OWD

1. Dense circumstellar matter (CSM)

No Radio & X-ray detection

(Panagia+06, Chomiuk+12’, Hancock+11’)

see also Dilday+12’, Taddia+12’→CSM

2. Hydrogen from the companion

SN2005am, SN2005cf(Leonard 07’) SN2011fe (Shappee+12’)

CSM

Observational Constraints on the progenitor

MSSub-G

1. Dense circumstellar matter (CSM)

No Radio & X-ray detection

(Panagia+06, Chomiuk+12’, Hancock+11’)

see also Dilday+12’, Taddia+12’→CSM

2. Hydrogen from the companion

SN2005am, SN2005cf(Leonard 07’) SN2011fe (Shappee+12’)

CSM

Chomiuk+12’

Leonard 07’

Observational Constraints on the progenitor

MSSub-G

C+OWD

Survivor 3. No detection of SurvivorSN2011fe (Li+11’)Tycho, SN1006 (Ruiz Lapuente+04’, Fuhrman 05’, Ihara+07’, Gonzales-Hernandez+09’, Kerzendorf+09’, Gonzales-Hernandez+12’)

4. Supersoft X-ray Sources (SSS)Di Stefano 10’, Gilfanov&Bogdan 10’but see also Hachisu+10’, Meng&Yang 11’

Observational Constraints on the progenitor

MSSub-G

C+OWD

Survivor 3. No detection of SurvivorSN2011fe (Li+11’)Tycho, SN1006 (Ruiz Lapuente+04’, Fuhrman 05’, Ihara+07’, Gonzales-Hernandez+09’, Kerzendorf+09’, Gonzales-Hernandez+12’)

4. Supersoft X-ray Sources (SSS)Di Stefano 10’, Gilfanov&Bogdan 10’but see also Hachisu+10’, Meng&Yang 11’

Nomoto+07’

Observational Constraints on the progenitor

MSSub-G

C+OWD

Survivor 3. No detection of SurvivorSN2011fe (Li+11’)Tycho, SN1006 (Ruiz Lapuente+04’, Fuhrman 05’, Ihara+07’, Gonzales-Hernandez+09’, Kerzendorf+09’, Gonzales-Hernandez+12’)

4. Supersoft X-ray Sources (SSS)Di Stefano 10’, Gilfanov&Bogdan 10’but see also Hachisu+10’, Meng&Yang 11’

Nomoto+07’

Delay Time Distribution (DTD)

‣ SFH and Delay Time Distribution (DTD)

‣ Delay Time: time duration between the birth of the binary and the explosion as a Supernova

Totani+08’

Delay Time Distribution (DTD)

‣ SFH and Delay Time Distribution (DTD)

‣ Delay Time: time duration between the birth of the binary and the explosion as a Supernova

Maoz+10’

SN Ia rate is coupled with SFH and DTD

RIa =� t

0�(t�)DTD(t� t�) dt�

Totani+08’

Delay Time Distribution (DTD)

‣ Population Synthesis Calculation

‣ SD: Lifetime of the secondary DD: WDs sepalation

‣ Theoretical absolute number lies a factor below the observation

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Meng+08Belczynski+05

Ruiz-Lapuente+98Yungelson+00

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Greggio+05Yungelson+00

Ruiz-Lapuente+98Belczynski+05SD DD

Delay Time Distribution (DTD)

‣ Population Synthesis Calculation

‣ SD: Lifetime of the secondary DD: WDs sepalation

‣ Theoretical absolute number lies a factor below the observation

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Meng+08Belczynski+05

Ruiz-Lapuente+98Yungelson+00

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Greggio+05Yungelson+00

Ruiz-Lapuente+98Belczynski+05SD DD

tIa ⇠ tGW / a4 a : separation

fsep(a) / a�

fD / fsep(a)da

dtIa/ t�(3��)/4

Ia

Delay Time Distribution (DTD)

‣ Population Synthesis Calculation

‣ SD: Lifetime of the secondary DD: WDs sepalation

‣ Theoretical absolute number lies a factor below the observation

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Meng+08Belczynski+05

Ruiz-Lapuente+98Yungelson+00

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Greggio+05Yungelson+00

Ruiz-Lapuente+98Belczynski+05SD DD

1. SN Ia rate can constrain SFHxDTD2. theoretical DTDs consists with DD model (t-1 DTD)3. Still remains contradiction in the absolute number

tIa ⇠ tGW / a4 a : separation

fsep(a) / a�

fD / fsep(a)da

dtIa/ t�(3��)/4

Ia

Delay Time Distribution (DTD)

‣ Population Synthesis Calculation

‣ SD: Lifetime of the secondary DD: WDs sepalation

‣ Theoretical absolute number lies a factor below the observation

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Meng+08Belczynski+05

Ruiz-Lapuente+98Yungelson+00

0.01

0.1

1

10

0.1 1 10

SN Ia

DTD

[cen

tury

-1 (1

010L K

,0)-1

)]

Delay Time [Gyr]

Greggio+05Yungelson+00

Ruiz-Lapuente+98Belczynski+05SD DD

1. SN Ia rate can constrain SFHxDTD2. theoretical DTDs consists with DD model (t-1 DTD)3. Still remains contradiction in the absolute number

Ruiter+11’Mennekens+10’

tIa ⇠ tGW / a4 a : separation

fsep(a) / a�

fD / fsep(a)da

dtIa/ t�(3��)/4

Ia

Mennekens+10’

Why SN Ia rate?

‣ SN Ia is crucial tool for astronomy

1. Ia cosmology: homogeneous LCs

2. Chemical Evolution: ~0.6Msun Fe per event

3. Cosmic/Galactic Star Formation History (SFH)

‣ ...but we don’t have clear comprehension about explosion mechanism, progenitor, environment

‣ SN Ia rates at high-z are not clear yet!

Numerical Simulation Statistical Constraint

Why SN Ia rate?

‣ SN Ia is crucial tool for astronomy

1. Ia cosmology: homogeneous LCs

2. Chemical Evolution: ~0.6Msun Fe per event

3. Cosmic/Galactic Star Formation History (SFH)

‣ ...but we don’t have clear comprehension about explosion mechanism, progenitor, environment

‣ SN Ia rates at high-z are not clear yet!

Numerical Simulation Statistical Constraint

10-5

10-4

0 0.5 1 1.5 2

Ia R

ate

[yr-1

Mpc

-3]

redshift

Li+’11Dahlen+’08

Neil+’06Dilday+’11Graur+’11

Barbary+’12Perrett+’12

DTD index -0.5DTD index -1.0DTD index -1.5DTD index -2.0

RIa =� t

0�(t�)DTD(t� t�) dt�

Contents

1. IntroductionSN Ia progenitor, SN Ia rate and Delay Time Distribution

2. Rate Calculation from Subaru/XMM-Newton Deep SurveyTransient Surveys (SXDS)

Rate Calculation

Classification

3. Results and FutureRate ResultFuture Survey

Transient Studies

SpectrumLight Curves

ColorsBayesian analysis

classification

production ratehost galaxyprogenitor

(galaxy evolution)

transient sampleTransient Survey

Subaru/XMM-Newton Deep Survey (SXDS)

‣ Wide (~1deg2), Deep (mlim~27mag)- Optical(Subaru / Sprime-Cam)B, V, Rc, i’, z’

- NIR(UKIDSS Survey)J, H, K

- IR(Spitzer / IRAC)3.6μm, 4.5μm

- X-ray (XMM-Newton) 0.5-2.0, 2.0-10.0keV

NAOJ

‣ 5 fields (SXDS-C, N, S, E, W)

‣ 1~10 day cadence (5-7 epochs)

‣ 1040 Transients (Morokuma+08’)

Control Time

‣ Control Time = “effective visibility time” for observer

60 days

Control Time

‣ Control Time = “effective visibility time” for observer

‣ Montecarlo Simulation

<CT> = 57.54 days

Control Time & Rate Calculation

‣ Ia: spectral template (Hsiao+07’) + Nearby SDSS Ia sample

‣ CC: 12 individual template

Rate Calculation

Expected SN Ia number in redshift bin [z1, z2]

if r(z)=const. during [z1, z2]

SN candidate Selection

1.AGN-like,2. SN occured after

Transient Search370 remained

faint objects140 remained

Remove

SXDS Transient1040

Remove

24

25

26

27

28

0 50 100 150 200 250 300 350 400

mi’ [

mag

]

MJD - 52547 [day]

23.5

24

24.5

25

25.5

26 0 200 400 600 800 1000 1200

mi’ [

mag

]

MJD - 52547 [day]

25

25.5

26

26.5

27

27.5

28

28.5 0 50 100 150 200 250 300 350 400

mi’ [

mag

]

MJD - 52547 [day]

AGN-like faint

SN candidate

No variability after 2003 1. at last two points brighter than 26mag2. at least two points brighter than 5σbf

lightcurve fitting

‣ Ia: spectral template (Hsiao+07’)

redshift, stretch [0.7~1.2], MB [-17.5~-20.0], day at Max

‣ CC: 12 individual LC template

redshift, MB [-17.5~-20.0], day at Max

lightcurve fitting

‣ Ia: spectral template (Hsiao+07’)

redshift, stretch [0.7~1.2], MB [-17.5~-20.0], day at Max

‣ CC: 12 individual LC template

redshift, MB [-17.5~-20.0], day at Max

Ptype(z) / PDF (z)⇥ exp (��2LC(z)

2

)

SN template fittingIa other type

~42 SN Ia detected!

Possible Contamination?

Rate Calculation

the rate derivation in redshift bin [z1, z2]

1. PIa(z) : completeness of the fitting 2. 1-PII(z) : misclassification as CC SN

PIa(z): completeness

1-PII(z): misclassification ratioNest(z) = NIa(z)PIa(z) +NII(z)(1� PII(z))

NII(z) = 0.55⇥ (1 + z)3.6CTII(z)V (z)

nearby SN II rate (Botticella+08’)cosmic star formation rate (Hopkins&Beacom 06’)

SN Ia rate

‣ SN Ia rate rising up to z~1.4

‣ most of high-z results were derived from one epoch obs., which SXDS result have LC confirmation.

10-5

10-4

0 0.5 1 1.5 2

Ia R

ate

[yr-1

Mpc

-3]

redshift

This WorkLi+’11

Dahlen+’08Neil+’06

Dilday+’11Graur+’11

Barbary+’12Perrett+’12

Hyper Suprime-Cam

FoV: 1.77deg2 (7 times larger than SC, 5 times smaller than LSST)0.17”/pix (typical seeing @MK ~0.7”)6 broad-band filters(ugrizy)+several narrow-band filter

ACS

Hyper Suprime-Cam

FoV: 1.77deg2 (7 times larger than SC, 5 times smaller than LSST)0.17”/pix (typical seeing @MK ~0.7”)6 broad-band filters(ugrizy)+several narrow-band filter

ACS

1.5deg

HSC

Hyper Suprime-Cam

FoV: 1.77deg2 (7 times larger than SC, 5 times smaller than LSST)0.17”/pix (typical seeing @MK ~0.7”)6 broad-band filters(ugrizy)+several narrow-band filter

ACS

1.5deg

HSC

LSST

Hyper Suprime-Cam

FoV: 1.77deg2 (7 times larger than SC, 5 times smaller than LSST)0.17”/pix (typical seeing @MK ~0.7”)6 broad-band filters(ugrizy)+several narrow-band filter

ACS

1.5deg

HSC

LSST

10-5

10-4

10-3

0 0.5 1 1.5 2

Ia R

ate

[yr-1

Mpc

-3]

redshift

HSCOkumura+12’

Li+’11Dahlen+’08

Neil+’06Dilday+’11Graur+’11

Barbary+’12Perrett+’12

DTD index -0.5DTD index -1.0DTD index -1.5DTD index -2.0

Summary

‣ The importance of statistical (rate) studies of SNe are growing

‣ Subaru is one of the promising candidate for these studies

‣ Ia rate from SXDS has been derived

‣ Ia rate is consistent with other works and showing expectation to reduce the error in the near future (HSC-Survey!)

Supplemental Slides