The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic...

22
The Sun’s Magnetic Carpet Dr. Clare Parnell (St Andrews)

Transcript of The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic...

Page 1: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

The Sun’sMagnetic Carpet

Dr. Clare Parnell (St Andrews)

Page 2: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Co-authors• Craig DeForest (SWRI)• Mandy Hagenaar (LMSAL)• Blair Johnston (St Andrews – summer student)• Derek Lamb (Catholic University)• Brian Welsch (Berkeley)• Lynsey Thornton (St Andrews – PhD student)

Papers:– Parnell, C.E., DeForest, C.E., Hagenaar, H.J., Johnston, B.A., Lamb,

D.A. and Welsch, B.T. “A Power-law Distribution of Solar Magnetic Fields Over More Than Five Decades in Flux”, Astrophys. J., 698, 75-81, 10.1088/0004-637X/698/1/75 (2009)

– Thornton, L.M. and Parnell, C.E., ''Small-Scale Flux Emergence Observed From Hinode/SOT'', Solar Physics, submitted (2009)

Page 3: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Solar Magnetic Fields• Solar surface covered in magnetic features:

• Large-scale: Sunspot & active-regions (max flux > 1023 Mx):– Global (slow) dynamo required – Cyclic behaviour (period ~11/22 years)– Where:

• Shear layer (tachocline) at base of convection zone

MDI

Page 4: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Solar Magnetic Fields• Solar surface covered in magnetic features:

• Large-scale: Sunspot & active-regions (max flux > 1023 Mx):– Global (slow) dynamo required – Cyclic behaviour (period ~11/22 years)– Where:

• Shear layer (tachocline) at base of convection zone

• Small-scale: Network & Intranetwork (min flux < 1016 Mx) [observational limit]:– Turbulent (fast) dynamo required– No cyclic behaviour– Operates:

• Shear layer at top of convection zone• Throughout convection zone?

MDI

SOT/NFI

Page 5: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Surface Processes• Surface magnetic fields processes:

– EmergenceAppearance of new flux as a bipole

– CancellationRemoves same amount positive and negative flux

Page 6: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Surface Processes• Surface magnetic fields processes:

– Fragmentation:Carves large features into smaller ones

– CoalescenceMerges small features into larger ones

Page 7: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Feature Fluxes• Active-region flux distribution:

– log-normal (e.g. Bogdan et al. 1988. Schrijver et al. 1997, Abramenko & Longcope 2005, Canfield & Russell 2007)

• Quiet-Sun flux distribution:– Exponential (Schrijver et al. 1997)– Double exponential (Hagenaar et al. 2003)– Weibull (Parnell 2002)

• So results seem to support idea of separate global and turbulent dynamos, but ….

MDI

SOT/NFI

Page 8: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Photospheric Magnetic Field Observations

SOT/NFI 06/2007 MDI HR 10/2005 MDI FD 05/1998

• Feature ID methods:– Clumping (massifs)– Downhill (peaks)– Curvature (cores)

• Results differ betweenmethods

• We use clumping becausechange of resolution haslittle affect on features.

Page 9: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Magnetic Flux Features (Flux Massifs)

SOT/NFI 06/2007 MDI HR 10/2005 MDI FD 05/1998

Duration (hrs)

Cadence (mins)

Area (arcsec2)

No. of Features

Mean Flux (x1018 Mx)

SOT/NFI 07 5 1.5 141 x 162 251205 0.33

MDI HR 05 17 5 246 x 246 71652 4.90

MDI FD 98 11 5 < 60○ 429256 101.13

Page 10: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Fluxes• Frequency of feature

fluxes at any instance in time:

– Power-law between 1017 – 1023 Mx

– Slope of power-law• αfeature = -1.87

87.1Δ)( −= φφφ fN

ddN

Parnell et al. (2009)

SOT(2007)

MDI HR(2005)

MDI FD(1998)

Page 11: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Fluxes(1996-2008)

• Frequency of feature fluxes at any instance in time:

– Power-law between 1017 – 1023 Mx

– Slope of power-law• αfeature = -1.87

NFI 06/2007FD 12/1996FD 11/1997FD 05/1998FD 02/1999FD 12/1999FD 12/2000FD 12/2001

FD 01/2003FD 01/2004FD 11/2004FD 11/2005FD 10/2006FD 12/2007FD 02/2007

87.1Δ)( −= φφφ fN

ddN

Page 12: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Minima: Cycle 22/23 vs Cycle 23/24

• Flux distribution:– Slope the same– Numbers the same– Maximum flux less.

• Dec 96: 1020 Mx• Jul 97: 1021 Mx• Mar 08: 4x1020 Mx • Dec 08: 1020 Mx

– Indicates residual active-region flux now gone

Page 13: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Implications of Flux Distribution• Distribution of feature fluxes:

– Power-law between 1017 – 1023 Mx– Slope of power-law

• αfeature = -1.87

• ⇒ mechanism generating magnetic features is scale free

• Two possible scenarios:1. Coupled global & turbulent dynamos?

or 2. Surface processes after emergence dominate

(e.g. fragmentation, merging, cancellation)?

Page 14: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Fluxes

NFI 06/2007FD 12/1996FD 11/1997FD 10/2006FD 02/2007FD 12/2007

NFI 06/2007FD 12/1999FD 12/2000FD 12/2001FD 01/2003FD 01/2004

Solar Maximum Solar Minimum

Numbers of 1020 Mx fluxes decrease at solar MinimumMaximum flux at solar minimum ~ 1022 Mx

87.1Δ)( −= φφφ fN

ddN87.1Δ)( −= φφ

φ fNddN

Page 15: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Emerged Flux Features• Frequency of peak

emerged fluxes per day:SOT/NFI Thornton & Parnell (2009)

Thornton & Parnell (2009)

Page 16: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Emerged Flux Features• Frequency of peak

emerged fluxes per day:Thornton &

Parnell (2009)

Hagenaar et al. (2003)

Harvey (1993)

Thornton & Parnell (2009)

Page 17: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Emerged Flux Features• Frequency of peak

emerged fluxes per day:– Power-law between

1016 – 1023 Mx– Slope of power-law

• αemergences = -2.73

Thornton & Parnell (2009)

73.2Δ)( −= φφφ bN

ddN

Page 18: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Distribution of Emerged Flux Features• Frequency of peak

emerged fluxes per day:– Power-law between

1016 – 1023 Mx– Slope of power-law

• αemergences = -2.73• Power law ⇒ generation of

emerging features is scale free– Likely scenario:

Combined large-scale tachocline dynamo and turbulent dynamo

Thornton & Parnell (2009)

73.2Δ)( −= φφφ bN

ddN

Page 19: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Solar Dynamo: Previous UnderstandingLocal surface dynamo(turbulent dominant)

Global dynamo(rotation dominant)

Page 20: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Solar Dynamo: Current Understanding

Global dynamo(rotation dominant)

Turbulent dynamo dominants most of convection zone

Dynamo actionthroughout

convection zone

Weakly Highlyturbulent turbulent

Page 21: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Convection Zone

• Simulation of convection (Stein et al., 2006)

96 Mm

20 M

m

Large-scaleconvection

Small-scale convectionsurface

Page 22: The Sun’s Magnetic Carpet · Solar Magnetic Fields • Solar surface covered in magnetic features: • Large-scale: Sunspot & active-regions (max flux > 10 23 Mx): – Global (slow)

Conclusions• Flux distributions:

– Power law between: 1016 Mx < Φ < 1023 Mx– Distribution of feature fluxes at any instance:

• Power-law index: αfeatures = -1.87• Index ~ constant over whole solar cycle, but distribution shows a

fall off at Φ > 1020 Mx during solar minimum.– Distribution of peak emerged fluxes per day

• Power-law index: αfeatures = -2.73• Power-law distribution ⇒ mechanism producing magnetic

features is scale free.– Possible scenario:

• Turbulent dynamo throughout convection zone produces features with Φ < 1020 Mx

• Global dynamo at tachocline produces features with Φ > 1020 Mx– Turbulent and global dynamo coupled (turbulence decreases with

depth?)