(The Technology Development for Surveillance Test of ...

133
KA E R,/RR-,785/97 KR9800531 (The Technology Development for Surveillance Test of Reactor Vessel Materials) 1997 29-41

Transcript of (The Technology Development for Surveillance Test of ...

KAER,/RR-,785/97 K R 9 8 0 0 5 3 1

(The Technology Development for Surveillance Test

of Reactor Vessel Materials)

1997

2 9 - 4 1

71

€45. #3-8-71*

2-Loop

42:4^3] S f A S ^7>5j-l^ € 4 5 .

2;A>^(best-estimated neutron fluence)

USNRC o n ^ t Reg.Guide DG-1053

^^«l-£ .# 71

13171 ofl

€45.

m. ^ ^ s ] ifl-8- ^

J I B I 1517] ^

USNRC Reg.Guide DG-1053.a| A^-Afig-^l rej-e)- Benchmark test

, €45.-3L Mesh density, Angular

expansion, Convergence criteria ^

ul(bias factor)*

10CFR 50.6141 trj-ef ^ ^ > s . 7V

1X7151

IV. ^ ^ - ^ ^ gj %-g-ofl cfl^

3)745. «a- -g-7l7fljS.4l ^

?1 USNRC Reg.Guide DG-1053- 1 14s|- ^-ifl 2-Loop

71 Si

5- U^-8-7151 7l-<&<I^(PTS)£-*fi-b ^ # $ ^3.°} 32EFPY-b

3-Loop ^

SUMMARY

I. Project Title

The Technology Development for Surveillance Test of Reactor Vessel

Materials

II. Objective and Importance of the Project

The degradation of material property due to the neutron exposure in

reactor vessel material of pressurized water reactor, that is, radiation

embrittlement phenomenon plays a great role in raising the possibility of

early shutdown of reactor before its design life. Since the 2-loop reactor

vessel such as Kori unit 1 was manufactured with the material including

weld metal in beltline region which is very sensitive to the radiation

embrittlement, this problem becomes a great concern in plant life

management. The evaluation of radiation embrittlement in reactor vessel

material is obtained through the combination of the measurement in

mechanical property change and the neutron fluence irradiated into reactor

vessel material, and the determination and prediction of best-estimated neutron

fluence irradiated into reactor vessel becomes very important in evaluating the

radiation embrittlement. Thus, since USNRC prepared a criteria, Reg. Guide

DG-1053, in order to determine fluence objectively by setting a new

calculation standard, accurate reactor life prediction and setting of safe

operation condition were tried through performing the evaluation of radiation

embrittlement for Kori unit 1 reliably where currently radiation embrittlement

matter is a great concern.

in

III. Scope and Contents of Project

Benchmark test was performed in accordance with the requirement of

USNRC Reg. Guide DG-1053 for Kori unit-1 in order to determine

best-estimated fast neutron fluence irradiated into reactor vessel. Since the

uncertainty of radiation analysis comes from the calculation error due to

neutron cross-section data, reactor core geometrical dimension, core structural

density, temperature and constituting materials, radiation source, mesh density,

angular expansion and convergence criteria, evaluation of calculational

uncertainty due to analytical method was performed in accordance with the

regulatory guide and the proof was performed for entire analysis by

comparing the measurement value obtained by neutron dosimetry located in

surveillance capsule.

Best-estimated neutron fluence in reactor vessel was calculated by bias

factor, neutron flux measurement value/calculational value, from reanalysis

result from previous 1st through 4th surveillance testing and finally fluence

prediction was performed for the end of reactor life and the entire period of

plant life extension. Pressurized thermal shock analysis was performed in

accordance with 10 CFR 50.61 using the result of neutron fluence analysis in

order to predict the life of reactor vessel material and the criteria of safe

operation for Kori unit 1 was reestablished.

IV. Results and Proposal for Applications

A criteria was prepared for neutron transport calculation for Kori unit

1, 2 loop plant, according to a new criterion, USNRC Reg. Guide DG-1053

for determining neutron fluence irradiated into reactor vessel material and

best-estimated calculational method for reactor vessel of fast neutron which

IV

adopted measurement and calculational uncertainty was established.

According to the new criterion, reactor vessel neutron fluence prediction was

performed upto the extended life period of Kori unit 1, and the result

showed that pressurized thermal shock problem for Kori unit 1 will not

occur during the life extension period of 40 EFPY as well as the plant life

target year, 32 EFPY by satisfying the criterion of less than 300° F. This

result can be used to establish the criteria for fast neutron transport

calculation of Korean 3 loop and standard nuclear power plant and to

perform the evaluation of radiation embrittlement of reactor vessel materials

and the life prediction more reliably and objectively.

zmxrleft

2.

5

5

5

5

ns. 7^Ai 8

N^ M i H 5j 2£A^ 7j|A|- 14

7\. n 3. 14

15

19

) 21

7K 7H £ 21

14. RTprs^l^i^a 5! 7 | § 22

4. s ^ s s i:zi(p-T^>M)S^^ 247K 7H £ 24

25

2 7

2 7

28

3 1

3.

2 s

Vll

2. ?\& s # 3 %y\ 3371 *i| 1 ~4*f &A|A|*| XH^7F 33

"-K RTVrs 7j|A[S^ 3! J1SJ 34

3. &SI-&E. ^ | t . ^A j 39

7f. ART 7j|Ahgnf D{ 31% 39

uf. ^^-^£ *\\tm& aa 4i

3 s ag s zifiiAfs

2. 2 S | A ^ 47

H£*1 48

vin

•jit. —I s^Y

Table Title

2-1 Heat Treatment of the Kori Unit 1 Reactor Vessel Beltline RegionMaterials

2-2 Chemical Composition (wt%) of the Unirradiated Kori Unit 1 ReactorVessel Beltline Region Forging Materials

2-3 Weld Metal Data for the Kori Unit 1 reactor Vessel

2-4 Chemical Composition (wt%) of the Unirradiated Kori Unit 1 ReactorVessel Beltline Region Weld Materials

2-5 Copper Concentration for 177-FA Owners' Group Beltline Welds

2-6 Chemistry of B&W Owner's Group 177-FA Plant Reactor VesselBeltline Welds

2-7 Comparison of Chemical Compositions of Reactor Vessel BeltlineRegion Weld Using Linde 80 Flux Between Kori Unit 1 and OtherSimilar Plants

2-8 Nuclear Parameters Used in the Evaluation of Neutron Sensors

2-9 Monthly Thermal Generation During the First 15 Fuel Cycles of theKori Unit 1 Reactor

3-1 Calculated Fast Neutron Exposure Rates at the Surveillance CapsuleCenter

3-2 Calculated Fast Neutron Exposure Rates at the Pressure Vessel 0°Clad/Base Metal Interface

3-3 Relative Radial Distribution within the Pressure Vessel Wall( 0° )

3-4 Measured Sensor Activities and Reaction Rates Surveillance Capsule Vand T Saturated Activites and Derived Fast Neutron Flux

3-5 Measured Sensor Activities and Reaction Rates Surveillance Capsule SSaturated Activites and Derived Fast Neutron Flux

3-6 Measured Sensor Activities and Reaction Rates Surveillance Capsule RSaturated Activites and Derived Fast Neutron Flux

3-7 Summary of Neutron Dosimetry Results Surveillance Capsules V, T, Sand R

3-8 Comparison of Measured and FERRET Calculated Reaction Rates atthe Surveillance Capsule Center Surveillance Capsules V. T. S and R

IX

Table Title

3-9 Adjusted Neutron Energy Spectrum at the Center of Surveillance Capsule V

3-10 Adjusted Neutron Energy Spectrum at the Center of Surveillance Capsule T

3-11 Adjusted Neutron Energy Spectrum at the Center of Surveillance Capsule S

3-12 Adjusted Neutron Energy Spectrum at the Center of Surveillance Capsule R

3-13 Comparison of Calculated and Measured Neutron Exposure Levels for KoriUnit 1 Surveillance Capsules V, T, S and R

3-14 Neutron Exposure Projection at Vessel 0° Location on the Pressure VesselI.D based on the Cycle 13 thru 15

3-15 Neutron Exposure Projection at Vessel 0° Location on the Pressure VesselClad/Base Metal Interface

3-16 Neutron Exposure Values for the Kori Unit 1 Reactor Vessel

3-17 Neutron Exposure Projection at Capsule 23° Location per Cycle

3-18 Neutron Exposure Projection at Capsule 33° Location per Cycle

3-19 Updated Lead Factors for Kori Unit 1 Surveillance Capsules

3-20 Charpy V-notch Data for the Kori Unit 1 Intermediate Shell Forging124W375 VA1 (Tangential Direction)

3-21 Charpy V-notch Data for the Kori Unit 1 Intermediate Shell Forging124W375 VAKAxial Direction)

3-22 Charpy V-notch Data for the Kori Unit 1 Reactor Pressure Vessel CoreRegion Weld

3-23 Charpy V-notch Data for the Kori Unit 1 Reactor Pressure Vessel WeldHeat-Affected Zone Material

3-24 Effect of Irradiation to 0.440 x 1019n/cm2 (EM.OMeV) on the NotchToughness Properties of the Kori Unit 1 Reactor Vessel SurveillanceCapsule V Materials

3 - 2 5 Effect of Irradiation to 1.055 x lO 'Vcm 2 (EM.OMeV) on the NotchToughness Properties of the Kori Unit 1 Reactor Vessel SurveillanceCapsule T Materials

Table Title

3-26 Effect of Irradiation to 1.415 x lO'Vcnf' (EM.OMeV) on the NotchToughness Properties of the Kori Unit 1 Reactor Vessel SurveillanceCapsule S Materials

3-27 Effect of Irradiation to 2.922 x 1019n/cm2 (EM.OMeV) on the NotchToughness Properties of the Kori Unit 1 Reactor Vessel SurveillanceCapsule R Materials

3-28 Calculation of Average Cu and Ni Weight Percent Values for BeltlineMaterials

3-29 Interpolation of Chemistry Factors from Regulatory Guide 1.99, Revision2, Position 1.1

3-30 Calculation of Chemistry Factors Using Surveillance Capsule Data perRegulatory Guide 1.99, Revision 2, Position 2.1

3-31 Kori Unit 1 Surveillance Capsule Data Calculation of Best-Fit Line asDescribed in Position 2.1 of Reg.Guide 1.99, Rev.2

3-32 Kori Unit 1 Surveillance Capsule Data Evaluation of Credibility asDescribed in Position 2.1 of Reg.Guide 1.99, Rev.2

3-33 Calculation of RTPTS Values for the Kori Unit 1 Reactor Vessel BeltlineRegion Materials

3-34 Peak FluencedO19 n/cm2, EM.OMeV) on the Pressure Vessel Clad/BaseMetal Interface for Kori Unit 1

3-35 Margins for ART Calculation per Reg.Guide 1.99, Rev. 2

3-36 Calculation of ART Values for Kori Unit 1 Reactor Vessel BeltlineRegion Materials at 20EFPY

3-37 ART Values at the 1/4T & 3/4T Locations Used in the CurvesGeneration

XI

2-1 Plan View of Surveillance Capsules in Kori 1 Reactor Vessel

2-2 Weld Specification of Reactor Vessel Beltline Region

2-3 Surveillance Capsule Location at Reactor Vessel Beltline Region

2-4 R & Theta DORT Geometry for Kori Unit 1

2-5 Flow Chart of Neutron Transport Calculation per Reg.Guide DG-1053

2-6 R & Theta DORT Geometry for the Fuel Cycle 4 & 5

3-1 Charpy V-Notch Impact Energy vs. Temperature for Kori Unit 1 ReactorVessel Intermediate Shell Forging 124W375 VA1 (Tangential)

3-2 Charpy V-Notch Lateral Expansion vs. Temperature for Kori Unit 1Reactor Vessel Intermediate Shell Forging 124W375 VA1 (Tangential)

3 3 Charpy V-Notch Percent Shear vs. Temperature for Kori Unit 1 ReactorVessel Intermediate Shell Forging 124W375 VA1 (Tangential)

3-4 Charpy V-Notch Impact Energy vs. Temperature for Kori Unit 1 ReactorVessel Intermediate Shell Forging 124W375 VA1 (Axial)

3-5 Charpy V-Notch Lateral Expansion vs. Temperature for Kori Unit 1Reactor Vessel Intermediate Shell Forging 124W375 VA1 (Axial)

3-6 Charpy V-Notch Percent Shear vs. Temperature for Kori Unit 1 ReactorVessel Intermediate Shell Forging 124W375 VA1 (Axial)

3-7 Charpy V-Notch Impact Energy vs. Temperature for Kori Unit 1 ReactorVessel Weld Metal

3-8 Charpy V-Notch Lateral Expansion vs. Temperature for Kori Unit 1Reactor Vessel Weld Metal

3-9 Charpy V-Notch Percent Shear vs. Temperature for Kori Unit 1 ReactorVessel Weld Metal

3-10 Charpy V-Notch Impact Energy vs. Temperature for Kori Unit 1 ReactorVessel Heat-Affected-Zone (HAZ) Metal

3-11 Kori Unit 1 Reactor Coolant System Heatup Limitations (Heatup rate uplOOT/hr) Applicable for 20EFPY (with Instrument error Margins)

3-12 Kori Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown rateup lOOT/hr)Applicable for 20EFPY (with Instrument error Margins)

xu

beltline materials)

^*KE>1.0MeV)6fl

lxl0nn/cm2 (E>1.0 MeV)

(strength)^}- ^ ^(hardness)^ ^7}-^- "^^(ductility) ^ <y^ (toughness)©1 ^ i[11 2:A>^]^-(Irradiation embrittlement)

upper shelf energy)^

upper shelf toughness) -S^Hl tfl

80 flux - § - ^ ^ - ^ ^ . 5 . zft^Q '

nl^- ifloflJE. JLSl 13171 -^X>J

4i7> 187l7> $ H ^ ^ ^ ^-^1

1 * * ^ * ^

L ^^-§-71 ^fl^i

1- Sfl^§j-7l 41*

H4i Jl-fV(plant specific)£] afl

1- ^*|§>o^ 17.5EFPY ^ l - ^

1 J1£- ^1?]^ ^-^l t Linde

E-q<LS. ^ J S ] ^ ^ . ^ | S . ^

•]-od ^1\+ ^y Sr-Id.7'f' ^ W " * !

- 1 -

*IH7lfM- ASMEcode section XI, Appendix K[9]S. *flA]tMl

USNRC ° 1 M J E ASME code# v}*&°.£. ?»• Reg.Guide DG-10231'01 £.

7}

J-R

Specimen)-^

34EFPY

Jl-ft-^

27.4EFPY<H1

13171 ^7.>S. ^ - 8 - 7 1 3 1

10CFR part 50, App.G

^^(pressurized thermal shock :PTS) ^-^Ife 1 9 9 4 ^ ^

32EFPY

OJIO] 6)611

^(January 18, 1996)SH

-, °H1[ B 1 (

10CFR part

Code,

7)1

NRC

Draft Reg. Guide DG-1053[B1(April 16, 1997)^.

- 2 -

7]

Reg.Guide DG-1053«fl^ A^-*|-31 $1^ Benchmarking-t-

7]

13171

- 3 - I S3EXT S»AGE(S)left BLAfiK

^°fl 4%& WCAP-8586[141< )

App.H Q ASTM El 85-73^1

J151 13171SJ ^^1-S

V(77°), N(237°), P(247°) ZLSlJI R(257°)

(core)^- f^-a^-S. ^^-8-71 o}.^, thermal shield

- ASTM E185-82, Table 1

WestinghouseA}7f ^

fe USNRC 10CFR50,

S(57°), T(67°),

l 7]

V) :

1979*d 11

Institute(SwRI)^

^:(1.13EFPY)o)l

10CFR 50, App.G-2} 7l^^l<y 50ft-lb<Hl

Southwest Research

o.i4 6EFPY

T) ;

1984^ 4 5*1- «1^7l^-(4.29EFPY)^

o]lu-1 l7> 6.88EFPY»fl 7l 10CFR 50, App.G,

5

S) ;

fe- 5.076EFPYofl

1/4T x l^of lA^ ^ t f l - f -^^ulx l7} 50 ft-lbofl £.^*|-fe- *)7}7\ <$ 3-8EFPY

1988*d ^ 3JJ> ^-^l-g-7l(S)^ Slfe- WOL Al^-§. ol^-«).^ USNRC7)-

71-aJ-^(tearing modulus ^ ^ DPFAD »oV^)-^.

17.5EFPY 4^1-b 10CFR 50,

24EFPY

R) :

1988^ ^

fe 232°F <>H screening criteria <y 300°F7i- S ] ^ A l 7 l ^ 25.5EFPYS.

WOL ^ M ]

^ ^ - 1 9 9 3 ^ ^ ^ ASME code section XI, Appendix

Low USE 1 -aH rfl^ 4 ^ ^ ^ «fl^7l^ol ^A]s j j i , NRC

^ 71^-g: < y ^ * H Reg.Guide DG-1023^.^.

71 € ^ - ^?\£- 1994^ofl 3i}-3l^^ «fl^^- ^«Jj«f5jJcl-. ^ ^ 2 ] - ^ ^ s . -§-71

27.4EFPY^1

- 6 -

- 2-loop, 1723.5 MW(thermal)-g-D l^" Westinghouse A>7

Babcock & Wilcox A H - M -g-Sj-SJc}. Q*}3_ <&&-%-7) *fl£.fe SA508 Class

2 ^ ^ J o ^ Bethlehem Steel Company e*

-g-71 ii^tfl-^-^lfe- cf3:7ov shell ring ^Efl^. ^14 S l ^ ^ - ^ 3 f j 2-2

submerged-arc welding^S. Q^*£~Q -§-^(circumferential weld)*}

^ t ^ 5 ^ ( p o s t weld heat treatment)!- -MA

& 2-14 ^ ^ . 4 ^ ^ 1 # 2 : ^ ring

i ^ . ^ ^ ^ - ^ ^ - Mn-Mo-Ni filler wire

Linde 80, Lot No.8790, Weld qualification No. WE232/WF233

Linde 80 fluxfe- 1 9 7 0 ^ ^ ^ o^-&-7]#°] submerged-arc welding^l

Cu 5J Ni $)4i ^ - ^ ^ 4 ^ ^ - i - 4 4

VA1) ^ «l-Jf^-SJI(122X371 VA1)

13171 # A ] A ] ^ 7fl^?l WCAP-85861141 flfl ^ ] ^ ^ ^

qualification test -%-^.S. *}•%•& x\g.o]t); g_ 2-3-Br

71 #AW£ ^ ^^^-^-^ -§- °fl Af-§-tl- 4-$*HS. « ^ H a 2.VS.4 weld qualification test reports. ^-

^ 4 ^.^^Jcf. 5 2-5 4 2-6^ B&W Aj-yf HZ\ ISL7]

-g-71 -g-^-^-1- i ^ t b B&W 177FA Owners' group vfl Reactor vessel beltline

weld^l tf l«H ^ ^ ^ 3 r ^ ^ - ^ ^ 1 4 ^ - ^ BAW-1799[151<>11

- 7 -

S. 2-341

i c g < g ^ •%•% <Hl A } . ^ - ^ ^ ^ -f-«a«j-T , & 2-45] weld quilification test

(WF233 7l^)Alofl ^ } # Cu 5J Ni Q±4\ W ^ r zj-zf 0.23-0.22%, 0 .61-

ZL5]i4 a 2-5, 2-6

WF233 (T29744)5l Cu

3171 *i<y^ ^-3)«| |^ ^ ^ ^ ^ 7 > [ U ] A 1 ^ A l ^ Archive

material-4- o ]^ -^ . fl ^-^H-H-fe- Cu5l ^ -^o l 0.22-0.36%

\v\, S. 2-751

Linde 80 flux weldment

Bl- d « f 4 £01 B&W

Cu=0.29wt%, Ni=0.68wt% ^ P=0.021wt%

10CFR part 502} ASTM

E185-82118' ^ ASME ^-g- 7 l ^ S . * | - ^ ^l^Sl 'H SI-SH4 US} 13171^ 7^^-

10CFR part 50, Section 50.55a, Appendix G

& H ^^ l - &•& ^ - i - , ASMe code section III & XI, USNRC Regulatory Guide,

Standard Review Plan 5.3.2[19] %•$• ^ ^ r %7}z]%, m]JL ASTM E185-82 £

- 8 -

OJL

-g- nfl ^<»1-^(transition temperature) °§<$2] JL-^ f

shelf energy)

10CFR part 50, section 50.55a o f l ^ t AJ"7l ^ 7f^l ^Aj-A

(1) 7r<a-^^^(PTS) 7lf^ : 10CFR 50.61

USNRC < H 1 A ^ 1985. 7.23

, 1991. 5.15«J 10CFR50.61l21I5.

*) 7fl 5) SS31 ZL ^ -t lSl^Slfe- ^ A l A l « ^JZf7>

^ ^ ^ - 1 - 6 l -g-*H 5 S 7 r « r J l RTFTS ^ A V ^ margin[ 1 2 1 . l.\8)S\o] o) ^

RTPTS = Initial RTNDT + Margin +ARTPTS

OeK ARTPTS = [CF] * [ff])

- 9 -

[ff] = fluence factor S.^ ?02* 01*log(0) o]t\-. a*V, f fe- neutron fluence

(1019n/cm2, E>1.0 MeV)5.M] 7}^-7}tt^- 7}% ^-£r fluence-f- S f e

§j-§-7l ifl»j clad/base metal interface °fH.s] fluence-f- 3 D 1 * M [CF]^-

^ £ 4 Sfe Cu ^ Ni tf^JlS. -fEi ^sfl^l^ flS. ^.^Alol4.Margin^ Reg.Guide 1.99, Rev.2l22]<H] ^ > | Initial RTNDT ^t, Cu &}- Ni

fluence ^ ^ l ^ ^ x H T 0*! ^ ^ ^ • ^ ' S ^ - i - ^ - ^ > 7 l ^ ^ ^ H , 1996

10CFR 50.611121 <H1 T^-^-^I- :<»] ^<> |^1^ .

Margin = 2 [oi2 + aJ f5

OT (IRT 5Jtol

17°F (IRT &©] generic value in R.G 1.99,Rev.2)

(TA = 17T ( ^ 1 ^ 1 ^ I

(7^ = 8.5T ( ^ 1 ^ 1 ^

2) ic^tjj^l^fil -g-3-9-31

(7 A = 28-F « M * 1 ^

(7 A = 14-F ( ^

«>H (7 A ^ ARTNDT

margin

« 4

margin ^t^l

300-F

USNRC Reg.Guide 1.

- 1 0 -

1994*d°fl

27.4EFPYofl screening criteria^

(2) ^tfl^^oflM^(USE) 7 l ^ : 10CFR 50, App.G

^1 ^J^-(AUSE) ^-^r USNRC Reg.Guide 1.99, rev.2 <H] tt)-E)- 4.^^^. 10CFR

50, App.Gofl nfa

(l/4T)ofl^ ol ^ o ] 50 ft-lb

*1-J1 S l^-^

50ft-lb o]i^7} m ^ ^ . S . ofl

2:^1 •& ^ * f £ ^ - ^ ^ ^ J l Sit}-.

1995.12-1!°D 711^(1996.1.18 ^S.)^. 10CFR 50, App.G « ^ | A ^ 71-^5]

(7» 7f^- 31^]^- ASME code Section XI, Appendix Gl24)<>lH

04)§f< ^7) (7})2) 9}^$-^: Q9l^°l «".

SOft-lb olSj-3.

-i

100%

- 1 1 -

-z\-

xipuaddy

HJ30I ^

fSI'I spmo^H -ferWOS HdDOI ^ R"B"

4a-R-FPrR>tir-|c:

fu 5[ xipuaddy 'IX ^ S 3P°3 3WSV ^-^tt?

k ^ K 4 s f e ^ %-frto tefebr-t^ UP PiP661 ?& P1886I b 4 s ^ ^ r 4a:-&4v^ k f r [ t i k l ^

'OS i-red «d30l lalo klb&klv-ft: 4^1 Ik ^ [ Y ^ lbpiO86I

1993!d£.«fl USNRC draft regulatory guide DG-1025l2815.*)

# 71^-gr n > 3 * H ^- afl

1997. 4 - |H Reg.Guide DG-1053^.

- Mesh density,

Angular expansion, Convergence criteria -§-5] T^l^VaJ-^^l £]*V ^_S> -§-<»Jl

±20%

Hl(bias factor)!

estimated fluence)-§-

10CFR 50.61^ 7><a-^f^^ «fl^<Hl£ ^ * } 5 . -8-71

Benchmarking^-

- 1 3 -

2.

7\. 7fl

spectrum, flux, fluence)-§- <lkc>\c>\

(transportation theory)^ S\^V >JJ-

^(dosimeter materials)^ activity

3/4T)

Hi (ratio)-!- 3 1 A V * H ^ ^ r Ajtifl^-aead factor)

^ n £ A S T M E853p9)

3] dpa (displacements per atom)

- 1 4 -

1.99, Revision

£- #£ 71& RS} Z)-

DG-10531131

MeV % E>0.1 MeV),

5, 6

ASTM E693t3O]

dpa

dpa

Reg.Guide

#A|-g-7l V, T, S

USNRC Reg.Guide

7]

JLH^ 1 SL7]

A]-g-7l-b thermal shield^

1.182x1x56 <y*l 371S1 ^ E

midplane ^ °

Si4-

2-

holder §-S]

thermal shield A\e]£\

fe 12-foot

- 1 5 -

forward $#ty adjoint 3 1 ^ 2 7}x]3, uHr<H

-y forward 7)1^-^.5.^ ^£_ QAS-?^ ^#°fi

.0 MeV & 0.1 MeV) * dpa/sec

[dpa/sec]/[(P(E>MeV)]

, 1/2T ^ 3/4T) ^

adjoint Tfl Hl-Mfe- ^ l - g - 7 l ^*1(13, 23 &

azimuthal fl*l(0, 15, 30 & 45£) ^ ^ ^ ^ x f ^ [<p(E>1.0MeV)]-g-

,0 & E)fe

f 6

plutonium

reference forward 7fl<4-J=L5. JfEJ ^^£- AJ"tfl^<y ^ ^ ^ > « f l M ^ l f I ^ radial

adjoint ^ ^ ^ - 5 . ^ ^ ^

(1).

(2).

(3). ^ ^ ^ r 2 : A r ^ ^^^^-(calculated values)^}- ^^§ ^^(measured values)

- 1 6 -

(4).

QA^- -2-1M1 tfltb foreward ^r^ l^J-

<% aV-g-cf^^ AS- °JBUGLE-93[32]-g

4 . BUGLE-93 library-^ PWR Q# x]

(neutron : 47, gamma :

^l'tHlfe- 3.^ 2-4 1- g

^•^1-8-71 ^ ^^-8-711

4 S . ^ 4 S . - i - IELX>r«rSE

- Af-g-*H (r,

2Q)±S. ^ ENDF/B-VI-i- S.tfl

•ol ^Aj^-g-;;

[• ifh«l-ji 1/8

3fa7fl5.^ r-w

14. 1/8 tAl^)

symmetry-1- 7}

3-^^.S. 148 ^

fl.i. code<y DORT4.31311

6) QS.A3. ^*\<&

"J-l-ol^ 67 cflM*!^-

S.«t library ^ 1 ^ . ^-^

! 4 4 ^ . thermal shield,

•^*H S .S. 4 r -

4, e-^AS. 105 ^

fl'Hfe 4 4 wVAj- Tfl :

GIP

forward 4 ^ 3 1 ^ 3L% 2-52] ^-%A ttAQ flow chart <>)H

oH rflfl- ^-

13171 SI ^ - f ^1 4 - 9 1% 7 H l t baffle zettingstainless steel dummy fuel rod7> A A 148, 147, 143, 60, 22 ^ 11

16 ^ ^ 7 l 7 } x l 3

forward ^ ^ ^ A } . ^ 4 ^ A } ^ ^ ^ ^ ^^-6(| 4Hf AA

§1-^4. ZL^ 2-6 gr ^1 4, 5 Slj r71.21 stainless steel dummy fuel rod-f-

forward 7fl<+-g-

adjoint T n - t H ^ S . S8S. ^-^V^- 4 ^-tb^rSlal ^ BUGLE-93 library^.

-?-El P3S. ^ € ^ r ^ ^ ^ - A>-i-3l-^4. ol 14 A}<£ ^ i - ^^3.-8-71 ifl

^ 0° ,15° ,30° ^ 45° 4r ^l-8-7l(13* , 23° 33° ) # 4 4 4!3*1-8

- 1 7 -

(r, 0)^-5.>"fl3. ^MJSrSSUl °1 ^-f°fl 0fe- E>1.0MeV

/ / J'Id(r,0,E) S(r,0,E) rdrdfldEr fl E

= Neutron flux(E>1.0MeV) at a single geometric location, d, withinthe reactor geometry

Id(r, 0 ,E) = The energy and spatially dependent adjoint function relating the fastneutron flux at geometric location d to meutron sources within theproblem geometry

S(r, 8 ,E) = The energy and spatially dependant neutron source within thepronlem geometry

Ar-g-*V adjoint importance ^Hrfe ^ ^ f f ^ ^ H r <Z>(E>1.0 MeV)

aV-g-^^o]] 7li«l-^ln>, R.E Maerker ^ | 33]£] Tfl^V^^ ^ ¥ ^

leakage loading patterns)^1 f

5(itj.. n]-2H ^ ^«H^1 ^ * H - H [dpa/sec]/[<P(E>1.0 MeV)]S] H

[email protected] ^.S\-6\] ^ «l^-«rH5. ZL5] 13171 -^^5.^1 adjoint importance

- l 9X°] [dpa/sec]^}- <P(E>1.0 MeV)^- 4 4 ° ) adjoint

^ 7 l 1 <p(E>1.0 MeV)«fl 5i}- forward ^ - * H * | "^^r [dpa/sec]/[0

1.0 MeV)] ^ [(p(E>0.1 MeV)]/[(p(E> 1.0

adjoint 3 l ^ H ^f-§-^ ^ 4 ] # ^ ^ - 5 . f e - ^-Sl 13171 z\ ^ M t fuel cycle

nuclear design reports134"371 S. ^t]

- 1 8 -

(Neutron Dosimetry)

2-834 ^ - 4 . £ 2-80)1^

» ) ^ 1- [0(E>1.O MeV), <Z>(E>0.1 MeV)

Fe, Ni, Cu gj Co-Al ^-A]T.>7> Aj(wire) tgnfls. ^ - A ] ^ - 7 ] ifl

spacer ^ - ^ ^<fl 1-<HS14. £*!: ^j-S^-AS. *>^]€ U, Np

S. 2-8^1

(1).

(2).

(3).(4). 4 ^ l ^ f i ] ^lM^ofl cfl*>

(5).

^A>^-g- ASTM138"491 | ^ H i £]7} ^ * 1 -

V, T, S & R)3 "o^^^r Ge(Li) gamma

spectrometer -§- A>^-*H ^ ^ ^ S S ^ - ^ , ^ 1~15*> ^ ^ 7 1 %•<$<>] Jl^Qx}

^ 12.7] 3z*}°}&-& t b ^ - ^ ^ ^ V S - f E l X||* ^ 5 ^ 4 . ^-Al?J^ V, T, S

R °

^

R* J - A I . - A t ,

No F Y 2 Q [1-e J][e d]Prcf

R

A

No

F

Y

Pi

P *

Q

/I

tj

ta

i ^ - t ^ o ] Prcf (rps/nucleus)

^ r ^ ^ I U1*9"AV^" (dps/gm)

AflA^ ^ ^ ^ ^ ^ ^ n j £

^-S-1^ >\S^€ QA** <T-

&\7\# I ^ ^ ^ 5 t4J f

^ f . ^cj|#^ (MW)

2LA)-71^]- I ^1 ^ ° 1 (sec)

3L*\7}1\ I o]| ^ o l ^ - -f-J^7l

7fl«l

^ ^ (MW)

I 1 ^ i

(1/sec)

?> i (sec)

adjoint ^ ^ ^ - ^ A>-g-*H 4 ^ 7 1 ^ 5 . Tfl-tVil^ Q «lfe- ^ ^ 7 ] t

4€- f ^ ^ ^ ^ S l ^Sl-ofl 710]^ ^-^^-A

4 ^ > ^7\2\ 2*\7\#W Cj fe- ^ ^ ^ A 5 . 1.0-&

^ «l^7l ^<L>^ 2:A>7l^-oflA^, ^.*1 ^ ^ p ^ ^

- 2 0 -

3.

7\.

fe. USE>50ft-lb o]uj ART<200T

Loss-Of-Coolant-Accident(LOCA)i4

-gr£7l- ^-^*1

-8-3 °1 7>sfl xl Til

shock : PTS) alsl-jL * f e ^ x f S

#3-8-71

-f-ofl

£^-yfl(thermal gradient)^!

^^(Pressurized thermal

#3-8-717>

#3-8-713

10CFR50.61

10CFR50.61(1996.1.18)3 RTprs

4 4 RTFTS

1985. 7. 23«^ US

1991. 5.

^ ^ ZL ^ ,

margin

margin^i

- 2 1 -

PTS *fl^£- 3)-tl 7fl^^-<y USNRC 10CFR50.61

5J 40FEPY ^ ] S 1 R T m *

RTPTS

PTS°fl cfl«V Reference Temperature(RT)

parameter ©1^ RTNDT

beltline *j-3\4\ S.A ^ -g -^^ -^ t f l^ RTFTS ^^8:

RTFTS - IRT + M +ARTFTS

A R T m = [CF] * [ffj

IRT - Initial reference temperatureCIRTNOT)0!^ ASME Code SecIII, NfB-233Hl

tt)-e)- ^^§«}- i A } - ^ ^flS.Sl reference temperature^ afl *?}•*!-tf.

M = Margin^ Reg.Guide 1.99, Rev.2ofl £<\7) IRTNDT 5t. Cu 4 Ni

fluence ^ ^ K L ^ ^ H -^°fl 7l©l

10CFR50.61

0.5

(7i - OT (IRT ^^1

a i ' 17T (IRT ^^1 generic value in R.G 1.99,Rev.2)

margin = 2 [erf + ai]

A = 17-F

A = 8.5T

- 2 2 -

2) •g-^-'Ml28T (#*H$

14*F « M ^

£T ARTNDT 1/2-fr

[ff] - fluence factor^.*! f<078 01*log(0)

n/cm2,E>1.0 MeV) S.-»<| 7>-f

^ ^ • § - 7 1 tflaj clacVbase metal interface

[CF] = chemistry factor(T) ° 1 ^ Cu^}- Ni

Table l(weld)3r Table 2(base metal)^.

( f ^- neutron fluence (1019

fluencel-

fluence-f- •aj

RG 1.99, Rev.2,

RTNDT ^ ^ - n f l ^ [CF] ^ 4

[cf ]

RTrrs

CFR part 50.61, (b).(2)^

[ff] i * [ A R T N D T ] i

[ f f ] '

RTn-s 2) screening criteria

beltline ^ 1 ^ ^ -^

US NRC 10

RTFTS 71^*1

< 270°F

< 300°F

- 2 3 -

4.

7\. 7fl A

°J"^-Sr£ ^lt^^d(pressure-temperature limit curves)^-

(reactor coolant system, RCS) £ * i i r ^ 7) 7] 3] ^ s M - i .

linear elastic fracture mechanics : LEFM)

3E.(safety factor)!- 7

. ^^1 ^1^51 a .^ ^ 717H1

3.7]}

l ^ ^flSl-51 ART

(adjusted RTNDT : reference temperature for nil-ductility transition) t-i:

RTNDT

margin-i- c-1^- ^ofl sfl -(IRTNDT + ARTNDT + margins for uncertainties)*!-^

USNRC Regulatory Guide 1.99, Revision 2°fl it*}<^ Tfl V*!-1 . ty-w, °1

ART 7fl##-g- ASME code section XI, Appendix G S)

24-

(elastic-plastic fracture mechanics : EPFM)AS. ^7]--&Ho|: ^fuf, LEFM

LEFM 7fl^A

^ £ JUS] 1317131 <£^--8r£ * f l«H^£r 20EFPY V\7]

3. 7>^(heatup), ^4(cooldown)J^^ ^ ^^-^-Efl(steady-state), ^ p ^ ^ ^rojAlA 4 ^ * r

stress)^ fi]^- -g-^5H7fl^(KxJ£|- ^rt^wfl(temperature gradient)^

stress)<Hl ^ « } -g-^^-cfl7fl^(Krr)Sl ^<^1 ^S.7> ^*J"*1-^

^ 1 °d"^-§-7l^ <y-^i«l-4- ^7]A^ Ki™ = Mm(Ri P/T) S. ^ ^

, Krr fe- a l^-« oV^Al^S 7 H ^ € 4 .

l/4t, z H 3/2t 6} ^-7>S.^- ^th&- AA^- SX^Z- 7f

K,R ^r ^1

ASME Code, Sec.XI, App.G [24]

KIR = 26.78 + 1.223 exp[0.0145 (T - ART + 160)] ksi(inch)05

KIR = RTNDT^- £r£(T)5i ^-^<y 7]^-§-^2|-cfl^l^(reference stress

intensity factor)

-, ASME code section XI, appendix G °fl

- 2 5 -

C * Kta + Krr < KIR

Kin, = Stress intensity factor caused by membrane(pressure) stress.

Krr = Stress intensity factor caused by the thermal gradientsthrough the vessel wall.

KIR = Reference stress intensity factor as a function of the metaltemperature T and the metal ART.

C - 2.0 for Level A and Level B service limits for heatup andcooldown.

C =1.5 for hydrostatic and leak test conditions during which thereactor core is not critical.

az}- «g-3jofl 2]^ eM-ej, ZLZ\3. 7 r # ^(postulated flaw)°fl t f l^ ° H

Krr ^ Kfa 1- 3 1 W * , ^-%-c^(allowable pressures)-!:

-g.TE.6H 4 = . ^-§-<a-^°l ^Tf l^ ASME

Sec.XI, App.G 4 Q6\ $.7] ifl^- l/4t<4 3/4t ^

° 1 ^ WestinghoiuseAl-7l-

USNRC5. -fEl ^^ ]^ -^ r WCAP-14040-NP-A, Rev.2, (Methodology

used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup

and Cooldown Limit Curves) ^ S > ^ [ 5 5 ) ^ 5$%-B\ 3.^°} OPERLIM code!- 4

- 2 6 -

7\.

^ 5. 3-1-a 3-3il- ^-M datafe-

-I- dosimetry ^ - ^

3-1- r 13a ,23° 5f 33

[<P(E>1.0 MeV), (E>0.1 MeV), ^ dpa/sec]

plant-specific 1 4 ^ " 8 * 1 4 «H^^1^ ^

*1 (reference data)^

-g-71 clad^-

parameters

adjoint

forward 4^Ti l

plant-specfic

-§-71

.0 MeV), <P(E>0.1 MeV) * dpa/sec^fl

S. 3-3*1- ^ . reference forward ^

0° ^^HlAi^ 4 ^A^^l-of l tfl«V

fe- radial

z\3_o]tt.

-71

0° 1/4T

(Pi/4T (0°) = <P (167.96, 0°) F(172.17, 0°)

- 2 7 -

<J i/4T (0°) : Projected neutron flux at the 1/4T position on the 0° azimuth

d> (167.96, 0°) : Projected or calculated neutron flux at the vessel inner radius onthe 0° azimuth

F(172.17, 0°) : Ratio of the neutron flux at the 1/4T position to the flux at thevessel inner radius for the 0° azimuth.

3-3 o} dpa/sec

V, T, S £ R 2)

5. 3-4, 3-5 U 3-6^r

t f l « H 51) tiV-g-1-

3-1

FERRET

. FERRET

JS.5.

FERRET log-normal

= y , A - (s) 0 {a)

- 2 8 -

log-normal

sitive fluxes)7>

.^ (trial input spectrum)-^ SAND-II code'511

FERRET 53 group ^ ^ 5 . ^.^\S$,^. 31<±€ 47^- ^ ^ E . ^

SPLINE v f l - y - ^ S . SAND-n3 6205"AS. ^ - ^ - ^ cH£-

SAND-II1- ol-g-*H ENDF/B-VI

§ ! 5Sl^. 53X53

ENDF/B-VI

{E.*$(trial spectrum)^ ^ ^ - ^ ^ 1 3 ^^1 i ^E .^ (ac tua l spectrum)^

7l-7>-gr 3 H ^^.§1-71 nfl§-<Hl FERRET 7fl^<Hl^ reference forwards.

M = R2n + R R, P

gg g g gg

- 2 9 -

fractional

normalization uncertainty)-!- M-^-^^f. ^•^•Sr^-^S.(fractional uncertainty) Rgfe-

g

P . = [1-0] 8 + 0e"H

gg gg

H =

5fe g=g'

4 - g - ^ ^ - ^ ^ ^ ^ £ - R-E. Maerker1531

MaerkerSl

^ Til* ^ ^

*51-^£(overall uncertainty) ^ 7fl^--^-^-^ 7fl^7l i-g-, Tflf^l JE^g,

V, T, S 3! R °11 tfl^- FERRET ^ 7 f ^ ^ ^ S 3-72]-

<P(E>1.0 MeV), (p(E>0.1 MeV) ^ dpa ^ -^ .S .

3-8-fr 4 - l-g- l 1

FERRET code^. i ^ ^ ^

7>S. i ^ € ^ ^ 1 ^ ^ ^ : FERRET 53 ^lM^l group ^-SiS. ^Bf i f l^ 5 . 3-9,

3-10, 3-11 ^ 3-124

V, T, S ^ R ofl cfl^ 2pS *

«lfe 0.810-1.016 O.

- 3 0 -

l & l^ f l PWR

database <4 ^

L5] 13171 ^ ^ 7 1 ^ g . ^^-8-71 lfl3 0°

S. 3-14^ ^-tq-. S 3-15-fe- ^1 15 ^^7l(13.5EFPY)l- 7 1 ^ ^ . 5 . 20,

24, 32 IL?)JL 40 EFPY ^ l ^ o ] ^ ^ <^|^ ^A|-^(best estimated fluence)£. i

tf-*kn

T, S £ R ^ f

(hias factor)^ S. 3-2$] J 1 2 i ^ > ^ 1317l ^

(?Best Est. = K 'Calc.

<^ 7] A tf) Besl £„, ; The best estimate fast neutron exposure at the vessel 0°

K : The plant specific measurement/calculation (M/C) bias factorderived from surveillance capsule dosimetry data

<#caic. : The absolute calculated fast neutron exposure at the vessel 0°

K $;•£: a 3-13S] 4 iA}.ttj^[0(E>l.O MeV, E>0.1 MeV) ^

bias factor &°.£. z\z\ 0.895, 0.918 gj 0.911 <>14. 5 3-14^

1~15 ^ ^ 7 l 7 W f e JIHl 13171 ^ 1 plant specific

16 «l^7l c l ^ : ^ 13-15 «|

- 3 1 -

71

5% bias factor

10%

12.8% S.

MeV) <4 dpa

R T N 3/4T

<Z>(OT)

dpa (OT)

dpa (3/4T)

dpa (OT)

3-164 7k

S 3-17 ^ a<=>} &•& j i e ) 13171

. a 3-19

bias factorl- 7l

13

^ ^ 4**11 •§ • • * •

^ a 3-17 *

- 3 2 -

2.

7\. 4 1-4*]-

51 I i 7 l ^ - ^1^-71 V, T, S £ R^ 4

%- 3 -20-5 . 3-23^ 7l ^«g

. C$7]X] ^ ^ ^ - ^ d l ^ g ^ hyperbolic tangent

(tanh) curve fitting-^- IL5.ZL^<y CVGRAPH Version 4.1 l 5 4 )^- °}$-*}$lt±. %•

hyperbolic tangent(TANH) ^ £

Cv(E) = Pi + P2 TANH [(T-P4)/P3]

regression analysis^. ^ ^ S ] ^ - ^-^ojc]-. ^-71 ^Hl 5]^- ^-^^-{ds] curve

fitting ^:cHr 4 4 ^ . ^ 3-1-3-10^

ASTM E185-82, 4.18 Qsi\ fl-^ofl n}-^-

SSJt^-S. ^ « } ^ ^ ^ , ^ l - 8 - : £ ^ ^SI - (ARTNDT)^ l ^ g ^ ^71 fl-^S] 4.15

$• ^ US 10CFR 50, App.G,U,E*o1-5l fl-^ofl n^s} ^ ^ ^ 1 ^ x 1 7 } 30ft-lb

(41Joules)<y

4 ^-Al-g-71 V, T, S £ R51

3-24, 3-25, 3-26 ^

4 7 l R)

2.922xl0'9n/cm2(E>1.0

30ft-lb ^l^l-grS ^ 7 r 4 17.7°FSl 50ft-lb

- 3 3 -

30ft-lb € ° 1 £ £ 7 > -22.7°FS., 2A}^t 50ft-lb

-0.91°F3. ^ ^ S l S i ^ . a f c *§"& 3)«^r°l lM*l(USE)£r 14.8ft-M

^ > * ^ S - ^ W T ^ X ] ^ 156.2ft-lb(^^ 3-1)3.

3-H1

2.922xl019n/cm2(E>1.0

3Oft-lb ^ ^ ^ r £ ^ ^-7}&\- 88.5°F^ 50ft-lb

^ 3Oft-lb ^6l^:3E.# 14.66°FS., 50ft-lb

40.47°FS. ^ 7 f ^ 5J«14. 5S3- ^ t f l^ r ° f lM*lTr fitting^^

27.7ft-lb5] ofluixl ^ i s . # ^ s ] c ^ 5^^- ^ t f l ^ - ^ ^ u i x l ^ 138.7ft-lb<>li}

2.922xl019n/cm2(E>1.0MeV)^ ^A>(ZL^ 3-7)^- 235.1°F

3Oft-lb ^ o l ^ r £ $ # * 7 f ^ ^ ^ . ^ 2:A> Jf. 3Oft-lb ^ ^ - 8 r £ f e 228.9°F<Hl

. 50ft-lb ^ o l ^ r i f e 3 l t f l ^MlM*l7} 50ft-lb H

40.2ft-lb5.

2.922xl019n/cm2(E>1.0MeV)Sl

3-10)-b 43.97°F£l 3Oft-lb ^ H - g . ^ ^S}-S.M] J A } ^ . 3Oft-lb

ASTM

. USNRC Reg.Guide 1.99, Rev. 1 (1977)ofl

- 3 4 -

^ 4 , Rev.2

cU4i

3-28^- JLe^ 15171 - ^ ^ 5 . -g-71 i ^ t f l ^ - ^ ^ J2.7U

USNRC 10CFR50.61(12) ofl nj-^. 1 ^ >

•a-^-8-7] i c ^ i f l ^ l ^ ^ flS-oil tfl«V chemistry factor(CF)!- ^Z}^ S. 3-29

^ 3-30^4 ?kA- <AA^ CFfe ^Af xlom- ^1 u } ^ - A I A I ^ J ^ ^-ol A j s l ^

fe- ^-AlAl* %\S.7\ giTiuf J ^ # ^-f(Reg.Guide 1.99, Rev.2, position 1.1),

copper 4 nickel^ «a=ofl $\% CF (S. 3-29)4 j ie) 131714 Q*} 4S>sjHl ^

« ^^1^1^^- ^ <££ ARTNDT 4 ^rf W # ^, -tlSl^S^ ^-f(Reg.Guide 1.99, Rev.2, position 2.1)41 t f l * H ( £ 3-30)

10CFR 50.61^1

.^-E^ 27fl

2.141 7l-t-^u>iflS. ^ ^ ^ ^^^(best-fi t line)^.S. - ? -E^ ARTNDT ^

28 °F, a^fl4l tflsflA^ n °F o ^ o l s\o]

y^jl J^E (3.7141

O) ^ 6 ] 2Mfl

7flAV(shift calculation)^- Z}^

ASTM E185-8241

- 3 5 -

^^A}(best-fit line)-gr

28 °F, i7)|fe- 17 °F

C R C Standard Mathematic Table (27th

Edition, P497H v$& bo ^ b, ^t^r c^g- wj-

n bo + bi S Xi = 2 yi

bo 2 xi + b, 2 x ' = 2 * yi

^ y, a n + b

(1) Intermediate shell forging 124W375 VA1

S 3-3H1

215.15 = 4 a + 4.167 b

241.13 = 4.167 a + 4.476 b

a = -70.9, b = 119.9

Y' = 119.9 (X) - 70.9 61 S H ^o]£ x

e fe cH.4

- 3 6 -

Y - Y'

2.H1 7 l # ^ ifl-g-ofl u ^ J I B ^ S ^ ^ H ^ * H ARTN DT

3-32 ofl ^

17 °F

tangential f^-a) - f ^^^ ^ 4 ^ data scattering^l

(2) Weld Metal

S 3-3

812.56 = 4 a + 4.167 b

860.58 = 4.167 a + 4.476 b

a = 100.23, b = 98.95 <>] S H ^ ^ H ^ l S)*}-

Y' - 98.95 (X) + 100.23 °1 s H ^<H^I X <*H n -e)- Y &

e -. e - Y - Y' <>W. 4 ^ ^ fl"^l ^1^ 2.1 «fl

3 ^ 1 ^ : * } ^ ART N D T ^ t ^ ^ ^ ^ S. 3-32

28 °F Jic}- ^rc}. ZLelJELJL

CF1- «l-§-*H al2l I i 7 l * r ^ ^ ^ - 3 - S ? ! 32EFPY * 40EFPY

S\ RTFTSI- yfl-t}-^- ^ ^ ^ q . S 3-33 o)H USNRC 10CFR50.61 ^ Reg.Guide

1.99, Rev.2, position 1.1 ofl tt}-^- Cu^}- Ni^ < 6)1 s]*j- C F ^ i i ^ j c f l x l ^^ JS.

^J?-4l7> CF=37.0 o H °1 ^ - f RTFTS St-Sr ^.Sl 13171^1 ^ ^ < g ^ -^ i<y

32 EFPY °fl*| ^tfl 113.9 T S . i^&rtfr)-. a t b Reg.Guide 1.99, Rev.2,

- 3 7 -

position 2.1(3*]Alt! ^ 6l-8-W>*l 4

Sl^- #AlA]*j ^ £ 1 - ^ ^ CF & £ i ^ x l ^ S ] S-^7> CF= 53.9 S.

#) 32 EFPY°fl RTm &£r 119.7 *F7> Jgcf. nJ-Sj-Aj i ^ r f l * ] ^ iaflJj^fe-

Reg.Guide 1.99, Rev.2, 1.1 ^ 2.H1 l«fl ^ 7 ^ RTVrs ?Jt -2L:T-71- 10CFR50.61

£] RTVrs 713*10] 300'Fefl

C F ^

CF=203.4

CF=180.9 ^ ^

CF

USNRC Reg.Guide 1.99, revision3S7>«^S.^ SL^JL $X°] JL51 13171 l ~

CF=192.3 ^r Jie) 1J171 RTTO ^

RTm ^ 7 1 - ^ ^ f e X 3-33« l

^4^- -¥-Ei ^ ^ RTPTS ^«1 ^ ' S ^ ^ ^ -S^ l 32EFPY

10CFR 50.61^ -§-^4- JS.-^ 7l^^l<y 300*F«=fl

- 3 8 -

3.

7\. ART

ART &£r Reg.Guide 1.99,

Rev.2

ART = Initial RTNDT + ARTNDT + Margin (1)

, Initial RT N D T ^ ASME Code Sec.III, NB-233H1

reference temperature^ s f l ^^ t^ - . D > ^ Initial RTNDT ^^>1 gi-gr ^ - f

Reg.Guide 1.99, Rev.2, 1.1 °fl ^ - g - ^ «f^- ^ o ] generic mean valued *}•%•

ARTNDT

A R T N D T - [CF] * f^28 " 01*Iog(0) (2)

7]

3/4t

^-^(attenuation)

I(dcp«h X) ~ Isurface

x (inches)fe- oJ-^-§-7] clad/base metal

e fe- neutron fluence (1019 n/cm2, E>1.0 MeV)

fluence °lcf.

- 3 9 -

CF(°F)-b C u ^ Ni f ^ S l Q^S-tf Reg.Guide 1.99, Rev.2, Table l(weld)-Cj-

Table 2(base metal)^. ^ M ^ l r } . ^ M " 1 2 ) 15.7]$- 3 M ^}^)^\ 41$ $

- Reg.Guide 1.99, Rev.2, 2.1 ofl 5] 7} t)-

[ff] i * [ARTN D T] i^ , [cf ] = - ^ -T- 614. (4)

, Margin^ margin = 2 [flf + o i ] 0 ' 5 <^H ffI = OT(Initial RTNDT^t

^-f ) , (Ti =17Tanitial RTNDT^^I R.G 1.99,Rev.2 1 generic value

^ A ^ t ^ t f l x l ^ S ] ^ f lg j ^ 2 : ^ ^ ^ - f ffi - 17-F,

28T 614. °H a^ ^r ARTNDT

Chemistry Factors-f-

^1^*1-^ a 3-282]- £ 4 . S 3-28-i- l-§-«}<^ Reg.Guide 1.99, Rev.

2, Position 1.1 °fl n}-€- CF-& ^SV^ S 3-295]- ^ ^ . ^ ,

1^-1- 61-g- - CF-&

192.3'FS. 7}% 3LA

USNRC Reg.Guide DG-1053S1 . -A}-*J-ofl u{?\ 7fl ^7}^ JLS\ 13L7]

\ 2,A}^ TflAV^JZl-* £ c f l s EFPYt

*1- SAl-^-S- 7fl<+^- ^ 4 ^ 5 3-34^}-

}-^-g-7l ^ f-^ 1/4T ^ 3/4T ^ ^ H l A ^

margin ^ 5 ] T J ^ . Reg.Guide 1.99, Rev.2«fl

3-f tj)3M 4 4 ^

- 4 0 -

S. 3-354

ART 7fl<+ 4 (l)-i- ol-g-*H J!S1 1JL71 t ^ t f l ^ l ^ ^|S.S1 1/4T

3/4T 3*1, 7>-^7l^> 20EFPY *\}*\°] ART# 31 S j - ^ S 3-364

3-365] 7JK4145. - -Bi US] 13L71S] ° ^ 4 £

ART ^t-i: A ^ * } ^ S. 3-374 ^ . i 3-37<HlA ART ft f

.*f ^ ^ ART 3W ^ 1

Ai4 Reg.Guide 1.99,

^ 1 1 ^ W l ^ ] - i ^ ^ 5 1 ^ ^ &°W &&QB.S. ART

235.9T (l/4t) 4 194.1'F (3/4t) 1- Al~g-«H «g-

(1)- •nr'i ^ " T 1 ^ ^ ^ (In-service Leak and Hydrostatic tests)

-gr£(isothermal condition)<HlA] ^ s j £ l H 5 . KK - 0 ojcf.

1.5 Kto < Km

1.5 1- ^)t!r4. USNRC SRP, NEUREG-0800, Sec.5.3.2,

ASME Sec.m & XI, App.G §J WRC-175 4

44 5U-b44 ^ 6 1 ^ ^ 55 -Sr£?il7l3 ^-^}7f 4 4 60psig (4.2° Kg/cm2) 4

10*F (5.6TC) ° ]4 .

- 4 1 -

(2). 7]-<i 31 ^ 4 ^ ^ (Heat-up and Cool-down Operation)

-§-71

ASME Code, Sec.XI, App.G ofl fl-^^ 7 > t ^ ^ 4

2 Kim + Krr < KIR

computer-

lOOT/hr, 60-F/hr ^ 7><!^ ^ 4 i ^ i , Ziel^l steady state

°J"^-§-7l l/4t ^ 3/4t ^Jfl6flAifi1 20EFPY

4 4 ^«VSIi . °1

3-114 ^"JL ^ 4 ^ ^ * -^^ 3-12«fl

- 4 2 -

(3). 2c 41 £#(Core Operation)

1317]

40aF(22°C)

lOOT/hr

: 6Opsig,

- 4 3 -

l. ^ ^

10CFR Part 50.6H 7])^ (January 18, 1996)S]jl

Code,

Draft Reg. Guide DG-1053 (April 16, 1997)S. ^^^^<=>1 ^ ^<^1 4 ^ 7l

WestinghouseAf^- ^ - ^ A S Reg.Guide DG-1O53<>11 nf^- Benchmarking^- ^

. fl ? f l^€ #Z}5, -§-71 ^ ^

l~4*} # A H * H tf l^ ^ sg

V, T, S ^

4.401E+18n/cm2(V : 1.13EFPY), 1.055E+19n/cm2 (T :

4.29EFPY), 1.415E+19n/cm2(S : 5.08EFPY) ^ 2.922E+19n/cm2 (R : 6.88EFPY)

«1 (bias factor)^ 0.895 M. ^^-^^.^ *%??: Uncertainty^ 12.8 %

USNRC Reg.Guide DG-1053 Si\ 7l^^l«=l ±20%

*& (best estimated neutron

(13.5EFPY : 1997<d 3Q)7]&*.g. 1.6488E+19n/cm2

S. ^7} S I A I ^ L ^ 24, 32 ^ 40EFPY oflA^ ^^>S.-8-7l

^r 4 4 2.880E+19n/cm2, 3.861E+19n/cm2 ^ 4.874E+19n/cm2

- 4 5 -

] \ # H D ( # ] g l ) ^ 15.51EFPY

: 1999V!) 4

40EFPY

- 4 6 -

2.

2-Loop ^^i<y JLB\ \S.7]^r SS&S. USNRC Regulatory Guide

DG-1053^1

•a-

7} S]^C}. olfe- Af-g-

PWR

^ 20%

15%

13171 ofl

- 4 7 -

1. P.M.Connell, L.Server, W.OldField and F.M.OldField, "Irradiated NuclearPressure Vessel Steel Data Base", EPRI NP-2428U982)

2. Code of Federal Regulations, 10CFR Part 50, Appendix G, "FractureToughness Requirements", Federal Register Vol. 60 No. 243, December 19,1995.

3. Code of Federal Regulations, 10CFR Part 50, Appendix H, "Reactor VesselMaterial Surveillance Program Requirements", Federal Register, Vol 60 No.243.

4. The first surveillance test on the reactor vessel materials of the KoriNuclear Power Plant Unit 1 (Capsule V), Aug. 1980.

5. The second surveillance test on the reactor vessel materials of the KoriNuclear Power Plant Unit 1 (Capsule T), Jan. 1985.

6. The third surveillance test on the reactor vessel materials of the KoriNuclear Power Plant Unit 1 (Capsule S). June. 1986.

7. The fourth surveillance test on the reactor vessel materials of the KoriNuclear Power Plant Unit 1 (Capsule R). May. 1990.

8. The safety (fracture) analysis of the Kori Unit 1 reactor pressure vessel,Sept. 1988.

9. ASME Boiler and Pressure Vessel Code Section XI, Appendix K,"Assessment of reactor vessels with low upper shelf charpy impactenergy levels", 1993.

10. USNRC Draft Regulatory Guide DG-1023, "Evaluation of reactor pressurevessels with charpy upper shelf energy less than 50 ft-lb", Sept. 1993.

11. Integrity assessment of Kori Unit 1 reactor pressure vessel for low uppershelf toughness, KAERI/CR-005/94,Sept. 1994.

12. USNRC 10CFR Part 50.61, "The pressurized thermal shock (PTS) rules",Jan. 1996.

13. USNRC Draft Regulatory Guide DG-1053, "Calculational and dosimetrymethods for determining pressure vessel neutron fluence", April 1997.

14. WCAP-8586, "KORI Unit 1 reactor vessel radiation surveillance program",Westinghouse class3. August 1975.

15. BAW-1799, "B&W 177-FA reactor vessel beltline weld chemistry study",B&W, 1983.

16. ^ H I J A1*.H all 70S " # * H W . 1 9 8 2 9.30.

- 4 8 -

17. 4*M#*la !Al ^ 92-20i "%*}S. «g-3-8-7l 7OVA1A]^ 7 l^" , 1992.12.

18. ASTM E185-82, "Standard Practice for Conducting Surveillance Tests forLight-Water Cooled Nuclear Power Reactor Vessels", E706QF), in ASTMStandards, Section 3, ASTM, Philadelphia. PA. 1993

19. USNRC Standard Review Plan, NUREG-0800, Section 5.3.2,"Pressure-Temperature Limits", Rev.1,1981

20. 10CFR 50, "Analysis of Potential Pressurized Thermal Shock Events", July1985.

21. USNRC 10CFR Part50.61,"Fracture Toughness Requirements for ProtectionAgainst The Pressurized Thermal Shock Events" May 15, 1991.

22. USNRC Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement ofReactor Vessel Materials", U.S. Nuclear Regulatory Commission, May 1988.

23. USNRC Regulatory Guide 1.154, "Format and Content of Plant-Specific PTSSafety Analysis Report for PWRs". USNRC. 1987.

24. ASME Boiler and Pressure Vessel Code Section XI, Appendix G, "FractureToughness Criteria for Protection Against Failure", 1993.

25. USNRC Regulatory Guide 1.161, "Evaluation of Reactor Pressure Vesselwith Charpy Upper-Shelf Energy Less Than 50ft-lb", June 1995.

26. USNRC 10CFR Part50.66, "Requirements for Thermal Annealing of theReactor Pressure Vessel", December 1995.

27. USNRC Regulatory Guide 1.162, "Format and Content for Report forThermal Annealing of Reactor Pressure Vessels", February 1996.

28. USNRC Draft Regulatory Guide DG-1025,"Calculational and DosimetryMethods for Determunung Pressure Vessel Neutron Fluence", Sept. 1993.

29- ASTM E853-87, "Standard Practice for Analysis and Interpretation ofLight-Water Reactor Surveillance Results", in ASTM Standards, Section 12,American Society for Testing and Materials, Philadelphia, PA, 1993.

30. ASTM E693-79, "Standard Practice for Characterizing Neutron Exposures inFerritic Steels in Terms of Displacements per Atom(dpa)", in ASTMStandards, Section 12, American Society for Testing and Materials,Philadelphia, PA, 1993.

31. RSIC Computer Code Collection CCC-543, "TORT-DORT 2 and3-Dimensional Discrete Ordinates Transport, Version 2.7.3", May 1993.

32. RSIC Data Library Collection DLC-175, "BUGLE-93, Production and Testingof the VITAMIN-B6 Fine Group and the BUGLE-93 Broad GroupNeutron/Photon Cross-Section Libraries Derived from ENDF/B-VI NuclearData". April 1994.

- 4 9 -

33. R.E. Maerker, et al, "Accounting for Changing Source Distributions in LightWater Reactor Surveillance Dosimetry Analysis", Nuclear Science andEngineering, Volume 94, Pages 291-308, 1986.

34. Westinghouse Report, "The Nuclear Design and Core Physics Characteristicsof the Kori Unit 1 Nuclear Power Plant-Cycles 1 through 10" [WestinghouseProprietary Class 2]

35. KWU B324/90/e205, Nuclear Design Report fir KORI 1, Cycle 11, August1990.

36. KAERI NDR for Kori Unit 1, Cycles 12 through 14.

37. KAERI/TR-578/95,"Nuclear Design Report for KORI Unit 1, Cyclel5",December 1995.

38. ASTM Designation E482-89, "Standard Guide for Application of NeutronTransport Methods for Reactor Vessel Surveillance", in ASTM Standards,Section 12, American Society for Testing and Matrials, Philadelphia, PA,1993.

39. ASTM Designation E560-84, "Standard Recommended Practice forExtrapolating Reactor Vessel Surveillance Dosimetry Results", in ASTMStandards, Section 12, American Society for Testing and Materials,Philadelphia, PA, 1993

40. ASTM Designation E706-87, "Standard Master Matrix for Light-WaterReactor Pressure Vessel Surveillance Standard", in ASTM Standards,Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.

41. ASTM Designation E261-90, "Standard Practice for Determining NeutronFluence Rate, Fluence, and Spectra by Radioactivation Techniques", inASTM Standards, Section 12, American Society for Testing and Materials,Philadelphia, PA. 1993.

42. ASTM Designation E262-86, "Standard Method for Determining ThermalNeutron Reaction and Fluence Rates by Radioactivation Techniques", inASTM Standards, Section 12, American Society for Testing and Materials,Philadelphia, PA, 1993.

43. ASTM Designation E263-88, "Standard Method for Measuring Fast-NeutronReaction Rates by Radioactivation of Iron", in ASTM Standrad, Section 12,American Society for Testing and Naterials, Philadelphia, PA, 1993.

44. ASTM Designation E264-92, "Standard Method for Measuring Fast-NeutronReaction Rates by Radioactivation of Nickel", in ASTM Standards, Section12, American Society for Testing and Materials, Philadelphia, PA, 1993.

45. ASTM Designation E481-92, "Standard Method for MeasuringNeutron-Fluence Rate by Radioactivation of Cobalt and Silver", in ASTMStandards, Section 12, American Society for Testing and Materials,Philadelphia, PA, 1993.

- 5 0 -

46. ASTM Designation E523-87, "Standard Test Method for MeasuringFast-Neutron Reaction Rates by Radiqactivation of Copper", in ASTMStandards, Section 12, American Society for Testing and Materials,Philadelphia, PA, 1993.

47. ASTM Designation E704-90, "Standard Test Method for Measuring ReactionRates by Radioactivation of Uranium-238", in ASTM Standards, Section 12,American Society for Testing and Materials, Philadelphia, PA, 1993.

4& ASTM Designation E705-90, "Standard Test Method for Measuring ReactionRates by Radioactivation of Neptunium-237", in ASTM Standards, Section12, American Society for Testing and Materials, Philadelphia, PA, 1993.

49. ASTM Designation E1005-84, "Standard Test Method for Application andAnalysis of Radiometric Monitors for Reactor Vessel Surveillance", inASTM Standards, Section 12, American Society for Testing and Materials,Philadelphia, PA, 1993.

50. HEDL-TME79-40, "FERRET Data Analysis Core", F.A.Schmittroth, HanfordEngineering Development Laboratory, Richland, WA, September 1979.

51. AFWL-TR-7-41, Vol. I-IV, "A Computer-Automated Iterative Method ofNeutron Flux Spectra Detemined by Foil Activation", W.N.McElroy. S.Bergand T. Crocket, Air Force Weapons Laboratory, Kirkland AFB, NM, July1967.

52. RSIC Data Library Collection DLC-178, "SNLRML Recommended DosimetryCross-Section Compendium", July 1994.

53. EPRI-NP-2188, "Development and Demonstration of an AdvancedMethodology for LWR Dosimetry Applications", R.E. Maerker, et al., 1981

54. WC AP-14370, "Use of the Hyperbolic Tangent Function for FittingTransition Temperature Toughness Data", T.R.Mager, et al, May 1995.

55. WCAP-14040-NP-A, "Methodology Used to develop Cold OverpressureMitigating System Setpoints and RCS Heatup and Cooldown Curves",Revision 2. J.D.Addrachek, Januarv 1996.

- 5 1 -

Table 2-1 Heat Treatment of the Kori Unit 1 Reactor Vessel Beltline RegionMaterials

Material

Intermediate ShellForging,

Heat No. 124W375 VA1

Weld Metal l "

Temperature (°F)

Austenitizing1550

(843 TC)

Tempered1240

(6711C)

Stress Relief1100/1150

(593/621 -C)

Stress Relief1100/ 1150(593/62112)

Time (hours)

8

14

20-1/3

20-1/4

Coolant

Water-quenchpd

Air-cooled

Furnace-cooled

Furnace-cooled

Notes:

(a) Submerged-arc weldment made from sections of forging 124W375 VA1 and the adjoining lowershell course forging 122X371 VA1 using weld wire representative of that used in the orginalfabrication by Babcock and Wilcox Company.

- 5 2 -

Table 2-2 Chemical Composition (wt%) of the Unirradiated Kori Unit 1 ReactorVessel Beitiine Region Forging Materials

Element

C

Mn

P

S

Si

Ni

Mo

Cr

Cu

Al

Co

Pb

W

Ti

Zr

V

Sn

As

B

N

Nb

Inter.Shell Forging124W375 VA1|a|

0.22

0.63

0.010

0.010

0.26

0.73

0.57

0.32

0.07

N/A

0.010

N/A

<0.01

<0.01

N/A

0.01

0.005

N/A

N/A

0.002

0.01

Inter. Shell Forging124W375 VA11"1

.0.21

0.64

0.006

0.009

0.25

0.70

0.59

0.34

0.05

0.011

0.008

<0.001

<0.001

0.001

0.001

0.01

0.005

0.006

<0.003

0.003

0.01

Lower Shell Forging122X371 VA1W

0.20

0.66

0.007

0.010

0.23

0.76

0.60

0.37

0.04

0.011

<0.001

<0.01

0.001

0.001

0.01

0.008

0.007

<0.003

0.004

0.01

Notes :(a) Kori Unit 1 surveillance program Table A-2.(b) Chemical Analysis by Bethlehem Steel Corporation

- 5 3 -

Table 2-3 Weld Metal Data for the KORI Unit 1 Reactor Vessel

MT-SMAUT-362.

FromWIN

WRD-PEDMaterials Technology284-4438December 12, 1985Weld Metal Data for the KORI Unit 1 Reactor Vessel

E. Schoen/R4D 701-209*

cc: T. A. MeyerK. R. BalkeyG. E. Kubancsek/R&O 701-309

FILE: KOR-108/3* kw/Attachment

The following identification of weld material used in the KORI Unit 1surveillance weld and reactor vessel core region welds is provided perKEPCO's request (see Attachment 1).

Weld Location

Nozzle Shell to Inter. Shell

Inter. Shell to Lower Shell

Inter. Shell to Lower Shell

Surveillance Weldment

B&WWeld Qua!. No.

WF259

WF232

WF233

WF233

Weld WireHeat No.

T29744

8T3914

T29744

T29744

Type

Linde

Linde

Linde

Linde

Flux

80

80

80

80

Lot No

8806

8730

8790

B79O

Attachment 2 provides various test certificates which identify the woUland flux used in the various vessel welds, and includes the chemical coin;,and mechanical properties of the welds.

Please transmit this information to Mr. Lee of KEPCO.

S. EY Yanichko

Structural Materials and Reliability Technology

/sh

Attachment

-54-

Table 2-4 Chemical Composition (wt%) of the Unirradiated Kori Unit 1 ReactorVessel Beltline Region Weld Materials

Element

C

Mn

P

S

Si

Ni

Mo

Cr

Cu

Al

Co

Pb

W

Ti

Zr

V

Sn

As

Nb

N

B

Inter. & Lower ShellWelds(a>

0.10

1.52

0.012

0.15

0.37

0.61

0.48

0.08

0.23

0.011

0.01

0.01

0.01

0.010

0.006

0.01

0.005

Inter. & Lower ShellWelds(b)

0.053

1.60

0.015

0.016

0.44

0.55

0.47

0-22

Inter. & Lower ShellWelds(c)

0.055

1.45

0.011

0.007

0.51

0.69

0.30

0.13

Nozzle Shell &Inter.Shell Welds(d)

0.054

1.60

0.019

0.015

0.40

0.66

0.34

0.21

Notes :

(a) Kori Unit 1 surveillance program Table A-2.(Weld Qual. No.: WF233, Wire Heat No. : T29744, Flux Type & Lot No.

(b) Chemical Analysis by Babcock & Wilcox company.(Weld Qual. No.: WF233, Wire Heat No. : T29744, Flux Type & Lot No.

(c) Chemical Analysis by Babcock & Wilcox company.(Weld Qual. No.: WF232, Wire Heat No. : 8T3914, Flux Type & Lot No.

(d) Chemical Analysis by Babcock & Wilcox company.

(Weld Q'ial. No.: WF259, Wire Heat No. : T29744, Flux Tyne & Lot No.

Linde 80 & 8790)

Linde 80 & 8790)

Linde 80 & 8790)

...irde 80 & 8806)

- 5 5 -

Table 2-5 Copper Concentration for 177-FA Owners' Group Beltline Welds

Copper Concentration for 177-FA Owners' GroupBeltline Welds.

Cu concentration, wt X

Wireheat No.

299L44

72105

406L44

82 IT 44

61782

71249

72442

72445

8T1554

72102

T29 744

8T1762

Weld No.

WT 25SA 1526

WT 70

WF 112WT 154WF 193

WT 182-1WF 200

SA 1135SA 1788

SA 1229SA 1769

WT 67

SA 1585

WT 169-1SA 1174SA 1413SA 1494

WF 29

WT 233

WF 8WT 18SA 14 26SA 1430SA 1493

1P0962 SA 1073

(a)weld-metal auali

Category w

11

1

111

11

11

11

1

1

2222

2

2

33333

3

fication test

/m

0.0.

0.

0.0.0.

0.0.

0.0.

0.0.

0,

0.

0000

0

0

00000

0

rep

TR(-)

2946

27

222019

2126

1729

20.19

.27

.25

.11

.19

.19

.14

.16

.22

.20

.11

.18

.16

.22

.21

ort.

Mean

0.0.

0.

0.0.0.

0.0.

0.0.

0.0.

0.

0.

0.0.0.0

0

0

00000

0

3535

35

313131

2424

2525

2626

24

.21

.18

.18

.18

.18

.23

.29

.29

.29

.29

.29

.29

.29

Stddev' n

0.030.03

0.06

0.020.020.02

0.030.03

0.050.05

0.050.05

0.05

0.03

0.070.070.070.07

0.07

0.07

0.070.070.070.070.07

0.07

-56-

2

5

12

oC

CO

a.

—<i

• " •

a.5u

O

• c

0)

c

*-•

i

a

i<A

3

O ino

>, >

o u

00IS

"5

Ia>

6CM

t -

o

c

CO

o

o>oo

o

o

co

^oo

o

oo

o

CO

i n

3

-3-

o>c->

c

c

cc

c

o>o

o

o

oo

oo

oo

CO

52

6

o

o

o

o.

c

o

o

o

ooo

CO

oo

oo

CO

o

72

10

5

o

c

o

o

oo

-a*

o

oo

* j

oo

CO

oo

CO

CO

is

o

o

o

o

c

o

oo

o

oo

r-,

oo

<r

oo

o

CO

<Ju~»

u.3

o

c

o

r~oo

o

oo

-ooo

a.

oo

CO

o

c

c

«

o

o

o

oo

oo

o>

CO

oo

CO

82-1

CO

?.o

o

o

o

o

CO

o

oo

ooo

o

oo

r—i

CO

oo

o

cc

c

c

CO

oo

OS

o

oo

_

co

cooc

CO

0 0

61

70

2

c

c

<r

c

ooo

o

o

oo

r^

oo

. n

CO

oc

CO

780

( / I

o

o

o

o

r- t

o

oo

_

oo

co

=3

229

<

o

o

-

Q

o

>

o

oo

coo

»

oo

CO

CO

769

o

o

o

o

oo

CO

o

>o

oc

_

oo

CO

oo

o>

CO

u.3

72

44

2

o

o

o

oo

-

o

-o

oo

vO

oo

CO

oo

CO

CO

<

c

o

o

CO

oo

o

oo

.ooo

CO

oo

CO

69-1

u.3

CO

=

o

o

CO

oo

o

oo

oo

cc

oo

CTs

CO

174

•e

x

c

o

-

GO

oo

o

oo

•*>

oo

CN

oo

CO

<

o

c

o

oo

<r

o

oo

^oo

oo

av

CO

49

4

<-*

o

a

r^

o

oo

o

oo

oo

••o

cooo

o

CO

u.3

72

10

2

o

°CO

o

CO

oo

o

oo

_

oo

oo

o

CO

s

c

o

c

cs,

o

c

cc

ooo

oc

CO

u.

8T

17

62

o

o

o

<-<

o

cr-

o

oo

ooo

oo

o

CO

oo

=

•(

)

o

o

r-t

o

oo

r~

oo

r " i

Xoo

CO

<

o

=

o

o

(—1

-J

o

oo

r-

oo

•n

CO

oc

CO

or-i

<

c

(I.

o

t v ,

o

o

ooo

r~

o

-

CO

oo

CO

co

493

<

r j

o

o

o

r^

o

;

oo

^oo

^

oo

=

oCO

<

o

o

o

<r

o

o

o

co

>n

co

CO

c

c

CC

r>

o

<vO

-o

- 5 7 -BobcockiWilcor.

Table 2-7 Comparison of Chemical Compositions of Reactor Vessel Beltline RegionWeld Using Linde 80 Flux Between KORI Unit 1 and Other Similar Plants

Element

C

Mn

P

S

Si

Cr

Mo

:: w

CU

KORI UNIT 1 i a )

0.05

1.45

0.021

0.015

0.42

0.08

0.44

0.68

0.29

HSST-63W B & W

0.098 0.09

1.65

0.016

0.011

0.63

0.095

0.427

CX685

0.299

1.49

0.016

0.016

0.51

0.06

0.39

0.59

0,28

CE/W-EP23

0.11

1.40

0.008

0.013

0.50

0.04

0.44

:L: :: '0.59.': ' :i

•I t •• 1 0 , 2 3 ;• :

CE/W-EP19

0.12

1.36

0.007

0.013

0.50

0.04

0.44

0.59

0,40

Notes :(a) Precisely Re-tested values by Babcock & Wilcox Co. (BAW-1799, 1983).

- 5 8 -

Table 2-8 Nuclear Parameters Used in the Evaluation of Neutron Sensors

Monitor Material

Copper

Iron

Nickel

Uranium-238*

Neptunium-237*

Cobalt-Aluminum*

Cobalt-Aluminum

Reaction ofInterest

Cue3 (n, a ) C060

Fe54 (n,p) MnM

Nb (n,p) Cosg

U238(n,f) CS)37

NP237 (n,f) CS137

C059 ( n , 7 ) Coeo

C059 (ri,r) Coeo

TargetWeightFraction

0.6917

0.0580

0.6827

1.0

1.0

0.0015

0.0015

Range

Response

E>4.7 MeV

E>1.0 MeV

E>1.0 MeV

E>0.4 MeV

E>0.008 MeV

0.4eV>E>0.015 MeV

E>0.015 MeV

Product

5.271 yrs

312.5 days

70.78 days

30.17 yrs

30.17 yrs

5.271 yrs

5.271 yrs

FissionYield

Half-Life(%)

6.00

6.27

Denotes that monitor is cadmium shielded

- 5 9 -

Table 2-9 Monthly Thermal Generation During the First 15 Fuel Cycles of theKori Unit 1 Reactor

Thermal GenerationYear

1977

1980

1983

Month123456789101112123456789101112123456789101112

L 1

l y o o

r 234

I 5I 6

78910

: 1112

(MW-hr)

35271.110320.0

122048.60

186258.0361458.4

4974.01058834.21137892.61126909.2272707.5

1226157.8916672.3

1150997.61212899.31190000.8872347.2

1186324.11056948.61237775.2213377.8

0530134.5164040.7

1203977.51180484.1888717.6

1202527.41084000.71255368.0745539.7407518.1

1238917.3119056.1

1214066.01285910.21265321.31124504.4380016.2

0478857.2

Thermal GenerationYear

1978

1981

1984

1987

Month12345678910111212345678910111212345678910

(MW-hr)374447.6444220.4640949.2806362.3892218.6635132.0974191.3775672.8883853.7725890.2

00

872783.9000

538733.31050285.41249151.31102588.21012502.5967539.1970363.1

1077518.31116219.9778693.6

1283988.61247285.51165928.81233770.9232374.3

00

902740.0,_11 l__ 1216954.8

1212

r3

U 4

U 5 "!~7p8_I 9

10

h 12 "

1268237.51145186.11128894.31169141.31116072.01247755.61236402.21156514.91272946.01238428.41241592.01237693.51280070.6

Thermal GenerationYear

1979

1982

1985

1988

Month1

234567891011121234567891011121234567891011121

^ 234567

00 CT

>

101112

(MW-hr)835749.3

1038785.7942989.2787189.9769207.4914777.7

1027014.1115634.0

1166085.1870205.0

00

1222142.21152268.21275233.6617164.7

020800.9

962748.61280923.51179493.61176956.61237616.11246676.2826600.5

1071010.41171247.61242319.81249809.71175831.01273554.0556187.1

01137.5

791188.3975962.4465068.4

00000

551940.51239875.51153793.41230105.01216735.31252748.2

- 6 0 -

Table 2-9 Monthly Thermal Generation During the First 15 Fuel Cycles of theKori Unit 1 Reactor (CONTINUED)

Thermal GenerationYear

1989

1992

1995

Month123456789101112123456789101112123456789101112

(MW-hr)1207411.41107057.2112835.2

000

617347.21096023.6

01025014.71234949.91220941.3

120.70

351728.11220580.91033491.61240359.81720700.31281724.01240499.51281835.91239182.71281863.51042689.9984401.1

1086963.21047700.21082142.51047589.81082659.61033636.41036890.31083347.31047533.01086313.4

Thermal GenerationYear

1990

1993

1996

Month123456789

(MW-hr)1259166.61149265.4641777.9

1235804.61069731.71237230.01268187.41277867.01209313.3

10 ! 590726.21112123456789101112123456789101112

00

1281749.71157518.11275981.21025308.4

00

1024446.71267465.31239656.71202941.01236647.41250781.9478690.1

014339.6

1172343.71280335.81236090.81273625.11279924.51238691.51277163.51235516.81278309.6

Thermal GenerationYear

1991

1994

1997

Month123456789101112123456789101112123456789101112

(MW-hr)544539.8

1135229.91274238.71225672.2980111.4

1238427.71268670.11267558.41186418.91269661.01037462.51266693.21246228.41150739.61271591.41236595.71277199.71184639.1562669.3

0617655.9

1281251.6287971.0

01276343.11153878.11023697.0

- 6 1 -

Table 3-1 Calculated Fast NeutronCapsule Center

Cycle

123456789101112131415

CRSD Data

123456789101112131415

CRSD Data

123456789101112131415

CRSD Data

13.0 °

1.529E+11

1.603E+111.743E+111.719E+11

1.493E+111.255E+111.309E+111.156E+111.438E+111.237E+11

1.157E+111.175E+111.299E+111.336E+111.296E+111.915E+11

6.374E+116.683E+117.267E+117.167E+116.224E+115.232E+115.457E+114.819E+115.995E+115.157E+114.824E+114.899E+115.416E+115.570E+115.403E+117.984E+11

Exposure Rates at the Surveillance

Capsule Location23.0 *

0 (E>1.0 MeV) n/cm'-sec8.809E+109.544E+10

9.837E+101.035E+11

8.472E+108.233E+108.021 E+107.970E+109.607E+107.661 E+10

8.538E+107.868E+108.210E+108.508E+108.101 E+101.127E+11

0 (E>0.1 MeV) n/cm*-sec3.340E+113.619E+113.730E+113.925E+113.213E+113.122E+113.042E+113.022E+113.643E+112.905E+113.238E+112.984E+113.113E+113.226E+113.072E+114.274E+11

33.0 °

8.470E+109.255E+10

8.831 E+101.013E+11

7.977E+107.974E+107.220E+107.443E+109.051 E+107.158E+10

8.669E+107.626E+107.474E+107.968E+107.376E+101.060E+11

3.301 E+113.607E+113.441 E+113.948E+113.109E+113.107E+112.814E+112.901 E+113.527E+112.789E+113.378E+11

2.972E+112.913E+113.105E+112.874E+114.131 E+11

Iron Displacement Rate, dpa/sec2.835E-102.972E-103.232E-103.187E-102.768E-102.327E-102.427E-102.143E-10

2.666E-1C2.293E-102.145E-102.178E-102408E-10

2.477E-102.403E-10

! 3.550E-10

1.557E-10

1.687E-101.739E-101.830E-101.498E-10

1.456E-101.418E-10

1.409E-101.699E-1 •:•1.354E-V.1.510E-10 I1.391E-101.452E-10

1.504E-10

1.432E-10 !1.993E-10 !

1.517E-10

1.658E-101.582E-101.814E-101.429E-101.428E-101.293E-10

1.333E-101.624E-1O1.282E-101.553E-101.366E-101.339E-10

1.427E-10

1.321E-101.898E-10

- 6 2 -

Table 3-2 Calulated Fast Neutron Exposure Rates at the Pressure Vessel 0*Clad/Base Metal Interface

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CRSD Data

0 (E>1.0 MeV)n/cm2-sec

4.814E+10

4.933E+10

5.439E+10

5.274E+10

4.785E+10

3.938E+10

4.227E+10

3.429E+10

4.503E+10

4.137E+10

3.531 E+10

3.553E+10

4.296E+10

4.336E+10

4.307E+10

5.932E+10

' "0 (E>0.1 MeV)

n/cm2-sec

1.304E+11

1.336E+11

1.473E+11

1.429E+11

1.296E+11

1.067E+11

1.145E+11

9.288E+10

1.220E+11

1.121E+11

9.564E+10

9.624E+10

1.164E+11

1.174E+11

1.167E+11

1.607E+11

Iron AtomDisplacement Rate,

dpa/sec

7.837E-11

8.031E-11

8.855E-11

S.586E-11

7.790E-11

6.411E-11

6.882E-11

5.582E-11

7.331 E-11

6.735E-11

5.748E-11

5.784E-11

6.994E-11

7.059E-11

7.012E-11

9.657E-11

- 6 3 -

Table 3-3 Relative Radial Distribution Within the Pressure Vessel Wall (0°)

Radius (cm)

167.961"

168.19

168.80

169.67

170.85

172.17""

173.45

174.90

176.3810'

177.5

178.95

180.5810'

181.55

182.52

183.98

184.791"

0 (E>1.0 MeV)

1.00

0.985

0.944

0.869

0.762

0.647

0.547

0.450

0.366

0.311

0.254

0.198

0.169

0.145

0.111

0.101

0 (E >0.1 MeV)

1.00

1.005

1.006

0.987

0.943

0.882

0.818

0.744

0.669

0.612

0.541

0.463

0.417

0.372

0.299

0.276

d pa/sec

1.00

0.989

0.955

0.895

0.811

0.719

0.637

0.553

0.477

0.424

0.365

0.302

0.268

0.237

0.189

0.174

NOTES:(a) Base Metal Inner Radius(b) Vessel 1/4 thickness(c) Vessel 1/2 thickness(d) Vessel 3/4 thickness(e) Base Metal Outer Radius

- 6 4 -

Table 3-4 Measured Sensor Activities and Reaction Rates Surveillance CapsuleV and T Saturated Activities and Derived Fast Neutron Flux

Monitor

CU-63(n,a) Co-60

Averages

Fe-54 (n,p) Mn-54

Averages

Ni-58 (n,p) Co-58

Averages

U-238 (n,f) Cs-137 (Cd)

Np-237 (n,f) Cs-137 (Cd)

Co-59 (n , r ) Co-60 (Cd)

Averages

Capsule V

Reaction Rate(rps/nucleus)

6.871 E-17

8.101 E-15

7.936E-15

3.529E-14

3.990E-13

5.022E-12

LocationFactor

1.13

0.95

1.15

0

0

0.98

AdjustedReaction Rate(rps/nucleus)

7.764E-17

7.696E-15

9.126E-15

3.529E-14

3.990E-13

4.922E-12

Capsule T

ReactionRate

(rps/nucleus)

5.168E-17

5.806E-15

6.320E-15

2.236E-14

2.057E-13

3.248E-12

LocationFactor

1.11

0.95

1.13

0

0

0.96

AdjustedReaction Rate(rps/nucleus)

5.736E-17

5.516E-15

7.142E-15

2.236E-14

2.057E-13

3.118E-12

- 6 5 -

Table 3-5 Measured Sensor Activities and Reaction Rates Surveillance Capsule SSaturated Activities and Derived Fast Neutron Flux

Monitor andAxial Location

CU-63(n, a) Co-60

86-4101 TOP

86-4102 MID

Averages

Fe-54 (n,p) Mn-54

86-4201 TOP

86-4202 TOP-MID

86-4203 MID

86-4204 MID-BOT

86-4205 BOTAverages

Ni-58 (n,p) Co-58

86-4301 MID

Averages

U-238 (n,f) Cs-137 (Cd)

86-4601 MID

Np-237 (n,f) Cs-137 (Cd)86-4701 MID

Co-59 (n, r ) Co-60

86-4401 TOP

86-4402 BOT

Averages

Co-59 (n,r) Co-60 (Cd)86-4501 TOP

Measured Activity(dis/sec-gm)

1.119E+05

1.133E+05

1.126E+05

1.524E+06

1.467E+06

1.508E+06

1.520E+06

1.552E+061.514E+06

4.901 E+06

4.901 E+06

3.444E+05

1.726E+06

2.579E+07

2.688E+07

2.634E+07

1.062E+07

Averages 1.062E+07

Saturated Activity(dis/sec-gm)

2.825E+05

2.861 E+05

2.843E+05

3.390E+06

3.263E+06

3.355E+06

3.381 E+06

3.452E+063.368E+06

4.991 E+07

4.991 E+07

3.290E+06

1.649E+07

6.512E+07

6.787E+07

6.650E+07

2.682E+07

2.682E+07

Reaction Rate(rps/nucleus)

4.814E-17

5.116E-15

7.982E-15

2.168E-14

1.035E-13

4.208E-12

1.697E-12

1.697E-12

- 6 6 -

Table 3-6 Measured Sensor Activities and Reaction Rates Surveillance Capsule RSaturated Activities and Derived Fast Neutron Flux

Monitor andAxial Location

CU-63(n, a) Co-60

88-4101 TOP

88-4102 MID

Averages

Fe-54 (n,p) Mn-54

88-4201 TOP

88-4202 TOP-MID

88-4203 MID

88-4204 MID-BOT

88-4205 BOT

Averages

Ni-58 (n,p) Co-58

88-4301 MID

Averages

Co-59 (n, y) Co-60

88-4401 TOP

88-4402 BOT

Averages

Measured Activity(dis/sec-gm)

2.317E+05

1.987E+05

2.152E+05

3.130E+06

2.618E+06

3.079E+06

3.035E+06

3.112E+06

2.995E+06

3.387E+07

3.387E+07

4.842E+07

5.748E+07

5.295E+07

Saturated Activity(dis/sec-gm)

4.779E+05

4.098E+05

Reaction Rate(rps/nucleus)

4.439E+05 ' 7.652E-17

5.209E+06

4.357E+06

5.124E+06

5.051 E+06

5.179E+06

4.984E+06

7.592E+07

7.592E+07

9.987E+07

1.186E+08

1.092E+08

7.571 E-15

1.247E-14

6.983E-12

- 6 7 -

Table 3-7 Summary ofV, T, S, and

Reaction

Neutron Dosimetry ResultsR

Flux

Calculation of Measured Fluence for Capsule V

Meas Fluence < 0.414 eV

Meas Fluence > 0.1 MeV

Meas Fluence > 1.0 MeV

dpa

1.241E+11

5.503E+11

1.238E+11

2.396E-10

Calculation of Measured Fluence for Capsule T

Meas Fluence < 0.414 eV

Meas Fluence > 0.1 MeV

Meas Fluence > 1.0 MeV

dpa

6.992E+10

3.019E+11

7.795E+10

1.410E-10

Calculation of Measured Fluence for Capsule S

Meas Fluence < 0.414 eV

Meas Fluence > 0.1 MeV

Meas Fluence > 1.0 MeV

dpa

5.500E+10

3.444E+11

8.839E+10

1.577E-10

Calculation of Measured Fluence for Capsule R

Meas Fluence < 0.414 eV

Meas Fluence > 0.1 MeV

Meas Fluence > 1.0 MeV

dpa

1.382E+11

5.735E+11

1.346E+11

2.530E-10

Time

3.555E+07

3.555E+07

3.555E+07

3.555E+07

1.353E+08

1.353E+08

1.353E+08

1.353E+08

1.601E+08

1.601E+08

1.601 E+08

1.601 E+08

2.171 E+08

2.171 E+08

2.171 E+08

2.171 E+08

Surveillance Capsules

Flunce

4.412E+18

1.956E+19

4.401 E+18

8.518E-03

9.460E+18

4.085E+19

1.055E+19

1.908E-02

8.804E+18

5.513E+19

1.415E+19

2.524E-02

3.000E+19

1.245E+20

2.922E+19

5.492E-02

Uncertainty

±80%

±16%

±8%

±11%

±80%

±24%

±13%

±17%

±54%

±23%

±14%

±18%

±50%

±25%

±16%

±19%

- 6 8 -

Table 3-8 Comparison of Measured and FERRET Calculated Reaction Rates atthe Surveillance Capsule Center Surveillance Capsules V, T, S and R

Reaction

Surveillance Capsule V

FE-54 (n,p) Mn-54

Ni-58 (n,p) Co-58

U-238 (n,f) Cs-137

Np-237 (n,f) Cs-137

Surveillance Capsule T

Cu-63 (n, a) Co-60

Fe-54 (n,p) Mn-54

Ni-58 (n,p) Co-58

Surveillance Capsule S

Fe-54 (n,p) Mn-54

Ni-58 (n,p) Co-58

Co-59(n, 7 )Co-60

Co-59 (n,r) Co-60 (Cd)

Surveillance Capsule R

Fe-54 (n,p) Mn-54

Co-59(n, 7)Co-60

Measured

7.70E-15

9.13E-15

3.53E-14

3.99E-13

5.74E-17

5.52E-15

7.14E-15

5.12E-15

7.98E-15

4.21 E-12

1.70E-12

7.57E-15

6.98E-12

AdjustedCalculation

7.36E-15

9.51E-15

3.79E-14

3.84E-13

5.64E-17

5.49E-15

7.30E-15

5.25E-15

7.77E-15

2.96E-12

2.96E-12

7.59E-15

6.98E-12

C/M

0.96

1.04

1.07

0.96

0.98

1.00

1.02

1.03

0.97

0.70

1.74

1.00

1.00

- 6 9 -

Table 3-9 Adjusted Neutron Energy Spectrum at the Center of SurveillanceCapsule V

Group

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Energy(MeV)

1.733E+01

1.492E+01

1.350E+01

1.162E+01

1.000E+01

8.607E+01

7.408E+01

6.065E+01

4.966E+01

3.679E+01

2.865E+01

2.231 E+01

1.738E+01

1.353E+01

1.108E+01

8.208E-01

6.393E-01

4.979E-01

3.877E-01

3.020E-01

1.832E-01

1.111E-01

6.738E-02

4.087E-02

2.554E-02

1.989E-02

1.503E-02

28 9.119E-03

Adjusted Flux(n/cm'-sec)

7.209E+06

1.560E+07

5.911E+07

1.653E+08

3.811E+08

6.836E+08

1.679E+09

2.685E+09

5.920E+09

7.191E+09

1.380E+10

1.849E+10

2.555E+10

2.947E+10

5.180E+10

5.996E+10

6.546E+11

4.461 E+10

6.761E+10

7.213E+10

7.245E+10

5.306E+10

4.182E+10

2.360E+10

2.664E+10

1.379E+10

2.310E+10

2.645E+10

Group

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Energy(MeV)

5.531 E-03

3.355E-03

2.839E-03

2.404E-03

2.035E-03

1.234E-03

7.485E-04

4.54E-04

2.75E-04

1.670E-04

1.013E-04

6.144E-05

3.727E-05

2.260E-05

1.371E-05

8.31 E-06

5.043E-06

3.059E-06

1.855E-06

1.125E-06

6.826E-07

4.140E-07

2.511E-07

1.523E-07

9.237E-08

i

Adjusted Flux(n/cm2-sec)

3.074E+10

9.715E+09

9.379E+09

9.197E+09

2.742E+10

2.738E+10

2.548E+10

2.286E+10

2.520E+10

2.665E+10

2.635E+10

2.608E+10

2.534E+10

2.443E+10

2.354E+10

2.255E+10

2.159E+10

2.115E+10

2.081 E+10

1.529E+10

1.557E+10

1.570E+10

1.383E+10

1.211E+10

5.251E+10

- 7 0 -

Table 3-10 Adjusted Neutron Energy Spectrum at the Center of SurveillanceCapsule T

Group

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Energy(MeV)

Adjusted Flux(n/cm2-sec)

1.733E+01 7.347E+06

1.492E+01

1.350E+01

1.162E+01

1.000E+01

8.607E+01

7.408E+01

6.065E+01

4.966E+01

3.679E+01

2.865E+01

2.231 E+01

1.738E+Q1

1.353E+01

1.108E+01

8.208E-01

6.393E-01

4.979E-01

3.877E-01

3.020E-01

1.832E-01

1.111E-01

6.738E-02

4.087E-02

2.554E-02

1.989E-02

1.503E-02

1.589E+07

5.896E+07

1.613E+08

3.639E+08

6.262E+08

1.487E+09

2.210E+09

4.404E+09

4.928E+09

9.182E+09

1.188E+10

1.572E+10

1.708E+10

2.876E+10

3.210E+10

3.427E+10

2.341E+10

3.485E+10

3.766E+10

3.693E+10

2.748E+10

2.172E+10

1.234E+10

1.385E+10

7.357E+09

1.247E+10

9.119E-03 | 1.423E+10

Group

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Energy(MeV)

5.531 E-03

3.355E-03

2.839E-03

2.404E-03

2.035E-03

1.234E-03

7.485E-04

4.540E-04

2.754E-04

1.670E-04

1.013E-04

6.144E-05

3.727E-05

2.260E-05

1.371E-05

8.31 E-06

5.043E-06

3.059E-06

1.855E-06

1.125E-06

6.826E-07

4.140E-07

2.511E-07

1.523E-07

9.237E-08

Adjusted Flux(n/cm2-sec)

1.666E+10

5.266E+09

5.078E+09

4.976E+09

1.483E+10

1.474E+10

1.369E+10

1.231 E+10

1.342E+10

1.431E+10

1.405E+10

1.376E+10

1.345E+10

1.304E+10

1.256E+10

1.203E+10

1.157E+10

1.136E+10

1.121E+10

8.377E+09

8.435E+09

1.425E+10

1.331E+10

1.245E+10

2.991E+10

- 7 1 -

Table 3-11 Adjusted Neutron Energy Spectrum at the Center of SurveillanceCapsule S

Group

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Energy(MeV)

1.733E+01

1.492E+01

1.350E+01

1.162E+01

1.000E+01

8.607E+01

7.408E+01

6.065E+01

4.966E+01

3.679E+01

. 2.865E+01

2.231 E+01

1.738E+01

1.353E+01

1.108E+01

8.208E-01

6.393E-01

4.979E-01

3.877E-01

3.020E-01

1.832E-01

1.111E-01

6.738E-02

4.087E-02

2.554E-02

1.989E-02

1.503E-02

28 I 9.119E-03

Adjusted Flux(n/cmJ-sec)

5.493E+06

1.188E+07

4.443E+07

1.237E+08

2.859E+08

5.117E+08

1.272E+09

2.018E+09

4.344E+09

5.182E+09

1.017E+10

1.357E+10

1.854E+10

2.050E+10

3.459E+10

3.851 E+10

4.058E+10

2.711 E+10

3.943E+11

4.155E+10

3.989E+11

2.914E+10

2.261E+10

1.261E+10

1.407E+10

7.362E+10

1.218E+10

1.400E+10

Group

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Energy(MeV)

5.531 E-03

3.355E-03

2.839E-03

2.404E-03

2.035E-03

1.234E-03

7.485E-04

4.54E-04

2.75E-04

1.670E-04

1.013E-04

6.144E-05

3.727E-05

2.260E-05

1.371 E-05

8.31 E-06

5.043E-06

3.059E-06

1.855E-06

1.125E-06

6.826E-07

4.140E-07

2.511E-07

1.523E-07

9.237E-08

Adjusted Flux(n/cm2-sec)

1.617E+10

5.100E+09

4.906E+09

4.785E+09

1.415E+10

1.394E+10

1.279E+10

1.133E+10

1.230E+10

1.242E+10

1.281E+10

1.267E+10

1.245E+10

1.215E+10

1.179E+10

1.136E+10

1.093E+10

1.075E+10

1.059E+10

7.797E+09

7.557E+09

1.206E+10

1.086E+10

9.897E+09

2.218E+10

- 7 2 -

Table 3-12 Adjusted Neutron Energy Spectrum at the Center of SurveillanceCapsule R

Group

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Energy(MeV)

1.733E+01

1.492E+01

1.350E+01

1.162E+01

1.000E+01

8.607E+01

7.408E+01

6.065E+01

4.966E+01

3.679E+01

2.865E+01

2.231 E+01

1.738E+0.1

1.353E+01

1.108E+01

8.208E-01

6.393E-01

4.979E-01

3.877E-01

3.020E-01

1.832E-01

1.111E-01

6.738E-02

4.087E-02

2.554E-02

1.989E-02

1.503E-02

9.119E-03

Adjusted Flux(n/cm2-sec)

7.064E+06

1.530E+07

5.817E+07

1.637E+08

3.809E+08

6.916E+08

1.720E+09

2.785E+09

6.225E+09

7.690E+09

1.508E+10

2.044E+10

2.826E+10

3.204E+10

5.558E+10

6.353E+10

6.849E+10

4.612E+10

6.898E+10

7.274E+10

7.139E+10

5.266E+10

4.135E+10

2.330E+10

2.631 E+10

1.365E+10

2.292E+10

2.631 E+10

Group

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Energy(MeV)

5.531 E-03

3.355E-03

2.839E-03

2.404E-03

2.035E-03

1.234E-03

7.485E-04

4.54E-04

2.75E-04

1.670E-04

1.013E-04

6.144E-05

3.727E-05

2.260E-05

1.371E-05

8.31E-06

5.043E-06

3.059E-06

1.855E-06

1.125E-06

6.826E-07

4.140E-07

2.511E-07

1.523E-07

9.237E-08

Adjusted Flux(n/cm2-sec)

3.068E+10

9.734E+10

9.433E+10

9.289E+10

2.782E+10

2.793E+10

2.613E+10

2.353E+10

2.600E+10

2.816E+10

2.724E+10

2.676E+10

2.598E+10

2.502E+10

2.406E+10

2.303E+10

2.204E+10

2.161E+10

2.126E+10

1.563E+10

1.635E+10

2.755E+10

2.600E+10

2.443E+10

6.024E+10

i

- 7 3 -

Table 3-13 Comparison of Calculated and Measured Neutron Exposure Levels forKori Unit 1 Surveillance Capsules V, T, S and R

Calculated Measured M/C

Comparison of Calculated and Measured INTEGRATED Neutron EXPOSURE for Capsule V

Fluence (E> 1.0 MeV), n/cm*

Fluence (E> 0.1 MeV), n/cm*

dpa

5.432E+18

2.265E+19

1.007E-02

4.401 E+18

1.956E+19

8.518E-02

0.810

0.864

0.846

Comparison of Calculated and Measured INTEGRATED Neutron EXPOSURE for Capsule T

Fluence (E> 1.0 MeV), n/cm*

Fluence (E> 0.1 MeV), n/cm*

dpa

1.261E+19

4.782E+19

2.230E-02

1.055E+19

4.085E+19

1.908E-02

0.837

0.854

0.856

Comparison of Calculated and Measured INTEGRATED Neutron EXPOSURE for Capsule S

Fluence (E> 1.0 MeV), n/cm*

Fluence (E> 0.1 MeV), n/cm*

dpa

1.393E+19

5.428E+19

2.494E-02

1.415E+19

5.513E+19

2.524E-02

1.016

1.016

1.012

Comparison of Calculated and Measured INTEGRATED Neutron EXPOSURE for Capsule R

Fluence (E> 1.0 MeV), n/cm*

Fluence (E> 0.1 Mev), n/cm*

dpa

3.180E+19

1.326E+20

5.898E-02

2.922E+19

1.245E+20

5.492E-02

0.919

0.939

0.931

- 7 4 -

Table 3-14 Neutron Exposure Projection at Vessel GVesse

* Location on the PressureI I.D based on the Cycle 13 thru 15

Best Estimate Exposure at the Pressure

Fulecycle

12345678910111213141516171819202122232425*

2627282930313233*#3435363738394041

42

EFPY

1.131.882.693.414.295.085.866.887.558.499.4010.4711.4712.4813.5014.5015.5116.5217.5318.5319.5420.5421.5522.5623.5724.0024.5725.5826.5927.6028.6029.6130.6231.6332.0032.6333.6434.6535.6636.6637.6738.6839.6940.0040.70

Cumulativeirradiation time

3.55500E+075.93700E+078.49300E+071.07490E+081.35300E+081.60080E+081.84880E+082.17080E+082.38110E+082.67770E+082.96380E+083.30180E+083.61840E+083.93490E+084.2551 OE+084.57280E+084.89050E+085.20820E+085.52590E+085.84360E+086.16130E+086.47900E+086.79670E+087.11440E+087.4321 OE+08

7.74980E+088.06750E+088.38520E+088.70290E+089.02060E+089.33830E+089.65600E+089.97370E+08

1.02914E+091.06091E+091.09268E+091.12445E+091.15622E+091.18799E+091.21976E+091.25153E+09

1.28330E+09

Cumulative timeinteg. response

1.71150E+182.88662E+184.27675E+185.46648E+186.79707E+187.77302E+188.82131E+189.92546E+181.08725E+191.20996E+191.31099E+191.43108E+191.56710E+191.70432E+191.84233E+191.97925E+192.11627E+192.25329E+192.39031 E+192.52733E+192.66435E+192.80137E+192.93839E+193.07541 E+193.21243E+19

3.34945E+193.48647E+193.62349E+193.76051 E+193.89753E+194.03455E+194.17157E+194.30859E+19

4.44561E+194.58263E+194.71965E+194.85667E+194.99369E+195.13071E+195.26773E+195.40475E+19

5.54177E+19

Vessel Inner Radius

Best estimated fluence

I.D1.E318E+182.5835E+183.8277E+184.8925E+186.0833E+186.9568E+187.8951 E+188.8833E+189.7309E+181.0829E+191.1733E+191.2808E+191.4026E+191.5254E+191.6488E+191.7714E+191.8941 E+192.0167E+192.1393E+192.2620E+192.3846E+192.5072E+192.6299E+192.7525E+192.8751 E+192.8804E+192.9978E+193.1204E+193.2430E+193.3657E+193.4883E+193.6109E+193.7336E+193.8562E+193.8607E+193.9788E+194.1014E+194.2241E+194.3467E+194.4694E+194.5920E+194.7146E+194.8373E+194.8741E+194.9599E+19

1/4T1.0370E+181.7490E+182.5913E+183.3122E+184.1184E+184.7098E+185.3450E+186.0140E+186.5878E+187.3312E+187.9432E+188.671 OE+189.4956E+181.0327E+191.1162E+191.1992E+191.2823E+191.3653E+191.4483E+191.5314E+191.6144E+191.6974E+191.7804E+191.8634E+191.9464E+191.9500E+192.0295E+192.1125E+192.1955E+192.2786E+192.3616E+192.4446E+192.5276E+192.6106E+192.6136E+192.6936E+192.7766E+192.8597E+192.9427E+193.0258E+193.1088E+193.1918E+193.2749E+193.2998E+193.3579E+19

- 7 5 -

Table 3-15 Neutron Exposure Projection at Vessel 0* Location on the PressureVessel Clad/Base Metal Interface

Best Estimate Exposure at the Pressure Vessel Inner Radius

Total Irradiation Time

EFPY

13.5

20.0

24.0

32.0

40.0

Bias:

Vessel Inner RadiusBest Estimate Neurton Fluence

E > 1.0 MeV

1.649E+19

2.390E+19

2.880E+19

3.861 E+19

4.874E+19

0.895

E > 0.1 MeV

4.581E+19

6.640E+19

8.001 E+19

1.073E+20

1.354E+20

0.918

DPA

2.732E-2

3.960E-2

4.771 E-2

6.397E-2

8.075E-2

0.911

- 7 6 -

Table 3-16 Neutron Exposure Values for the Kori Unit 1 Reactor vessel

Location 20 EFPY 24 EFPY 32 EFPY

Fluence Based on E > 1.0 MeV Slope

Surface

1/4T

3/4T

2.390E+19

1.546E+19

4.732E+18

2.880E+19

1.863E+19

5.702E+18

3.861E+19

2.498E+19

7.645E+18

Fluence Based on dpa Slope

Surface

1/4T

3/4T

2.390E+19

1.718E+19

7.218E+18

2.880E+19

2.071 E+19

8.69SE+18

3.861 E+19

2.776E+19

1.166E+19

- 7 7 -

Table 3-17

Fule cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

' Neutron Exposure Projection t

Best Estimate Exposure at the I

EFPY

2.02

3.37

5.19

7.11

8.95

10.72

12.18

14.07

15.56

17.23

19.02

20.93

22.84

24.82

26.73

28.66

30.60

32.52

Cumulativeirradiation time

3.55500E+07

5.93700E+07

8.49300E+07

1.07490E+08

1.35300E+08

1.60080E+08

1.84880E+08

2.17080E+08

2.38110E+08

2.67770E+08

2.96380E+08

3.30180E+08

3.61840E+08

3.93490E+08

4.2551 OE+08

4.57280E+08

4.89050E+08

5.20820E+08

at Capsule 23* Location per cycle

'ressure Vessel Inner Radius

Cumulative timeintegrated response

3.13175E+18

5.40519E+18

7.91956E+18

1.02550E+19

1.26110E+19

1.46512E+19

1.66405E+19

1.92069E+19

2.12272E+19

2.34995E+19

2.59421 E+19

2.85405E+19

3.11398E+19

3.38324E+19

3.64262E+19

3.90545E+19

4.16829E+19

4.43112E+19

Best estimatedfluence

2.80292E+18

4.83765E+18

7.08801 E+18

0.91782E+19

1.12868E+19

1.31128E+19

1.48932E+19

1.71902E+19

1.89983E+19

2.10321 E+19

2.32182E+19

2.55437E+19

2.78701 E+19

3.02800E+19

3.26014E+19

3.49538E+19

3.73062E+19

3.96585E+19

- 7 8 -

Table 3-18 Neutron

Fule cycle

1

2

3

4

5

6

7

8

g

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Exposure Projection (

Best Estimate Exposure at the

EFPY

1.95

3.26

4.84

6.73

8.40

10.15

11.52

13.29

14.68

16.25

18.07

19.96

21.70

23.56

25.29

27.07

28.84

30.63

32.40

34.18

35.96

37.73

39.51

Cumulativeirradiation time

3.55500E+07

5.93700E+07

8.49300E+07

1.07490E+08

1.35300E+08

1.60080E+08

1.84880E+08

2.17080E+08

2.38110E+08

2.67770E+08

2.96380E+08

3.30180E+08

3.61840E+08

3.93490E+08

4.2551 OE+08

4.57280E+08

4.89050E+08

5.20820E+08

5.52590E+08

5.84360E+08

6.16130E+08

6.47900E+08

6.79670E+08

Dapsule 33* Location per cycle

'ressure Vessel Inner Radius

Cumulative timeintegrated response

3.01110E+18

5.21568E+18

7.47290E+18

9.75763E+18

1.19760E+19

1.39519E+19

1.57423E+19

1.81390E+19

2.00425E+19

2.21657E+19

2.46458E+19

2.72235E+19

2.95897E+19

3.21116E+19

3.44733E+19

3.68900E+19

3.93062E+19

4.17256E+19

4.41390E+19

4.65554E+19

4.89718E+19

5.13883E+19

5.38047E+19

Best estimatedtluence

2.69493E+18

4.66803E+18

6.68825E+18

8.73308E+18

1.07185E+19

1.24870E+19

1.40894E+19

1.62344E+19

1.79380E+19

1.98383E+19

2.20580E+19

2.43650E+19

2.64828E+19

2.87399E+19

3.08536E+19

3.30166E+19

3.51790E+19

3.73444E+19

3.95044E+19

4.16671E+19

4.38298E+19

4.59925E+19

4.81552E+19

- 7 9 -

Table 3-19 Updated Lead Factors for Kori Unit 1 Surveillance Capsules

Capsule

V ( 13* )

T ( 2 3 - )

S ( 33' )

R* ( 13* )

P ( 23" )

N ( 33- )

Lead Factor

2.87

1.73

2.03

3.29

1.97

1.83

Withdrawn

EOC 1

EOC 5

EOC 6

EOC 8

* Basis for this analysis

- 8 0 -

Table 3-20 Charpy V-notch Data for the Kori Unit 1 Intermediate Shell Forging124W375 VA1 (Tangential Direction)

Capsule

Unirrad.

V

T

Fluence(xiO'fycm2)

0.0

0.4401

1.0547

SpecimenI.D1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

KL-9

KL-10

KL-11

KL-12

KL-7

KL-8

KL-5

KL-6

KL-1

KL-2

KL-3

KL-4

KL-44

KL-45

KL-42

KL-43

KL-46

KL-47

KL-41

KL-48

KL-40

KL-37

KL-39

KL-38

Temperature( *F)

-100-100-100-25

-25

-25

10

10

10

60

60

60

100

100

100

210

210

210

-40

-40

-20

-20

0

0

40

40

76

100

210

210

-80

-80

-40

-40

-20

-20

0

0

40

75

165

210

Energy(ft-lbl

5

6

5

21

46

86

125

107.5

22

170

169

175

166

169

164

178

167

181

11.5

14.0

81.0

74.0

46.0

88.5

106.5

101.0

151.5

153.0

160.0

158.0

6.0

4.5

54.5

15.5

42.5

91.0

103.0

Lateral Exp.(mils)

1

1

1

13

31

59

82

72

17

85

85

86

87

88

85.5

93

87

84

10

12

63

61

37

67

54

77

88

97

98

95

6

2

42

13

35

73

79

84.0 65

124.0 80

159.0 93

155.0 96

142.5 94

Shear(%)

3

3

3

14

20

35

65

35

30

100

100

100

100

100

100

100

100

100

0

0

30

30

10

50

100

100

100

100

100

100

0

0

2.5

0

20

50

70

30

80

100

100

100

- 8 1 -

Table 3-20 Charpy V-notch Data for the Kori Unit 1 Intermediate Shell Forging124W375 VA1 (Tangential Direction) (CONTINUED)

Capsule

S

R

Flue nee(xio'fycm*)

1.4149

2.9219

SpecimenI.D

KL-28

KL-26

KL-31

KL-27

KL-25

KL-30

KL-29

KL-35

KL-32

KL-34

KL-33

KL-36

KL-15

KL-18

KL-16

KL-14

KL-20

KL-13

KL-23

KL-19

KL-24

KL-22

KL-17

KL-21

Temperature( *F)

-76

-40

-20

0

0

15

39

75

100

167

212

550

-40

-27.4

1.4

17.6

37.4

64.4

86

123.8

167

260.6

325.4

550.4

Energy(ft-lbl

10.0

9.0

52.0

105.0

7.0

82.5

107.5

107.0

163.0

164.0

169.5

158.2

8.0

7.0

60.0

96.0

90.0

114.0

135.0

149.0

148.0

149.0

155.5

164.0

Lateral Exp.(mils)

13

14

39

67

13

59

76

67

44

24

46

5.5

4.3

41.3

59.1

60.6

68.1

52.8

56.7

41.7

81.1

64.6

Shear(%)

10

5

10

50

40

40

30

70

100

100

100

100

0

0

40

30

30

60

55

85

90

100

100

63.1 100

- 8 2 -

Table 3-21 Charpy V-notch Data for the Kori Unit 1 Intermediate Shell Forging124W375 VA1 (Axial Direction)

Capsule

Unirrad.

V

T

Fluence ; Specimen(xio'fycm*) . |.D

0.0

0.4401

1.0547

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

KT-9

KT-10

KT-11

KT-12

KT-7

KT-8

KT-5

KT-6

KT-1

KT-2

KT-3

KT-4

KT-43

KT-44

KT-45

KT-46

KT-42

KT-48

KT-47

KT-41

KT-37

KT-40

KT-38

KT-39

Temperature( *F)

-100

-100

-100

-40

-40

-40

0

0

0

40

40

40

90

90

90

210

210

210

-40

-40

-20

-20

0

0

40

40

76

100

210

210

-40

-40

-20

-20

0

0

20

Energy(ft-lbl

5.5

10

7.5

70

87

57.5

60

101

110

120

174

101

168

168

171.5

155

162

166

21.0

13.0

58.5

72.0

33.0

77.5

48.0

103.0

115.0

115.0

136.5

147.0

6.0

26.0

41.0

14.5

90.5

72.5

84.5

40 i 89.0

75

165

210

250

124.5

143.5

149.0

145.0

Lateral Exp.(mils)

0

2.5

0.5

503

62

38

43

71

72

76

85

67

87

89

88

81

81

83

19

11

49

56

29

68

42

81

82

92

98

98

6

23

34

14

74

59

71

71

83

96

95

93

Shear(%)

0

0

0

20

29

20

20

51

53

59

100

53

100

100

100

100

100

100

0

0

20

30

10

50

10

100

100

100

100

100

0

5

10

0

50

30

50

50

80

100

100

100

- 8 3 -

Table 3-21 Charpy V-notch Data for the Kori Unit 1 Intermediate Shell Forging124W375 VA1 (Axial Direction) (CONTINUED)

Capsule

S

R

Flue nee(x10'9n/cm*)

1.4149

2.9219

SpecimenI.D

KT-30

KT-31

KT-27

KT-28

KT-26

KT-29

KT-35

KT-25

KT-34

KT-33

KT-32

KT-36

KT-19

KT-13

KT-14

KT-17

KT-15

KT-22

KT-23

KT-24

KT-t6

KT-21

KT-18

KT-20

Temperature( *F)

-40

-20

-7

25

25

39

75

126

167

212

261

550

-41.8

1.4

14

17.6

36.6

64.4

123.8

167

212

260.6

325.4

550.4

Energy(ft-iby

3.0

2S.0

22.5

82.0

83.5

37.0

112.2

136.3

151.5

147.2

151.0

206.0

5.0

32.0

24.0

16.0

56.0

78.0

113.0

128.0

143.0

145.0

139.5

133.5

Lateral Exp.(mils)

4

22

21

61

70

32

70

68

5

66

68

-

6.3

25.2

16.1

15.7

41.3

57.9

46.5

43.7

34.3

85.4

83.5

83.5

Shear(%)

0

20

30

50

40

60

70

80

95

100

100

100

0

0

10

5

20

30

60

85

100

90

100

100

- 8 4 -

Table 3-22 Charpy V-notch Data for the Kori Unit 1 Reactor Pressure Vessel CoreRegion Weld

Capsule

Unirrad.

V

Fluence(xiO'Vcm2)

0.0

0.4401

T 1.0547

SpecimenI.D1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

KW-1

KW-2

KW-3

KW-4

KW-5

KW-6

KW-7

KW-6

KW-9

KW-10

KW-11

KW-12

KW-37

KW-45

KW-46

KW-38

KW-39

KW-40

KW-41

KW-42

KW-43

KW-44

KW-47

KW-48

Temperature( °P)

-25

-25

-25

10

10

10

40

40

40

100

100

100

210

210

210

76

100

165

165

210

210

250

250

325

325

400

400

75

165

165

210

210

250

325

325

400

400

450

450

Energy(ft-lbl

20

24

19

36

39

41

44

48

50

60

57

58

67

66

66

12.5

16.5

28.5

24.0

32.0

35.0

39.5

42.0

44.0

41.0

47.0

48.5

13.5

24.0

27.5

32.0

35.0

42.0

45.0

41.5

41.5

42.5

40.0

40.0

Lateral Exp.(mils)

17

18

16

33

33

38

37

42

44

65

55

57

71

73

69.5

13

19

30

26

34

38

42

40

44

46

45

48

10

27

28

32

36

42

48

41

46

45

45

45

Shear(%)

10

12

10

32

34

45

48

60

60

80

65

75

100

98

100

0

10

20

25

45

50

60

60

60

80

100

100

5

25

30

50

60

100

100

100

100

100

100

100

- 8 5 -

Table 3-22 Charpy V-notch Data for the Kori Unit 1 Reactor Pressure Vessel CoreRegion Welds (CONTINUED)

Capsule

S

Fluence(x1019n/cm*)

1.4149

I!

R 2.9219

SpecimenI.D

KW-28

KW-35

KW-27

KW-34

KW-33

KW-26

KW-32

KW-25

KW-31

KW-30

KW-29

KW-36

KW-14

KW-13

KW-24

KW-21

KW-20

KW-23

KW-19

KW-22

KW-18

KW-17

KW-16

KW-15

Temperature( *F)

16

75

126

167

212

212

261

284

325

351

399

550

17.6

64.4

125.6

167

212

212

284

284

325.4

350.6

399.2

550.4

4.5

15.5

19.0

23.0

26.0

32.0

36.5

42.0

45.5

49.0

46.5

45.0

10.5

11.5

14.0

18.0

24.0

24.0

41.0

41.3

39.0

40.5

41.0

38.0

Lateral Exp.(mils)

9

13

22

26

30

37

26

37

43

38

39

36

2

7.1

13.4

•0.4

-8.3

-9.4

39.4

33.5

34.6

31.5

36.2

35.8

Shear(%)

5

30

50

80

90

95

90

95

100

100

100

100

0

5

10

20

50

50

90

100

90

100

100

100

- 8 6 -

Table 3-23 Charpy V-notch Data for the Kori Unit 1 Reactor Pressure Vessel WeldHeat-Affected-Zone Material

Capsule

Unirrad.

V

T

Fluence(xio'fycm*)

0.0

0.4401

1.0547

SpecimenI.D1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

KH-11

KH-12

KH-9

KH-10

KH-7

KH-8

KH-5

KH-6

KH-1

KH-2

KH^3

KH-4

KH-44

KH-45

KH-42

KH-43

KH-41

KH-39

KH-38

KH-40

KH-37

KH-46

KH-47

KH-48

Temperature( *F)

-100

-100

-100

•50

-50

-50

0

0

0

40

40

40

100

100

100

210r 210

210

-100

-100

-40

-40

0

0

40

40

76

100

210

210

-80

-80

-40

-40

0

40

75

165

210

-

-

Energy(tt-lbl

31

31

50

40

146

43

72

103

101

88

110

122

76

93

97

108

188

204

121.0

51.5

87.0

123.0

139.0

80.0

76.0

176.0

170.5

107.0

115.5

75.5

27.0

105.0

90.5

62.5

115.0

161.0

163.0

99.0

110.0

-

-

-

Lateral Exp.(mils)

18

15

Shear(%)

14

14

22 | 20

23 ! 35

75

26

37

55

56

53

64

63

58

65

64

72

86

71

73

29

53

75

81

49

50

93

98

65

73

60

17

64

53

37

72

89

93

60

73

-

-

-

60

20

45

50

48

57

75

78

-

94

-

98

100

100

100

10

100

100

100

100

50

100

100

100

100

35

5

90

75

20

50

100

100

80

100

-

-

-

- 8 7 -

Table 3-23 Charpy V-notch Data for the Kori Unit 1 Reactor Pressure Vessel WeldHeat-Affected-Zone Material (CONTINUED)

Capsule

S

R

Fluence(x1019n/cm*)

1.4149

2.9219

SpecimenI.D

KH-27

KH-28

KH-30

KH-31

KH-26

KH-29

KH-35

KH-25

KH-34

KH-33

KH-32

KH-36

KH-16

KH-15

KH-14

KH-13

KH-21

KH-22

KH-17

KH-19

KH-20

KH-18

Temperature( -F)

-101

-76

-60

-20

0

39

75

100

167

212

399

550

-56.2

•0.4

32

64.4

125.6

167

260.6

325.4

399.2

550.4

Energy(1Mb!

29.5

94.0

98.0

108.0

66.0

94.0

150.0

89.0

140.5

154.0

189.0

167.5

104

31

52

134

149

138

152

94.5

151

228

Lateral Exp.(mils)

27

55

50

65

35

54

66

26

-

72

71

-

52.4

14.2

26.4

65.8

36.6

40.2

66.5

60.6

85.4

67.7

Shear(%)

0

10

40

50

50

100

100

90

100

100

100

100

50

30

30

100

70

70

85

75

100

100

- 8 8 -

Table 3-24. Effect of Irradiation to 0.440 xiO^n/cm' (E>1.0 MeV) on the Notch Toughness Properties of the Kori Unit 1Reactor Vessel Surveillance Capsule V Materials

Material

IntermediateShell Forging124W375 VA1

(Tangential)

IntermediateShell Forging124W375 VA1

(Axial)

Weld Metal

— - 1

HAZ Metal

Average 30 ft-lbTr-T.;-;i.'ion Temperature (°F)

Unirrad.""

-35.5

-74.46

-6.13

-223.12

Irrad.

-44.78

43.08

184.84

-179.15

AT

-9.27

31.37

190.97

43.97

Average 35 mil LateralExpansion Temperature (°F)

Unirrad.11"

-21.27

-49.83

19.97

Irrad.

-28.68

-24.2

202.17

AT

-7.4

25.62

182.19

Average 50 ft-lbTransition Temperature (°F)

Unirrad.10'

-18.61

-48.06

49.24

Irrad.

-20.64

-11.27

AT

-2.02

36.79

Average Energy Absorptionat Full Shear (ft-lb)

Unirrad.'"

171.0

166.4

66.5

lrrad. (C)

155.6

123.3

47.8

AE

-15.4

-43.1

-18.7

NOTES ;(a) The values were obtained from the hyperbolic tangent curve-fitting program CVGRAPH, Versions 4.0 and 4.1(b) The unirradiated values differ from those reported in WCAP-8586 since those previously reported were developed from hand fit curves

using engineering judgement. The values reported here were determined from curves generated by CVGRAPH Versions 4.0 and 4.1.(c) Values determined per the definition of "upper shelf energy" given in ASTM E185-82.

I

sI

Table 3-25. Effect of Irradiation to 1.055 xicTn/cnV' (E>1.0 MeV) on the Notch Toughness Properties of the Kori Unit 1Reactor Vessel Surveillance Capsule T Materials

Material

IntermediateShell Forging124W375 VA1

(Tangential)

IntermediateShell Forging124W375 VA1

(Axial)

Weld Metal...

HAZ Metal

Average 30 ft-lbTransition Temperature (°F)

Unirrad.10'

-35.5

-74.46

-6.13

-223.12

Irrad.

-46.55

-31.07

180.84

-179.15

AT

-11.05

43.39

186.97

43.97

Average 35 mil LateralExpansion Temperature (°F)

Unirrad.'"'

-21.27

-49.83

19.97

Irrad.

-34.05

-17.08

207.48

AT

-12.77

32.75

187.51

Average 50 ft-lbTransition Temperature (°F)

Unirrad.""

-18.61

-48.06

49.24

Irrad.

-29.14

-9.13

AT

-10.52

38.93

Average Energy Absorptionat Full Shear (ft-lb)

Unirrad.1"

171.0

166.4

66.5

Irrad.1"

152.2

145.8

41.8

AE

-18.8

-20.6

-24.7

NOTES.;(a) The values were obtained from the hyperbolic tangent curve-fitting program CVGRAPH, Versions 4.0 and 4.1(b) The unirradiated values differ from those reported in WCAP-8586 since those previously reported were developed from hand fit curves

using engineering judgement. The values reported here were determined from curves generated by CVGRAPH Versions 4.0 and 4.1.(c) Values determined per the definition of "upper shelf energy" given in ASTM E185-82.

I

Table 3-26. Effect of irradiation to 1.415 x101vn/cml! (E>1.0 MeV) on the Notch Toughness Properties of the Kori Unit 1Reactor Vessel Surveillance Capsule S Materials

Material

IntermediateShell Forging124W375 VA1

(Tangential)

IntermediateShell Forging124W375 VA1

(Axial)

Weld Metal

HAZ Metal

Average 30 ft-lbTransition Temperature (°F)

Unirrad.""

-35.5

-74.46

-6.13

-223.12

Irrad.

-32.38

-17.1

202.19

-179.15

AT

3.11

57.35

208.32

43.97

Average 35 mil LateralExpansion Temperature (°F)

Unirrad.w

-21.27

-49.83

19.97

Irrad.

-17.58

1.02

264.07

AT

3.69

50.86

244.09

Average 50 ft-lbTransition Temperature (°F)

Unirrad.""

-18.61

-48.06

49.24

Irrad.

-0.98

14.66

AT

17.63

62.73

Average Energy Absorptionat Full Shear (ft-lb)

Unirrad.tC)

171.0

166.4

66.5

lrrad.'C)

163.7

168.1

46.5

AE

-7.3

1.7

-20.0

NOTES ;(a) The values were obtained from the hyperbolic tangent curve-fitting program CVGRAPH, Versions 4.0 and 4.1.(b) The unirradiated values differ from those reported in WCAP-8586 since those previously reported were developed from hand fit curves

using engineering judgement. The values reported here were determined from curves generated by CVGRAPH Versions 4.0 and 4.1.(c) Values determined per the definition of "upper shelf energy" given in ASTM E185-82.

ItoINS

I

Table 3-27.

Material

IntermediateShell Forging124W375 VA1

(Tangential)

IntermediateShell Forging124W375 VA1

(Axial)

Weld Metal

HAZ Metal

Effect of Irradiation to 2.922 xiO^n/cnV (E>1.0 MeV) on the Notch Toughness Properties of the Kori Unit 1Reactor Vessel Surveillance Capsule R Materials

Average 30 ft-lbTransition Temperature (°F)

Unirrad.TO

-35.5

-74.46

-6.13

-223.12

Irrad.

-22.7

14.66

228.94

-179.15

AT

12.8

89.13

235.07

43.97

Average 35 mil LateralExpansion Temperature (°F)

Unirrad.""

-21.27

-49.83

19.97

Irrad.

-2.08

71.62

AT

19.19

121.45

Average 50 ft-lbTransition Temperature (°F)

Unirrad.1"'

-18.61

-48.06

Irrad.

•0.91

40.47

AT

17.7

88.54

Average Energy Absorptionat Full Shear (ft-lb)

Unirrad.10'

171.0

166.4

66.5

Irrad.1"

156.2

138.7

40.2

AE

-14.8

-111

-26.3

NOTES ;(a) The values were obtained from the hyperbolic tangent curve-fitting program CVGRAPH, Versions 4.0 and 4.1.

(b) The unirradiated values differ from those reported in WCAP-8586 since those previously reported were developed from hand fit curvesusing engineering judgement. The values reported here were determined from curves generated by CVGRAPH Versions 4.0 and 4.1.

(c) Values determined per the definition of "upper shelf energy" given in ASTM E185-82.

Table 3-28. Calculation of Average Cu and Ni Weight Percent Values for BeltlineMaterials

Ref.

(a)

(b)

(c)

(d)

(e)

(t)

(g)

(h)

(i)

Avg.

Inter. ShellForging

124W375 VA1Cu

0.07

0.02

0.11

0.08

0.02

0.06

Ni

0.73

0.73

0.70

0.70

0.715

Inter. ShellForging

124W375 VA1Cu

0.05

Ni

0.70

Lower ShellForging

124W375 VA1Cu

0.04

Ni

0.76

SurveillanceWeld Metal

Cu

0.23

0.18

0.30

0.19

0.18

0.29

0.23

Ni

0.61

0.76

0.65

0.63

0.68

0.67

Inter. & LowerShell Weld

Cu

0.22

0.13

Ni

0.55

0.69

Notes ;

(a) Surveillance program material (Kori 1 Surveillance program WCAP-8586, Table A-2)(b) Chemical analysis by Babcock & Wilcox(c) Weld qualification No. WF233, Wire heat No. T29744, Flux type Linde 80, Lot No. 8790(d) Weld qualification No. WF232, Wire heat No. 8T3914, Flux type Linde 80, Lot No. 8790(e) The 1st surveillance test result(f) The 2nd surveillance test result(g) The 3rd surveillance test result(h) The 4th surveillance test result(i) ^e-evaluation by Babcock & Wilcox

- 9 3 -

Table 3-29. Interpolation of Chemistry Factors from Regulatory Guide 1.99,Revision 2,Position 1.1

Material

Intermediate Shell Forqinq 124W375 VA1

Given Cu wt% - 0.060

Intermediate Shell Forqinq 124W375 VA1

Given Cu wt% - 0.050

Lower Shell Forqinq 122X371 VA1

Given Cu wt% - 0.040

Weld Metal w

Given Cu wt% - 0.23

Weld Metal w

Given Cu wt% -.0.29

Ni, wt%

0.715

0.70

0.76

0.67

0.68

Chemistry Factor, (°F)

37.0

31.0

26.0

180.9

203.4

Note :(a) Based on the total averaged value(b) Based on the re-evaluation value by Babcock & Wilcox Co.

- 9 4 -

Table 3-30. Calculation of Chemistry Factors Using Surveillance Capsule Data PerRegulatory Guide 1.99, Revision 2, Position 2.1

Material

Intermediate ShellForging124W375 VA1(Tangential)

Intermediate ShellForging124W375 VA1(Axial)

Weld Metal""

Capsule

V

T

S

R

V

T

S

R

Capsule1 "

0.4401

1.0547

1.4149

2.9219

0.4401

1.0547

1.4149

2.9219

FF1"

0.772

1.015

1.096

1.284

0.772

1.015

1.096

1.284

ARTNDT16'

-7.40

-11.05

3.11

12.80

25.62

43.40

57.35

89.13

SUM

FF« ARTNDT

-5.71

-11.22

3.41

16.44

19.78

44.05

62.86

114.44

214.13

FF2

0.596

1.030

1.201

1.649

0.596

1.030

1.201

1.649

4.476

CFimemHrtiae Shdl Foxing - Z ( F F * A R T N D T ) ^ Z ( F F 2 ) - 53.9 'F

V

T

sR

0.4401

1.0547

1.4149

2.9219

0.772

1.015

1.096

1.284

182.20

186.97

208.32

235.07

SUM

140.66

189.77

228.32

301.83

860.58

0.596

1.030

1.201

1.649

4.476

CFw*. Met* - Z(FF*ARTNDT) -Z(FF2) - 192.3 'F

NOTES:

(a) f-fluence (101* n/cm2, E>1.0MeV). All updated fluence values were taken from the Capsule Ranalysis.

(b) FF-fluence factor - p***1"** »(c) ARTNDT values were obtained from the Capsule V, T, S & R analysis, rounded to two-decimal.(d) The reactor vessel intermediate to lower shell circular weld seam was made with the same weld

wire and flux as the surveillance weld specimens.(e) Base metal CF value was calculated from the axial direction materials.

- 9 5 -

Table 3 - 3 1 . KORI Unit 1 Surveillance Capsule Data Calculation of Best-Fit Line asDescribed in Position 2.1 of Regulatory Guide 1.99, Revision 2

Material

Intermediate ShellForging124W375 VA1(Tangential)

Intermediate ShellForging124W375 VA1(Axial)

Weld Metal

Capsule

V

T

S

R

Capsulef""

0.4401

1.0547

1.4149

2.9219

2. M

V

T

S

R

0.4401

1.0547

1.4149

2.9219

Z i-i

V

T

S

R

0.4401

1.0547

1.4149

2.9219

Z i-i

F F .W

(X)

0.772

1.015

1.096

1.284

4.167

0.772

1.015

1.096

1.284

4.167

0.772

1.015

1.096

1.284

4.167

ARTNOT ( C )

(y)

-7.40

-11.05

3.11

12.80

-2.54

25.62

43.40

57.35

89.13

215.5

182.20

186.97

208.32

235.07

812.56

F F ' A R T N O T

(XV)

-5.71

-11.22

3.41

16.44

2.92

19.78

44.05

62.86

114.44

241.1

140.66

189.77

228.32

301.83

860.58

FF2

(x2)

0.596

1.030

1.201

1.649

4.476

0.596

1.030

1.201

1.649

4.476

0.596

1.030

1.201

1.649

4.476

NOTES:

(a) f-fluence (1019 n/cm2, E>1.0MeV). All updated fluence values were taken from the Capsule Ranalysis.

(b) FF-f!uence factor(c) ARTNDT values were obtained from the Capsule V, T, S & R analysis, rounded to two-decimal.

- 9 6 -

Table 3-32. KORI Unit 1 Surveillance Capsule Data Evaluation of Credibility asDescribed in Position 2.1 of Regulatory Guide 1.99, Revision 2

Material

Intermediate ShellForging124W375 VA1(Tangential)

Intermediate ShellForging124W375 VA1(Axial)

Weld Metal

Capsule

V

T

S

R

V

T

S

R

V

T

S

R

Capsulef

0.4401

1.0547

1.4149

2.9219

0.4401

1.0547

1.4149

2.9219

0.4401

1.0547

1.4149

2.9219

FF

0.772

1.015

1.096

1.284

0.772

1.015

1.096

1.284

0.772

1.015

1.096

1.284

ARTNOT

(30ft-lb)-7.40

-11.05

3.11

12.80

25.62

43.40

57.35

89.13

182.20

186.97

208.32

235.07

Best FitARTNOT

21.6

50.8

60.5

83.1

176.6

200.66

208.68

227.28

Scatter ofARTNOT

3.96

-7.4

-3.2

6.1

5.58

13.7

0.36

7.79

** Base Metal : < 17*F215.15 - 4a + 4.167b241.13 - 4.167a + 4.476ba - -70.9, b - 119.9

Y - 119.9 (X) - 70.9

** Weld Metal : < 28'F812.56 - 4a + 4.167b860.58 - 4.167a + 4.476ba - 100.23, b - 98.95Y - 98.95 (X) + 100.23

- 9 7 -

Table 3-33. RTPTS Calculation for the Kori 1 Reactor Vessel Beltline Region Materials

EFPY

32

40

Material

nter. Shell Forging

Using S/C data

Weld Metal

Using S/C data

Inter. Shell Forging

Using S/C data

Weld Metal

Using S/C data

CF

37

53.9

180.9|a|

203.41"1

192.3

37

53.9

180.91"

2O3A™

192.3

f

3.861

3.861

3.861

3.861

3.861

4.874

4.874

4.874

4.874

4.874

FF

1.349

1.349

1.349

1.349

1.349

1.397

1.397

1.397

1.397

1.397

1

30

30

-20

-20

-20

30

30

-20

-20

-20

M

34

17

56

56

28

34

17

56

56

28

ARTVre

49.9

72.7

244.0

274.4

259.4

51.7

75.3

252.7

284.1

268.6

RTVrs

113.9

119.7

280.0

310.4

267.4

115.7

122.3

288.7

320.1

276.6

NOTE :(a) : Based on the total average value(b) : Based on the re-evaluation value by Babcock & Wilcox

Table 3-34. Peak Fluence (1019 n/cm2, E>1.0 MeV) on the Pressure Vessel Clad/BaseMetal Interface for Kori Unit 1

EFPY

13.5

20.0

24.0

32.0

40.0

Vessel 0° Location

1.649

2.390

2.880

3.861

4.874

- 9 9 -

Table 3-35. Margins for Adjusted Reference Temperature (ART) Calculation perRegulatory Guide 1.99, Revision 2

Material Properties Surv. Capsule Data NOT Used Surv. Capsule Data Used

Plates or Forgings

Measured IRTNDT

Generic IRTNOT

34

48

17

38

Weld Metal

Measured IRTNDT

Generic IRTNDT

56

66

28

44

- 1 0 0 -

Table 3-36. Calculation of ART Values for the Kori Unit 1 Reactor Vessel BeltlineRegion Materials at 20EFPY

Material ICF flat LD) f(1/4,3/4T) FF ,w M ARTNDT ART

1/4T Calculations

Inter. Shell Forging

Using S/C data

Inter. Shell Forging

Lower Shell Forging

Weld Metal

Using S/C data

37.0

53.9

31.0

26.0

180.9

192.3

2.390

2.390

2.390

2.390

2.390

2.390

1.618

1.618

1.618

1.618

1.618

1.618

1.133

1.133

1.133

1.133

1.133

1.133

30

30

30

30

-10

-10

34.0

17.0

34.0

29.5

56.0

28.0

41.9

61.1

35.1

29.5

205.0

217.9

105.9

108.1

99.1

89.0

251.0

235.9

3/4T Calculations

Inter. Shell Forging

Using S/C data

Inter. Shell Forging

Lower Shell Forging

Weld Metal

Using S/C data

37.0

53.9

31.0

26.0

180.9

192.3

2.390

2.390

2.390

2.390

2.390

2.390

0.742

0.742

0.742

0.742

0.742

0.742

0.916

0.916

0.916

0.916

0.916

0.916

30

30

30

30

-10

-10

33.9

17.0

28.4

23.8

56.0

28.0

33.9

49.4

28.4

23.8

165.7

176.1

97.8

96.4

86.8

77.6

211.7

194.1

NOTES:

(a) Initial RTNDT values are measured values.

- 1 0 1 -

Table 3-37. ART Values at the 1/4T and 3/4T Locations Used in the Curves Generation

Material

Inter. Shell Forging

Using S/C Data

Inter. Shell Forging

Lower Shell Forging

Weld Metal

Using S/C Dataf)

1/4T ART

105.9

108.1

99.1

89.0

251.0

23S.9

3/4T ART

97.8

96.4

86.8

77.6

211.7

194.1

(*) Used in the generation of the heatup/cooldown curves.

- 1 0 2 -

VESSEL

THERMALSHIELD

SURVEILLANCECAPSULE

S,

* Different from FSAR and WCAP 8586

Fig. 2-1. Plan View of Surveillance Capsules in Kori 1 Reactor Vessel

- 1 0 3 -

Weld WF-259(Linde 80)

Intermediate Shell (Forging)SA508-2124W375VA1

Weld WF 232 / WF 233(Linde 80)

Lower Shell (Forging)SA508-2122X371VA1

Weld

Fig. 2-2. Weld Specification of Reactor Vessel Beltline Region

- 1 0 4 -

Inlet Nozzle Weld

Weld WF-259(Linde 80)

63Intermediate ShellSA508-2(Forging)'124W375VA1

Capsule

Weld WF 232 / WF 233(Linde 80)

Lower ShellSA508-2(Forging),122X371VA1

Thermal Shield —

Weld

-21"

-10"

57-3/4"

61-1/4"

CORE

-14-3/4"

62-3/8"

66"72.5"

-39-1/2"

144"

VLcv

CAPSULE

0.030" STAINLESSSTEEL

— • CORESPACERSCHARPY SPECIMEN

WELD

Fig. 2-3. Surveillance Capsule Location at Reactor Vessel Beltline Region

- 1 0 5 -

EGADS

I

g

1.1 X I997 /07 /28 3028452797231KOR! Unit 1 (R.Theta OORT Geometry)

100 150 200 250X(em)

Fig. 2-4. R & Theta DORT Geometry for Kori Unit 1

SORCERY

(4*SC) 'sc' Capsule locationvessel 0, 15. 30 . 45

CRSD • CRSD source<SC) - survelltance Capsule

DORT forward(CRSD)

DORT adjoint

importance function KR.T.E) * ;

ADIOS CRSD(4.SC)

TADLIB (4»SC)

T/ importance function I(R,T,E!*•*.».. (pin & box)

< overall tolas fa,- Kj> ADIOS (4*SC>

^ Reference Pin PowerGradient

Plant Specific PowerdisU for all fuel cycles

Calculate*(E>1.0>for all cycles

FCALC (SC)

mea, reaction rales "with uncertainties

SAND (SC)

Power history1 Measured fail data

U-Z3S, Pu-239 and ( r.1)correction

[ cross section

"'" dosim, c.i, <S3g) ""*~-col. flux and acti. (forward)

^ correction factor *-

FERRET (SC)•<E>1.OV

• ^ covar, matrix for c.s

•(E>0.l dpa

•<E>1.0 •<E>1.0

adj. n spectrum and c.s

adj. cal. reaction ratesadj. mea- •(E>1.0)

_ with uncertainties _

dpa, n fluxes, fluencewith uncertainties

SensitivityStudy

^overall uncertainty*^

Fig. 2-5. Flow Chart of Neutron Transport Calculation per Reg.Guide DG-1053

-107 -

EGADS 1.1 X1997/09/23 2835114527974KOR! Unit 1(R, Theta DORT Geometry, cycle 4 - 5 )

X (cm)

Fig. 2-6. R & Theta OORT Geometry for the Fuel Cycle 4 & 5

KORI UNIT 1 (BASE METAL : KL)

Curve Fluence LSE d-LSE USE

Results

d-USE T o 30 d-T e 30 T e 50 d-T e 50

300"

04.401E+181.055E+191.415E+19Z922E+19

2.192.192.192J92.19

171155.6152.19163.69156.19

0-15J39-18.8-7.3-14.8

-35.5-44.78-4655-3236-22.7

0 -18.61-927 -20.64-11.05 -29.14

3.11 - A£ 7 9 -.91

0-2.02-1052

17.6317.7

-200 -100 0 100 200 300 400

Temperature in Degrees F

Curve Legend

2 O 3 ^ 4 * 5^T

500 600

Curve Plant Capsule

Data Set(s) Plotted

Material Ori. HeatflKORUKORUKORUKORUKORIl

UN1RRVTSR

FORGING SA508CL2FORGING SA508CL2FORGING SA50BCL2FORGING SA50BCL2FORGING SA508CL2

KL I24I375VMKL 124W375VA1KL 124W375VA1KL 124W375VA1KL 124W375VA1

Fig. 3-1. Charpy V-Notch Impact Energy vs. Temperature for Kori Unit 1 ReactorVessel Intermediate Shell Forging 124W375 VA1 (Tangential)

- 1 0 9 -

KORI UNIT 1 (KL : Lateral Exp.)

rve12345

Fluence0

4.4O1E+18L055E+19U15E+19a922E+l*

USE86.6994594.376

6959

Results

d-USE07.87.6

-10.69-17.09

ToLE35-2127-28.68-34.05-1758-2.0B

d-T e LE350

-7.4-12.77

3.6919.19

CD

Exp

mil

CO

ate

200"!

150

100

50~

0~

r

sf-

&~ ...

-300 -200 -100 0 100 200 300 400

Temperature in Degrees FCurve Legend

2 O" 3 O • 4 5 ^

500 600

Curve Plant Capsule

DaU Set(s) Plotted

Material OrL Heat |K0RI1K0RI1KORUK0RI1KORU

UNIRRVTSR

FORGING SA506CL2FORGING SA508CL2FORGING SA508C12FORGING SA508CL2FORGING SA508CL2

KL 124W375VA1KL 124W375VA1KL 124W375VA1KL 124W375VA1KL 124W375VA1

Fig. 3-2. Charpy V-Notch Lateral Expansion vs. Temperature for Kori Unit 1 ReactorVessel Intermediate Shell Forging 124W375 VA1 (Tangential)

-no-

KORI UNIT 1 (KL : /.SHEAR)

Curve12345

Fluence0

4.401E+181D55E+191.415E+I9Z922E-ri9

ResultsTe 50/. Shear

10.155.620

473460

d-T *> 50:/. Shear0

-4.52-10.15

37.1649.84

cti<vA

o

100"

«o

60

40

<

tj1

D /Jb,/

/1

-300 -200 -100 0 100 200 300 400

Temperature in Degrees F500 600

Curve12345

2O-

PlantK0RI1K0RI1K0R11K0RI1K0RI1

a

CapsuleUNIRR

VTSR

Curve Legend

Data Set(s) Plotted

MaterialFORGING SA508CL2FORGING SA508CL2FORGING SA508CL2FORGING SA508CL2FORGING SA508CL2

Ori.KLKLKLKLKl,

Heattf124W375VA1124W375VA1124W375VA1124W375VA1124W375VA1

Fig. 3-3. Charpy V-Notch Percent Shear vs. Temperature for Kori Unit 1 Reactor VesselIntermediate Shell Forging 124W375 VA1 (Tangential)

- 1 1 1 -

KORI UNIT 1 (BASE METAL : KT)

Curve Fluence LSE d-LSE USE

Results

d-USE T o 30 d-T o 30

CO

£

O!

w

>

04.401E+181.055E+191.415E+19Z922E+19

awZ192J9Z192A9

0 166350 123.10 14530 168.;0 138.6G

o-43.09-2059

1.7-27J69

-74.46-43.06-31.07- 1 ' . !14J66

03137433957.3569.13

T9_50-48.06-1127-9.1314.6640.47

d-T o 500

36.7938536Z738854

J00

250

200

150

100

bO

0

i(

ao (

a e

v/y

7t

n •

*-±-

-300 -200 -100 0 100 200 300 400

Temperature in Degrees FCurve Legend

2 O 3 ^ 4 A 5TT

500 600

Curve Plant Capsule

Data Set<s) Plotted

Material Ort HeatjK0RI1K0RI1K0R11K0RI1K0RI1

UNIRRVTSR

FORGING SA508CL2FORGING SA508CL2FORGING SA506CL2FORGING SA508CL2FORGING SA508CL2

KT 124W375VA10 124W375VA1CT 124W375VA10 124W375VA10 124W375VA1

Fig. 3-4. Charpy V-Notch Impact Energy vs. Temperature for Kori Unit 1 Reactor VesselIntermediate Shell Forging 124W375 VA1 (Axial)

-112-

KORI UNIT 1 (KT : Lateral Exp.)

Curve12345

Fluence0

4.401E+1B1.055E+191.415E+192.922E+19

USE64.990.1994.696884

Results

d-USE0

52»9.73

-If .3-.9

To LE35

-49.83-242-17.08

1.0271.62

d-T e LE350

25.62327550.86121.45

200

CO

n3 150"

X

ater

a

100"

-300 -200 -100 0 100 200 300 400

Temperature in Degrees FCurve Legend

2 O 3 ^ 4 ^ 5T?

500 600

Curve Plant Capsule

Data Set(s) Plotted

Material Ori. Heat |K0RI1K0R11K0R11K0RI1K0R11

UNIRR.VTSR

FORGING SA508CL2FORGING SA508CL2FORGING SA508O2FORGING SA508CL2FORGING SA508CL2

KT 124W375VA1KT 124W375VA1KT 124W375VA1CT 124I375VA1KT 124W375VA1

Fig. 3-5. Charpy V-Notch Lateral Expansion vs. Temperature for Kori Unit 1 ReactorVessel Intermediate Shell Forging 124W375 VA1 (Axial)

-113-

KORI UNIT 1 (KT : v. Shear)

Curve12345

Fluence0

4.401E+18L055E+191.415E+192922E+I9

Results

T o 507. Shear7.9625.3128.1235.15102B3

d-T o 5ft': Shear0

173420.1527.1894.86

in

ouCO

a,

-200 -100 0 100 200 300 400

Temperature in Degrees FCurve Legend

500 600

Curve Plant Capsule

Data Set(s) Plotted

Material Ori. Heat#K0R11KORUKOMIKORUKOMI

UN1RR.VTSR

FORGING SA508C12FORGING SA508CI2FORGING SA508CL2FORGING SA508CI2FORGING SA508CI2

KT 124W375VA1KT 124W375VA1KT 124W375VA1KT 124W375VA1KT 124W375VA1

Fig. 3-6. Charpy V-Notch Percent Shear vs. Temperature for Kori Unit 1 Reactor VesselIntermediate Shell Forging 124W375 VA1 (Axial)

- 1 1 4 -

KORI UNIT 1 (WELD METAL :KW)

Curve Fluence

1 02 4.401E+18

3 1.055E+194 1.415E+K-5 2.922E+19

LSE d-I.SE USE

Results

d-USE T o 30 d-Te30 T e 50

ai9

22

22

22

22

66.547.7941.79465402

0-18.7-24.7-20

-2629

-6.1318-4.84

3E.19228.94

0190.9,

186.97

2O8X.

235.07

4924

d - T e 50

0

300

en 250

T+->&H 2 0 °

5H 1 5 0CO

W

* m

5cr

0^

r—

,##

-300 -200 -100 0 100 200 300 400

Temperature in Degrees F

Curve Legend

2 O . 3 ^ _ 4 ^ 5 ^

500 600

Curve Plant Capsule

Data Set(s) Plotted

Material On. Heat)?K0RI1K0RI1K0RI1KORUK0RI1

UNIRRVTSR

WELD SA508CL2WELD SA508CL2WELD SA506CL2WELD SA508CL2WELD SA508CL2

KW 124W375VA1KW 124W375VA1KW 124W375VA1KW 124W375VA1KW 124W375VA1

Fig. 3-7. Charpy V-Notch Impact Energy vs. Temperature for Kori Unit 1 Reactor VesselWeld Metal

-115-

KORI UNIT 1 (KW : Lateral Exp.)

Curve12345

Fluence0

4.401E+18L055E+19L415E+192922E+19

USE703465

445939

34.4

Results

d-USE0

-208-25.7-3L3-355

T o L E 3 51937

202.17207.48264.07

d-T o LE350

182.1918751244.09

s—<

3a

ax)

lbO

100

50~

0mmsmmMmam i iwg

_ ^ —

1

-300 -200 -100 0 100 200 300 400

Temperature in Degrees FCurve Legend

2

500 600

Curve Plant Capsule

DaU Sel(s) Plotted

Material Ort HeatjfKORUKORUKORUKORUKORU

mm.vTsR

WELD SA508C12WELD SA508CL2WELD SA508CL2WELD SA5D8CL2WELD SA508CL2

CT 124I375VMKW 124W375VA1KW 124W375VA1KW 124W375VM

KW 124W375VA1

Fig. 3-6. Charpy V-Notch Lateral Expansion vs. Temperature for Kori Unit 1 ReactorVessel Weld Metal

-116-

KORI UNIT 1 (KW : v. Shear)

Curve1234D

Fluence0

4.401E+18L055E+I9L».15E+19

Z922E+19

ResultsT e 50/. Shear

39.B42325197.46

nao6210.46

d-T e 50/ Sliear0

192 5157*1

170?:

cd

in

CO

oCD

PU

100~

ao

60

41)

a)

o

/ (

7j

'iIt.

1

[ I

I///

Ifi

t

-300 -200 -100 0 100 200 300 400

Temperature in Degrees FCurve Legend

2 O . 3 0 4 * 5 ^

500 600

Curve Plant Capsule

Data Set|s) Plotted

Material O n HeatjlKORUK0RI1K0R11K0RI1K0RI1

UNIRR.VTSR

WELD SA508CL2WELD SA508CL2WELD SA508CL2WELD SA508CL2WELD SA508CL2

KW 124W375VMKW 124W375VA1KW 124W375VMKW 124W375VA1KW 124W375VA1

Fig. 3-9. Charpy V-Notch Percent Shear vs. Temperature for Kori UnK 1 Reactor VesselWeld Metal

- 1 1 7 -

en

1

S-i0)

w

u

Curve12345

300

250

200

150

100

5CT

- 3

I D

Fluence0

4.401E+181.055E+191.415E+192922E+19

00 -2

Curve12345

USE2192222219219

00 -1

KORI

d-LSE00000

D

> o

/ * .

00

UNIT 1 (HAZ :

Results

USE d-USE278.37 0118.07 -160312927 -149.127053 -7.8427354 -4.83

_|

-\

0 o

0

Y ° [

0 1

y-

DO

Temperature

2O-

PlantKORUKORUKORUKORUKORU

CapsuleUNIRR.

VTSR

T e 30-223J2-179.15-126.74-498.69-416.68

2

D

D

y

.—

o

00

KH)

d-T e 300

43.9796.38

-27556-19355

y

- ^ >_-——

300

in DegreesCurve Legend

3 4 -

Data Set(s) Plotted

MaterialHEAT AFFD ZONEHEAT AFFD ZONEHEAT AFFD ZONEHEAT AFFD ZONEHEAT AFFD ZONE

SA508CL2SA508CL2SA508CI2SA508CL2SA508CL2

5^

Ori. Heat#KH 124W375VA1KH 124W375VA1KH 124W375VA1KH 124W375VA1KH 124W375VA1

T e 50-11281-14853-6276-291.9-22L46

400

F

d-T e 500

-35.7250.04

-179.09-10&65

500 600

Fig. 3-10. Charpy V-Notch Impact Energy vs. Temperature for Korl Unit 1 ReactorVessel Heat-Affected-Zone (HAZ) Metal

-118-

LIMITING MATERIAL : WELD METAL (USING SURVEILLANCE DATA)

LIMITING ART VALUES AT 20 EFPY : 1/4T : 235.93/4T : 194.1

2500 -,

b« 2 2 5 0 -

enft, 2 0 0 ° -

t-t3 1500 -

v 1250 -

1000 -

^ 7 5 0 -

° 5 0 0 -

S 250 -k—<

0 -(

i

3 !

In

L I A K T E S T L I M I T

DNACCEPTABLEOPERATION

KEATVP RATEOP TO «O I / I i .

HSATUP RATEVT TO 1 0 0 F / « r .

50 10d i c {

s

I1

•?

//

ti V

r-i

//

14I

. A

CXITICALITY LIMIT • 4ft f t 0*l a t i R T i c i K T i a o i T A t i e t t i if i l T i c i r i « i i > ur t o t t . i ttry

oi te

50 200 250 300 3J

d T e m p e r a t u r e

* • - -

-A

zz- 4

zl1i~L----4,

i

/r

ri

iJl

fr

itt

Ei tnzTACOP

L

/1

f

cK

-

•T8t

E P T A B L ER A T I O N

H i ^ . i i i i i i —

C H I T . L I K I Trot so r/Hr.C U T . L IHI TFOB 1-0 0 r / H r .

)0 4C

(B)0 4f

eg •

1

50 5(

F))0

Rg. 3-11. Kori Unit 1 Reactor Coolant System Heatup Limitations (Heatup rate up1OO*F/hr) Applicable for 20EFPY (with Instrument error Margins)

-119-

LIMITING MATERIAL : WELD METAL (USING SURVEILLANCE DATA)

LIMITING ART VALUES AT 20 EFPY : 1/4T : 235.93/4T : 194.1

2 5 0 0 -T-

'""-• 9 o <; n .

00 7 o n o -

1 7 5 0 - -o>

•^ 1 s n nonCO

<u 1 2 5 0 - -

1 A n n .

OJ -T* J 7 5 0 - ;«J

^>

._ 500 - -

Q

I'I 1 1 1 1 1 1t t l U M I T

c o oSAT

LOOTNISr .

r 0to40« O

10 0

Ml

WnACCEPTlBLE0PIB1TION

> /r/

—taJffr

iL

•4

1

11

11

11

t•r- J

. 1 1

1

" 7

A C C E P T A B L E tO P E R A T I O N L

6 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 (

I n d i c a t e d T e m p e r a t u r e ( D e g . F )

Fig. 3-12. Kori Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown rate up 1OO'F/hr)Applicable for 20EFPY (with Instrument error Margins)

- 1 2 0 -

>H *1 ^ &. <$ q^r *J 71 -Q:

KAERI/RR-1785/97

* « - 1

511 °1 ^1

^JilAj-Sj-

# 71 ^-(^^^S. 7l^7H^)

(^^7l/^)^<8> ^ ^

* f l 7 l «

p. 132 s. s. MX ), ^ ( )

1997. 12. 30

*7H(V), Cfl HK ), ^ 1 -TT

Ti3:^- (300^:^ ^fl3) |

Srul^f USNRC Reg.Guide DG-10533 .fiL^Af Vofl t^-ef Benchmark test# -^A]

lliE., •§:£ ^ "T1"^^-^. lo1"A|-Ai-^^ O-?]JL Mesh density, Angular expansion,

Convergence criteria ^-3] Tfl + fJ- <>fl 3^3: J5- j-°ll 7l^]*}-P15. Tf^l7]^c>)] n)-

^^Itfl ^IAV^ISI «l(bias factor)-!- £.#*f<^ ^7>}5. ty-^-§-7]7}- ^-& ^ ^ 3

SuA}^ ^fl'M^^f-l- Af-§-*f°i 10CFR 50.61°fl ufe)- - 7^1-5. 7Vc^-<g^^(PTS)^-

^fl^^f^l—^ ^f-i-si 3.21 131713 -^7-1-5. ^ I ^ T ^ ^Tj-g- 7$ ^^•sl-5Jt)-.^ ^ ] ^ ^)^s.(10^-<H ^H3) j

BIBLIOGRAPHIC INFORMATION SHEETPerforming Org.

Report No.Sponsoring Org.

Report No.Standard

Report No. IMS Subject Code

KAERVRR-1785/97Title/Subtitle The Technology Development for Surveillance Test of

Reactor Vessel Materials

Project Manager / Dept. Chang,Kee-Ok (Reactor Vessel Surveillance Test Dept.)

Researcher and Dept.Byoung Chul Kim, Sam Lai Lee, Sun Pil Choi,Day Young Park, Kwen Jai Choi(Reactor Vessel Surveillance Test Dept)

Pub. Place TaejonlPub.Org.] KAERI 1997. 12. 30

Page P. 132 Table Yes(X ), No( ) 3. 7]

Note

Classified. Open(V), Outside( ), Class ReportType

ResearchReport

Sponsoring Org. KAERI ContractNo.

Abstract (About 300 words)

Benchmark test was performed in accordance with the requirementof USNRC Reg. Guide DG-1053 for Kori unit-1 in order to determinebest-estimated fast neutron fluence irradiated into reactor vessel. Sincethe uncertainty of radiation analysis comes from the calculation error dueto neutron cross-section data, reactor core geometrical dimension, corestructural density, temperature and constituting materials, radiationsource, mesh density, angular expansion and convergence criteria,evaluation of calculational uncertainty due to analytical method wasperformed in accordance with the regulatory guide and the proof wasperformed for entire analysis by comparing the measurement valueobtained by neutron dosimetry located in surveillance capsule.

Best-estimated neutron fluence in reactor vessel was calculated bybias factor, neutron flux measurement value/calculational value, fromreanalysis result from previous 1st through 4th surveillance testing andfinally fluence prediction was performed for the end of reactor life andthe entire period of plant life extension. Pressurized thermal shockanalysis was performed in accordance with 10 CFR 50.61 using theresult of neutron fluence analysis in order to predict the life of reactorvessel material and the criteria of safe operation for Kori unit 1 wasreestablished.Subject Keywords(about 10 words)Reactor Pressure Vessel, Radiation Embrittlement, Neutron transport calculation,Ptessurized Thermal Shock(PTS)