The Strength-Toughness Properties of Welds in Plates of...

13
The Strength-Toughness Properties of Welds in Plates of Commercial Titanium Alloys An order of toughness rating for welded titanium alloys was found to be: high purity titanium with very low hydrogen; Ti - 6 Al - 2Cb -1 Ta -1 Mo; alpha and near alpha; alpha-beta; commercially-pure; beta BY L E. STARK ABSTRACT. The strength, toughness and hardness properties were determined for multipass welds deposited by gas tungsten- arc welding in plates of commercial and semi-commercial titanium alloys. A rating in order of decreasing Charpy V-notch impact toughness was as follows: 1. High purity titanium with very low hydrogen had 60 ksi ultimate strength and 150 to 190 ft lb toughness at room temperature. 2. Ti-6AI-2Cb-lTa-lMo with an ulti- mate strength range of 125 to 150 ksi had corresponding toughness of 45 to 20 ft lb. 3. The alpha and near-alpha alloys ranging from 85 to 150 ksi ultimate strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta alloys ranging from 100 to 165 ksi ultimate strength had corresponding toughness of 45 to 5 ft lb. 5. The commercially-pure grades with ultimate strength from 60 to 120 ksi and toughness ranging from very great to less than 5 ft lb had progressively decreasing toughness with increasing hydrogen con- tent. 6. The beta and near-beta alloys with ultimate strengths above 110 ksi and capable of heat treatment to very high strength levels had very low toughness of less than 10 ft lb. The strength-hardness properties fol- lowed a predictable relationship similar to that developed by steel with the ex- ception of several beta alloys. Introduction Titanium metal is finding many uses because of the advantages it offers in strength-to-weight ratio, corrosion and erosion resistance, high temperature strength, fatigue strength, creep resist- ance and cryogenic properties. Fabri- L. E. STARK is Senior Welding Engineer, Research & Development Division, The Bab- cock & Wilcox Company, Alliance, Ohio, and was formerly with Reactive Metals, Inc., Niles, Ohio, where the work on which this paper is based was conducted. Paper selected for presentation at the AWS 1970 National Fall Meeting cators are concerned with the welda- bility of the many alloys from which they may design for a particular appli- cation. This paper summarizes some basic design facts concerned with the strength and toughness properties of weld metal of the major commercial or near-commercial titanium alloys. The welding and testing data presented herein were developed over a period of several years generally from laboratory programs aimed at the investigation of a particular alloy or an alloy system. The data were developed from tests which utilized similar welding conditions and materi- al geometry for the evaluation of all alloys. )•*.. ^ : i kfifl 1 'ai 41 Fig. 1—Photograph of commercially-pure plate weld cross section slices after etching and hardness testing. Left col- umn—alloy no. 1, as-welded; alloy no. 2, as-welded; alloy no. 3, stress-relieved; alloy no. 4 as-welded; alloy no. 7, as- welded. Right column alloy no. 9, stress-relieved; alloy no. 10, as-welded; alloy no. 11, vacuum annealed as-welded; alloy no. 13, as-welded; alloy no. 16, as- welded: Weld fusion lines and heat- affected zones were outlined for photo- graphic clarity The major test data were the results of all-weld-metal tensile specimens and weld metal Charpy V-notch im- pact specimens prepared from welds in plates of V 2 in. or greater thick- ness. Rockwell hardness tests were made on weld metal, heat-affected zones, and base metal. The assembly of the data gave a picture of the relative strength-toughness properties of weld metal of all the titanium alloys. Description Of Materials The materials were classified into the four major titanium alloy types: 1. Commercially-pure. 2. Alpha or near-alpha. 3. Alpha-beta. 4. Beta or near-beta. Special emphasis was considered for the commercially-pure grades, the near-alpha alloy Ti-6Al-2 Cb-lTa- lMo, and the alpha-beta alloy Ti-6A1- 4V because these alloys are of great significance in corrosion, marine, and aerospace applications. The chemical analyses of the ingots for all materials are listed in Table 1. Also, analyses for oxygen and hydrogen were made from the broken tensile and impact specimens and are shown in later ta- bles with those test data. Plates for welding were obtained from mill production materials in the form of plate, bar, or billet slices and from laboratory materials in the form of ingot slices or rolled or forged plates. The plates were saw cut or ma- chined to 30 deg edge bevels, the hot rolled surfaces along the cut edges were ground and the plates were pickled and rinsed in preparation for welding. Filler metals for welding each plate were made from the same material as the plate so that the weld metal and 58-s | FEBRUARY 1971

Transcript of The Strength-Toughness Properties of Welds in Plates of...

Page 1: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

The Strength-Toughness Properties of Welds in Plates of Commercial Titanium Alloys

An order of toughness rating for welded titanium alloys was found to be: high purity titanium with very low hydrogen; Ti - 6 Al - 2Cb -1 Ta -1 Mo; alpha and near alpha; alpha-beta; commercially-pure; beta

BY L E. S T A R K

ABSTRACT. The strength, toughness and hardness properties were determined for multipass welds deposited by gas tungsten-arc welding in plates of commercial and semi-commercial titanium alloys.

A rating in order of decreasing Charpy V-notch impact toughness was as follows:

1. High purity titanium with very low hydrogen had 60 ksi ultimate strength and 150 to 190 ft lb toughness at room temperature.

2. Ti-6AI-2Cb-lTa-lMo with an ulti­mate strength range of 125 to 150 ksi had corresponding toughness of 45 to 20 ft lb.

3. The alpha and near-alpha alloys ranging from 85 to 150 ksi ultimate strength had corresponding toughness of 55 to 10 ft lb.

4. The alpha-beta alloys ranging from 100 to 165 ksi ultimate strength had corresponding toughness of 45 to 5 ft lb.

5. The commercially-pure grades with ultimate strength from 60 to 120 ksi and toughness ranging from very great to less than 5 ft lb had progressively decreasing toughness with increasing hydrogen con­tent.

6. The beta and near-beta alloys with ultimate strengths above 110 ksi and capable of heat treatment to very high strength levels had very low toughness of less than 10 ft lb.

The strength-hardness properties fol­lowed a predictable relationship similar to that developed by steel with the ex­ception of several beta alloys.

Introduction Titanium metal is finding many uses

because of the advantages it offers in strength-to-weight ratio, corrosion and erosion resistance, high temperature strength, fatigue strength, creep resist­ance and cryogenic properties. Fabri-

L. E. STARK is Senior Welding Engineer, Research & Development Division, The Bab­cock & Wilcox Company, Alliance, Ohio, and was formerly with Reactive Metals, Inc., Niles, Ohio, where the work on which this paper is based was conducted.

Paper selected for presentation at the AWS 1970 National Fall Meeting

cators are concerned with the welda­bility of the many alloys from which they may design for a particular appli­cation.

This paper summarizes some basic design facts concerned with the strength and toughness properties of weld metal of the major commercial or near-commercial titanium alloys. The welding and testing data presented herein were developed over a period of several years generally from laboratory programs aimed at the investigation of a particular alloy or an alloy system. The data were developed from tests which utilized similar welding conditions and materi­al geometry for the evaluation of all alloys.

• ) • * . .

^ :

i W¥ kfifl 1 'ai 41

Fig. 1—Photograph of commercially-pure plate weld cross section slices after etching and hardness testing. Left col­umn—alloy no. 1, as-welded; alloy no. 2, as-welded; alloy no. 3, stress-relieved; alloy no. 4 as-welded; alloy no. 7, as-welded. Right column — alloy no. 9, stress-relieved; alloy no. 10, as-welded; alloy no. 11, vacuum annealed as-welded; alloy no. 13, as-welded; alloy no. 16, as-welded: Weld fusion lines and heat-affected zones were outlined for photo­graphic clarity

The major test data were the results of all-weld-metal tensile specimens and weld metal Charpy V-notch im­pact specimens prepared from welds in plates of V 2 in. or greater thick­ness. Rockwell hardness tests were made on weld metal, heat-affected zones, and base metal. The assembly of the data gave a picture of the relative strength-toughness properties of weld metal of all the titanium alloys.

Description Of Materials The materials were classified into

the four major titanium alloy types: 1. Commercially-pure. 2. Alpha or near-alpha. 3. Alpha-beta. 4. Beta or near-beta. Special emphasis was considered for

the commercially-pure grades, the near-alpha alloy Ti-6Al-2 Cb-lTa-lMo, and the alpha-beta alloy Ti-6A1-4V because these alloys are of great significance in corrosion, marine, and aerospace applications. The chemical analyses of the ingots for all materials are listed in Table 1. Also, analyses for oxygen and hydrogen were made from the broken tensile and impact specimens and are shown in later ta­bles with those test data.

Plates for welding were obtained from mill production materials in the form of plate, bar, or billet slices and from laboratory materials in the form of ingot slices or rolled or forged plates.

The plates were saw cut or ma­chined to 30 deg edge bevels, the hot rolled surfaces along the cut edges were ground and the plates were pickled and rinsed in preparation for welding.

Filler metals for welding each plate were made from the same material as the plate so that the weld metal and

58-s | F E B R U A R Y 1971

Page 2: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

<!£

CD J £

_ CNJ CNJ

OO CO - w O CD CD

2 : cr- o o

r o ^ - 1—i ,

i r i i n W H H H O C M M H H O r O H ' Y j m

CO o 3

N c \ ! N H M r O ( r i L n i i ) H O ^ - r v ' f l ' i ^ r H H I D i n

r-- ^ j - LTJ

*#• O «* ^ *r ,>r *= C . c o . L O O O O > s - ^ , ~ ^ ^ CO • — I N N > > ^

O f M H r H C O N

r o r o r o r o I-H I -H

M O 10 in 00 to to 10 m w m vt M O fn o o o o o o n o n n n n n N t n n H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<Tl LO t O C~> ,—| (—) CD CO O

r-- .—1

•r-H CM

^ c o ^ N O c \ i a i c o r v c \ i t r ) c n c o r ^ . o o o r s c o c n i n r M N t t o i T i H f t i r i N D i o c o i — . H O O O O H H O O H H H H O H H H

r o m r v j i v

N t o ^ f i n ' O v j o - H *—1 —1 H O H H CD CD CD CD O CD CD

h . • > ^"i—I r o IO I S 0 0 n o ^ r o N ^ o H O O O H rV) > 3 - H

=1= 9r

— d £ M LU

£0

o

<

>, 0

m

<

E ° 0 u

^ cu

V 1-CD 5

2 c

AI-1

2;

AI-

2S

Mo

r-. UD

X X

CNJ r o CNJ CM

C CO

i n

CM

6 :>

O LO ^ CM (TJ _1

*J r o

-Q

ro <r

•s s ,Q.CM

> ^ > > UJ > > > > > > > > 2

r s j ^ r ^ r * ^ r ^ r ^ r ^ r j - T j - ^ j - ^ - ^ r r r o

< < < " ? t < < < < < < * i < T < r o i o c o — — ; c £ > L n L o c r > c j c > L O c r > L r * . — ^ f

x x x S c o x x x x x x x x c S x

O C CNJ

<=r ra- up

< < < r-* -^r U D

O M '

< r o — — OJ

- < < — U_ r o r o < I D <U

CQ < C Q Q Q u J i x f J I - - > ^ J L n < ^ r ^ r s r s r ^ r ^ r ^ r ~ - - r ^ . r ^ . r - ^ r - - . i ^ — . 0 0 C M C M C M C M C N J C M C M C M C M C M C N J C M C N J C M C M

11 i n -=*• ^ r

m °? 5 °?

c CO

™ CNI

m m

03

O

^ O O CM

> s w > 0 0 , in

< ro

_ < °P > > •? T" P? ' CO (VI ' ' < X X

< C D O < OQ * J - <3" ^ " LT> cr> LO f^-f*o o o <v> r o c o c o r o

o

< t £

£?£

os?

^ P H O c n O r~* O c o O

« i Z 2 C M i n r-* L n CD

J 3 «—' 1

O -Q § Q g JO §; .Q 15 r — l * Co UD

m i n

i n i n

:$£

O 65

x-i

P H i n U D i-H r H O CD 1—I „ „ CD CD CD CD CD - -

UD r-» CO O H O O H CD CD CD CD O

r*- r-. i n CD CD CD CD CD CD

i - H C D i n C M C x D C n r ^ . r O C D C D ' ^ - C D C O C O C O C D C M N ^ v r a ^ ^ i n c o o ^ H r o m r s u ^ r j i u D c o o j O n H H r O O O O H i M r O i n r i C D O O r - H

r-. cn co r-» r-. UD O CD CD

in. in CD CD O O

cn r-i CO CO O rH

c

1

"co

E «

0

. a CO

1 -

0

<.

0

<

0

cn « O cn

CL ro

F <-> O

I S c

2? a Q.

^ C)

S CJ

CO CO

I- r- r-

Cf lC f lWCOWcLQja - 'CL tLCL tL -Zgg-Z .

S > - > - > - > - > ( j ( J o O O f j O O CD .—I ,—t ,

a. CO

n j — cu < C CO

•D X

c

. • . 0 . 0 . 0 . 0 . 0 . 0 - 0

O O O O O O O O

C C H i J H C O H ^ H C O H l O H C C l H l f l H

x x x x x x x x

r H r N j r o ^ j - m c o r N c o a i O r H C N j c v j ^ m c D r N <0 <

• ^ CO 0 1 o Q . r-i i-H CNJ

O

C O C O IT) LO

CNJ CN]

< CD T-H T—I CNJ CNI

E « — -H c o

E.E

>>>>

oE

•a cu.c ^ U C N .

B-B 60

c

6 i ' l

X cct 2 0) c<3 B r- OJ)

W " g O

— -0

CO i * ^ - *

is o

C H T 3 cS o O c

a co c 3 is S o ja <u en S 0

C^ CM CM O O O

ed

C M frt

. 3 CO .i-3 - a 13

CM a

o ,3

CJJ

§ 0 co CN

*soO

—' , cn

D_ U

> C L — O

" in

E ro E l O CO

a . cu

0 2

• 5 x CO • >'cn 01 J :

^ c

w > * J d O

O ^ ' O

0 , VM U

M

(D

S^ co

13 tt

| "2 H ^3

!u is

^ £

a l

CJ 53 CO -f

& — T3 JS

3 '^

C u

n > 1-, 0 <H 0

J 5 " T3

60 a

CO O

3 «

5 u

2 13

S £"

2 X) U

<u

2 °o CO rt 60.9

43

bi e c j

CJ • — u a,

J3 -9 0 3 cn

co

L T ^

2 i OJ CO

„ a

to c j

C Q

J3 u

- S B .

- cs . 5

E 2 *u

c j ^ N Vr

* a co

cn

CO 0 )

ro

bO

.E 2

a n C - CJ

4 3 c j

0> —

i s -

i X

2 rt

3 "S. cn O T3 CM CJ

E 2 O c j

co a

B.S

C3

S 3

O J3 * - cn

60 S

S i*

6 0 "

.a OJ

.2 is CM

d

C cN

' * - O

60 3

c

u CJ

t i

60 B

*— 0

*— G

J3

s*-. . c

T I C A 09

O CJ

- c

M CJ

£ c

CJ «-<

u, 3 U I t )

5 a -^ ts -3 S 00 CS - H

CO O JD O

W E L D I N G R E S E A R C H S U P P L E M E N T | 5 9 - s

Page 3: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

h. 0)

-O

E z

TJ

3

-a

<u

3

cu

"o

j £

"oi c 0)

m CD

N

'cn

4)

«j

a

» c

g (Q

_o

a Q . CO

60 _c

tf) <D

h-

10 CD V) cn CO a

c

c

CD 3

. C

C

8 CO

o

"(5 n j

•G

"co

< 6 cc

,—* £

CJ

cc

C

or < 00

> > 5 DC < CO

3 < 6 cr r H

00

> o CO

3 K CO

1* " f CO O Q

K £ ^ - ' w

3 c e ^ < o >

O O 1 - h- O

N O

r o

cc

LO

to

T3 CO

i n

to

<=r

oo

LO

N

"O

cc L O

X *** i n LO

CNJ

LO

OO

cc

T3

OO

CM

LO

OO

V

^3

TJ

CO

V

CO

i n

00

f&

T J

OO

X X r o LO

m LO

PO LO

ce rt

> > < <•? Siy.fe.fe. i n i n C M C M

r^ on in UD

CO o o

in in UD UD

oo oo

i n UD UD

x X X X i n ro oo

H M n « j

X X X X i n i n ro ro N I s * LO I D

3 < <

J a* < T- CO CC < < §• ce 2 ~ ^ ^ bx -—

~ ~ 3 < > 3 ce < < > 3 ce < co < > 3 < CO > > > > <

* f cw < < cr 2 i—l J >

5 K

or < co cc

</>><.</) 5 <

3 < 6 ce

ce

°? > O LT?

5 QE CO

< o >

H fc* O O h- O h- h C M C M t n i n C M i n C M

i n i n in I O in m ^

i n in in in in in

m in in in in in UD

to co rc rc co ca

T3 T J T 3 t ! T J T J CC

m in in m in i n TJ

LO in in in in in UD

C M i n i n CNJ

t ro c N

UD UD UD CO

CO CC CO (0

TJ TJ TJ TJ

UD UD LO CO

CM

1 —

OO

V

CO

TJ

oo

V

i o

CO

OO

CO

"O CO

X X X X X X X X

, „ c o r o r o r o r o r o r o • J l D L O l O L O L O l D L O

r o r o r o i n UD UD L O r—

LO r*»

i n r-»

ET T - H

5 <

3 < 6 ce

,—i

"? "? (/) w O C A >

ce ce y o .—i i—i •-—> i n ^ ^ N - * t—i —*

< < C / ) > C C > Q : <

> > > < c o < c o > H O

CM

r-»

CO

ra

TJ

00

U D U D L O C M C M C M C M i n

io t « j io i n rN ts r-»

co I D i n ^ io M — . r -

V

• r-. " D c c c d c o c d w ^ ^

oo -a 'TJ -o TJ £ X x

V u D U D U D U D i - H C n C O

X X ro LO

r o r o r o r o r o i n i n m U D U D U D U D U D r - h ^ r - -

Ct CO

6 ct t - H

3 < 6 ce r -H

- . 3 3 < < >

5 <

3 < 6 QC

N - *

3 _ < 3 > <

3 3 3 < < < 6 u u cc cn cn r-H *—1 I—1

S - , 3 ^ 3 < 3 < 3 < > < > < >

£ <

K CO

6 cc

^ 5

o < < <x > 6 ^ o ^ 3 ~ ~ < 3 ce > "? °?

H O t - O l - O H O l - O l - O H r -

CNI CO

I D LO

CO LO

V

CO

CO " O

T J LO

CD V

CNI

«*

CO

CO

TJ

00

LO CM

«3- c n

CO CO

V

CO

T J CO

CO ' T J

V c o

LO CM UD CM LO

on io r-. r- co

CO UD LO UD UD

V

CO

TJ ro co rc ca

co 'TJ TJ TJ 'TJ

V U D LO UD UD

CM

i n

LO

2 TJ

UP

^ - \ .-—. s-^ LO CNJ CNJ

LO i n LO

LD

CO C O N

V

cd «»

-o°° r~-co X X

V LO UD

X X X

ro ro UD UD

LO p*.

i n i n r-. r-

i n in in LO in r-» r-. r-» r^ r-*

m LO

r o r o r o UD UD UD

III a

IU £1 <

cn

CNJ LD 0) O l (0

a. c 0 W. (0 4) a a CO

cn

£ 0 c

0 0 u.

•^ cn c 0

CO CJ

"a.

<

CD XJ

E 3

z

33

CD

3

0)

• + _

O

^: c 0)

c 0

CO 0

"a a. CO

00 c

(rt CD

H

10 <D tn

(/) CO a.

c

3 < < ce

.—. r-t

ce co

> O i n

< <

3 3 < < < < ce_ ce ,—1 ^_|

oe J a re

CO < CO CO

^ ce i < > ce .J,

« ^ 0 S^2"? 0 /~N tsK1 r"* J^fe.10 CM r - i ^ C Z ^ ^ C M ^

^ 5 5 < < ^ £ r < c o E 5 < > C C < < < : ; Q : < C O : : ; : : ; < : ; ;

0 P i n v—'

<3"

cn

H H h O H r - r - O U h O

i-H 1—t CM UD C M C M U D U D C M U D N—' V-^- « _rf- V N ^ V - ' V_-' S_y V_« N,^ %_,

uDr - . r -« r - i n u D ^ r ^ j - u D i n

c n c n c n c n in i n in in OJ CM I -H T-4

CO

< CU

cc rt~r

3 < < ce ,—1

ce to

> 0

3 < <

1 5 < cc

SceS > |

co < - ;

H

t-H N—'

h -

r .

^ O CM t

i n i n

i n

UD UD

CC

1—1 > < > > <

3 3 3 ^ . 3 < < < c o < < < < < < ce ce ce 5 ce r H rt r—l •—J* fr t j

3 ^ 3 - , . 3 ^ 3 ^ < 3 < 3 c e < c o < 3 > < > < " ? > > > <

3 3 3 < < < < < < > > > < :> > < a s < ce 3 3 ce 3 3 ce 3 S^Si. 3 S i " 3 3<SS3<SS3<

< > 3 3 < > 3 3 < > 3 > ; ; < < > ; ; < < > > <

| ^<

< 5 < 5

3 < < ce r—l

ce co

> O

3 ce <

> ^ > **• W >

O h r - O r - O r - O h r - O O O H r - O l - h h U I - l - l - O l - O h O h l - O

UD CM CM LO CM >^^ •*_• - w / VN-* S_-

c n r-. 1 0 UD r-*

I D I D I D I D I N

/•^» /—•* / - s / - v ^ - v / - s .—* r > /^N L O C M U D C M C M L O U D U D C M N_^ V_^ v_^ \ ^ VN-' S_^ V»^ •*_• • ^ B '

u D C O u D i n ^ r r o r o u D r o i-H ^H

i n in

r - ^ U D L O U D U D U D U D U D U D

C*| I O H H CM i d r - I r r t C N I L O C N I , v_^ . / > , > \ *. ' , \ . . .

i o i n o c * j i O ' J c o H c D i n c o r H r-H r-H

L O C D L O L O L O C O I D L D C O C D L O

LO CM UD CM N—' N_^ •*_/ W

i n i n t n N J

UD

LO I O LO UD

/—N ^-V CM ^ f N—' V,^-

i n i n

i n i n

UD UD

_ CD

" • 3

» J8 —

3 j o Q .

o • : -o

Ml

QJ X

g X :j I D Q. • ,

X X X X

X X x x ID ID

r ^ 1— r ^ [—

. . . . CNJ CNJ CO CO CO CO —* —'

-a TJ TJ TJ X X

ID ID ID ID OO C^

X X X X X X UD UD i n i n UD UD

M O U 3

X X X on co r^

X X X

r-^ r--. r-»

<0

TJ

ro

TJ

cc:

TJ

ro

TJ X X

i n i n

UD UD

X X

. . UD in in in

• - (0 co cc - - • - eg .ro cc .co d .co .ro co co co (0 co X *° * * *

^ ^ "TJ "TJ "TJ ^ ^ "TJ 'TJ TJ TJ TJ 'TJ TJ TJ TJ TJ TJ TJ 00 X X X X

L O u D U D L O i - H C n LOLOUD l O l D l O i D l D l D l D i D l D L O i D l D ^ ^ " L T i C O N

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x in in in m in

cococDiDiN. f s . r sMDiDi f ) i n rNrNiDiDrNi— r->uDUDUDr^uDi-^r^,r-»r-^r-r^r^.

60-s I F E B R U A R Y 1 9 7 1

Page 4: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

cc co

> o /—s i n N — '

3 < ce > o *<"S * t

L O

3 < 6 ce s-^ r -H

CC CO

> o I D

—' ^ 3 CC CO

3 < o CO < >

H C M "

L O

K O CNJ I D

^

I D I D

CC 3 ccrn < r H

3 < 6 ce .—. * -H

ce CO

> O

** 3

te CO

< O >

h- I - O CNJ

I f ?

CN7

• «

• a -*^-r

•sa­

3 CC

S^.^ °? T - 1 1 -

CNJ N ^

L O

ce in

6 CC I*"— r - l

5^ < co 6 > cc o e—s *•—s I - H i n N ^ - V N ^

3 3 < < > >

3 <

3 < 6 ce

N - ^

=5

t r CO c j cr

C J

cr < cc co cr > CO >

5 CO <

3 < 6 cc rts ^ H

ce CO

> o LTJ

3 ce CO

< o >

h Q O h O h O l - H O C N

L O

«=T r-H

"3" ID

-—' C M

^r

L O

-—'

L O

CM i—•

L O

U D v _ ^

I D

C M ^ — < •

I O

CM

L O

L O

I D

cc 3 ££."? * —i

3 < 6 cc .—. i - H

ce CO

> o ^r

3 CC CO

< o >

fe1-0 - N "

cn

cv

cn

I D

O l

r — t

3 <

3 < 6 cc rtS .—1

CC CO

> o I D

3 CC CO

ce < o « i *

H i -CNJ

L D

/ ^ S ,—V C M L O

i n i n

5

3 < 6 cc rtN

ce 60

> O I D

3 CC CO

ce < o CC < CO - ^ —H 1- 1- o

CNJ

UD

CNJ L D

LO LO

^ cr < r H

3 < 6 ce r—l

^ < "D>

5 <

O

r H

3 < o ce r—l

*~7 > o L O

3 < >

cc ce CO CO

a 15« I .5 £ <CO < < o o o o o ce £ £ : K £ rtl^ * -H , ^_y * _ •

ce__ 3 ce -^ 3 _ 3

3 < 6 cr r -H

cr os t o v « ?

2-fe.C CCNJ w c r c r r 3 " ?

c o 3 c e < c o 3 < 3 < c e c o ^ < 0 > < < / > > > < > < > CO > « > £

L - O H h O h h O h h O O h O h O t r Q b Q H CNJ O

C O

U D

LO

C v l • — '

L D

CM I D •—• " W

r-. 0 0 r— L D

/ - V / - ^ /•—« / - ^ , -—. /—*. ^ - V / - ^ , — . i n c M C M L O L O C M U D C M i n V_^ ^_s s_^ s_^ S^- *—' •*—' L V \ _ ^

L D c o " ^ - ^ j - ' = r L n « = j - r - * c n

rv

oo

i n C M i n

cn < - ""

N rococo

CO

^ CO T J CO

X 'TJ °o 'TJ UD CO V 0 0

x x x x

in in in in in in i n i n i n i n i D L O i D i D r N N i N

V V V r-.r-.r-.

ro ro ro

CO OQ CO

CO CO CO

CD CD CD

in in co co co

i— t— r-~ r— r> '

v

i n m m m i n i n i n i n N j ^ - i D L n m m o D o o m m m m M t N j

i n co rs is

x x x r O CM r H r H r H i—l

X X X

CC T J CO CO

T J l*"> T J T J CO T J . 2 LD LD

CO T J CO X X — m i n m m T J I D T J '— TJ i n V i n t n i o V . . r-. V r-.

x x x x x x j ^ x x x r o r o r o r o u D u D r o r o r o U D U D U D L O i n i n r - * r - - U D U D L O

r--r-s r-.

x x x rH en co

x x x

V) CO c o o o

I x x x 5 X X X

CO • CO o o

CD —I O CD

X X X CD H O l CO

x x x i n i n i n

CO CO CO CO

co TJ ' ^ n * '"* co rc co co co T J i n X X X ^ ^ « " *T3 'TJ 'TJ T J co 'TJ « ^ » ^ a y i n r^ CM CM CM X X X i n LO i n i n 'TJ OO ^ LO i n ^ w w r ^ V r - ^ u D L n c o i ^ u D i n t n ' i n L n o o V X X X X

X X X X X X X X X X X X X X ^ 0 0 0 1 0 0 ^ ^

C O C O I D I D I D I D I D I D C O C O C O C O C O C O X X X X LD CD, I—« I— t—» iC— I— r ^ . L D c D L O L D C D C D LO I f )

CO OJ c

T J C CO CNJ

CD

00

3 < cc

cc in

3 < < cr cr co

3 < < ce

ce w < 3 cr <

> > o o ^ 1 - CO •~^cc -~^cc g co j co

cr < < < < 3 ce co > ce ^ ce < co feSiSSiSfefe CNJ ^rr n o CNJ CNJ

in > o ^ c c 3°? < < o rt

cr • CO '

3 3

° > ^ o

ce co > o

3 < 6 ce

3 K

<"? 3 6 ° < r — . , - H

> d . w

cc CO

> > o O S

O : ce

3 < 6 cr

ce co > o

cc tn > o

3 < 6 cc

cr CO

> o

3 < 6 ce

ce3 ce co <

^ ; H O O CNJT CNJ uo" LD" OO CNJ I D LD

> o; > > 3 ce co < 3 < co ^ > < * t t O O h- '

3 l3 < > < i

CNJ L D CNJ

CT

«?3 h-<

3 < < < >*£ fe

O ( - CNI

ce CO

6 ce

3 < 6 ce

cr CO

> o

3 < 6 cr

cr co > o

r J L D C O f r J ^ r i n « 3 - ^ * N J r-H CNJ

CNJ L D CNJ C O CNJ

I N I D r^ I N c j

- , 3 3 ce < < co > fefeSi CNTCNJ ^ r

CC cog

• CC CO

'CC

3 ^ 6 < 3 c c < 6 3 c r < 3 c r c o c e 3 < 6 c e 3 c c ^ . < c o ~ L c r < c 0 5 . < c o > c o < ; i c e c o < 3sifefeSi3fefe.sifefe.Sife.feSi3fe.fe

CNJCNJCNJLD r — I r - I C O r — I r — I C O C N J C N J r y CNJCNJ

N - C C

3"? < o

cc o |

•5- CC

< co

"fefe CNT CN?

CNJ r-^ o o c o ^r in in

LD in ID LO CD LO

i n i n i n

c o L O c o

X X X c n c o r -

x x x ,r- r - r--

i n i n i n i n c o c o o o c o i n u D i n i n i n m r ^ u D o j c o m m m i n m m m m w p - . r o o o r ^ c o r - r o U D U D U D I D CO OO OO cMCMCMCMCMCMOOr— r - U D U D U D m m

w CO CO

X UD UD UD

X X X UD i n UD

x x x i n m m

rc co • cc co to co , cn

CO '

X ^ N T J - 0 ~ ~ - O T J T J T J r g m m ^ ^ r o c o c o r o . S ^ en • m m • • • ' T j c o c o , u m m . • i n i f l i o i f ) \ / H iio i n m co V

- C A - X N s ^ w X X X X w w X

- 9 - o o c o A A c o c r , r r . c r , A A i n c o L O L O L O i n L O c o c o L o i n i n , r-H

CO CD c

T J c co < OD m CO CD O O

JJ? r-H r H CNJ CNJ . Q .

CO T J .CO T J ^

1 3 c o o c o X

OO V CO V LD

X X X X C I D i n Ln rn

LO LD LO

x x x CO CO CO

CO IN . LD

x x x

CO OO OO

«> X X X X co r o r o CO OO I N . LO

" X X X X - 1 - H - '

r-«. rn i n i n i n m i n i n c o r ^ r - ^

CMCNJCMCMCMCMXXX X X X X X X ^ C J H

X X X X X X A A A

i n L n m m L O L o m m m

UD UD UD

x x x

x x x r - . r - . r - .

CO CO

T J T J

CO CO

i n i n

X X r o r o LO LO

CS CQ

W E L D I N G R E S E A R C H S U P P L E M E N T | 61-s

Page 5: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

150 r

Fig. 2—Photograph of near alpha alloy Ti-6Al-2Cb-lTa-lMo plate weld cross sec­tion slices after etching and hardness testing. Top left—Alloy 20D, stress-re­lieved; top right—alloy 20A, as-welded; lower left—alloy 20B, as-welded; lower right—alloy 20C, vacuum annealed, as-welded. Weld fusion lines were outlined for photographic clarity

. _ — .

Fig. 3—Photograph of alpha-beta Ti-AI-V, alloy plate weld cross section slices after etching and hardness testing. Up­per left — alloy 27L, as-welded; upper right—alloy 25A, as-welded; lower l e f t -alloy 27J, stress-relieved; lower r i g h t -alloy 271, as-welded; lower center—alloy 25B, stress-relieved. Weld fusion lines and betatized heat-affected zones were outlined for photographic clarity

distributor and a bronze wool and expanded metal gas dilluser. Argon shielding was supplied at 20 cfh on the standard torch nozzle, 180 cfh on the nozzle extension and 20 cfh on the weld backing. Manual welds were made at 125 to 175 amp. Subsequent weld passes were .made automatically using a 500 amp capacity welding torch mounted on a carriage and track.

The welding torch was modified with a rectangular nozzle extension 3

g, 100 s 90

80 70 -

P 60

50

UTS = 1 5 0 ( 0 + . 1 3 F e + . 0 5 N 1 ) - 3 7 5

J _

•-*• .

_I_ _ L J _ _1_ j — i _ i .05 . 4 0 .50 .60 .10 .15 .20 .25 .30

O + . 13Fe + . 05Ni, Weight Percent

Fig. 4—Relationships for ultimate strength and chemical composition for commercially pure alloys

in. wide by 10 in. long similar in construction to that described in Fig. 1 of "Weldability of Ti-7Al-2Cb-l Ta Plate" by the author.1 Filler metal was deposited by laying one filler met­al strip in the groove and fusing 1 in. of filler metal per inch of weld in multiple passes until the weld groove was filled. Welds were made with a 0.187 in. thoriated tungsten electrode at 300 to 350 amp, 12.5 to 15 v, and 5.5 to 7.0 ipm travel speed. Argon shielding was 60 cfh on the standard torch nozzle, 500 cfh on the nozzle extension, and 30 cfh on the weld backing.

Many of the plates were used for two or more welds by cutting out the weld to a width of 1 in. for use in preparing all-weld metal tensile speci­mens, rebeveling the plates, reweld­ing, and cutting out the second weld to a width of 1 in. for additional all-weld metal tensile specimens, or cutting to a width of 2.25 in. for preparation of weld metal Charpy V-notch impact specimens and cross sec­tion slices for Rockwell hardness test­ing.

Welded plates of each alloy were tested in two conditions: as-welded and stress-relieved. The stress-relieved conditon was a simulated stress-relief heat-treatment applied to the saw-cut tensile, impact and hardness specimen blanks before machining. It consisted of heating at 1100° F for 2 hr and air cooling.

A vacuum annealing treatment was used for reducing the hydrogen con-

Table 2 Footnotes • T—0.250 in. diameter all-weld metal tensile specimen; CV—Charpy V-Notch impact speci­

men, weld at center; AW—as-welded; SR—heat treatment 1100° F-2hr-AC; RA or RC—cross section slice used for Rockwell A or C hardness tests across base metal, heat-affected zone, and weld; VAAW—vacuum annealed plates and fil ler metals before welding and tested as-welded.

>' Plate edge preparation was 45 deg single bevel. c Plate edge preparation was 30 deg double bevel. d One plate edge was 30 deg double bevel, other plate edge was 60 deg double bevel. G Butt welded manually because of small size. f One layer of overlapping weld passes deposited on top surface of plate to increase thick

ness sufficiently to assure ful l thickness machined impact specimens. e Filler metal was from alloy 34C. 11 Specimen blanks were heat treated at 1300° F and air cooled after welding.

tents of filler metal strips and plates of several alloys before welding. It con­sisted of heating for 4 hr at 1600° F and 1 micron pressure.

The welding and testing applica­tions for the welded plates are listed in Table 2.

Typical weld cross section slices after etching and hardness testing are shown in Figs. 1-3.

Rockwell A or Rockwell C hard­ness tests were made on a 2.25 in. wide cross section slice from each welded alloy in the as-welded and stress-relieved conditions. Generally, 10 or more hardness tests were made in each area of base metal, heat-affected zone metal, and weld metal. The hardness values for each zone of each cross section slice were averaged and the results are summarized in Table 3.

All-weld metal tensile specimens, 0.250 in. diameter, were machined from the saw-cut blanks which had the full thickness of plate or weld reinforcement and were 0.75 to 1.0 in. wide by 3.0 in. long with the weld located longitudinally along the cen­ter. Generally, duplicate tests were made for each condition. Chemical analyses for oxygen and hydrogen were made on metal from the frac­tured end of one of the broken tensile specimens for each test condition. The test results for tensile specimens are listed in Table 4 and are the average of two tests except as noted.

Standard Charpy V-notch impact specimens were machined from the center of 2.25 in. long cross-section slices saw cut transverse to the weld direction and with the weld at the center. The notch was located at the weld center perpendicular to the plate. The maximum increase of the width of the tested broken specimen was measured in thousandths of an inch and reported as mils expansion. Chemical analyses for oxygen and hy­drogen were made on weld metal from a fracture face of the room temperature broken impact specimens of each test series. The test results for

62-s I F E B R U A R Y 1971

Page 6: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

200 -

150 -

100 90 80

, 70 -

! 60

I 50 -

40

o o K 30

to 25 J3

« 20

'rt •a d W

o

i O

10 9 8 7

6

2

1.5

Cv = 1.5(24H+ 0 + . UNi) 2 ' 2 5 >'*

\

.2 .3 .4 .5 .6 . 7 . 8 . 9 1 . 0 24H + O + . UNi, Weight Percent

Fig. 5—Relationships for impact tests and chemical composi­tion for commercially pure alloys

Fig. 7 (right)—Relationships for ultimate strength and impact tests for Ti-AI-V alloys

impact specimens are listed in Table 5.

Discussion of Results Weld metal oxygen contents, as

shown by analyses of broken tensile and impact specimens, were in good agreement with ingot analyses and showed freedom from air contamina­tion during processing, welding or heat treating of the materials.

The hydrogen content of inert gas welded weld metal is generally less than that of the welding materials due to the sweeping action of flowing ar-

§ »°

/

UTS = 42+ 5V+ 9A1 + 15Fe+ 100C + 1250+ 140N+ 400H

60 70 80 90 100 110 5V + 9A1 + 15Fe + 100C + 1250 + 140N + 400H, Weight Percent

Fig. 6—Relationships for ultimate strength and chemical composition for Ti-AI-V alloys

172 - 1.7Cv

0 10 20 30 40 Charpy V-Notch Impact, ft.-lbs, Room Temperature

gon during welding. Since hydrogen analyses were not made on the weld­ing materials, this effect is not shown in these tests. Generally, the hydrogen content of the welds was in good agreement with ingot analyses except in several beta alloys where increases were attributed to hydrogen pickup

during processing of materials after ingot melting but before welding. The beta-rich alloys are more susceptible to hydrogen pick-up during processing than the alpha-rich alloys.

Because of the large variation in compositions among the alloys in-eluded in this series of investigations,

WELDING R E S E A R C H S U P P L E M E N T ; 63-S

Page 7: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

T 3 CO

i o ro

«* ro

ir> oo ro

r-~ oo

<3"

CD

r-. CD

^f"

o t O

OO

t p

CO

i—c

CD « -C N — <

O CC

o o

O l ^ r t O l

r ^ o c o c \ i c o c D c \ j r - j - o u 3 m c o c s j c n i \ j i — c o r o o i o i c o L D f O * ? ! — ro oo «3- CN]

< o — r o i—i c n

4 ) O i £ i N l Y ) r O ^ H O f V ) H i J 3 0 C O i r 3 ^ i ^ w r v l N ^ N a i f O W C \ I O O i Y ) r o ^

> s ro • ro ro • * • • • 5 o O O H H 5 H C \ J r I i Y ) f r i i o i ^ ^ ^ i r ) I O W i I ) l ^ l ^ < - i I ) i ^ r ^ C M \ m

^ U ) 0 } i o i o u 3 ^ r o r o m o i r o r n m m m r o r o M r O M O O .—I r-l IO

C^ CC r o r o r o

c n < o ,—| CD a i r-1 C M a i i o i — c o o o *=r"CNj H ' t O H O M ^ o j o o r v j C D L O f -» < o c n r-.

r o i o c N j L n » 3 - c y > c n c n

C M c o r^. t o

o r o i - N i r i ' d - H O r - . • r o C M r o

W N . W O O O H r M H c o H M r o r o m

C O C M O C M t r o O O f O

5 cc £ cr < 0) < CO

5 cr < ^ or < co > < co

0 0 ^

£5 ra - ro J£ 3 c e 3 3 r r 5 o : 3 3 3 3 3 3 3 K 3 c e 3 Q : 3 3 , - r c r - : 3 c r : 3 Q : 3 c t - : < C 0 < < C 0 < < O < < < < < < < C / ? < C O < C 0 < < C / j C O < C O < C O < C O < C 0 < C O < < < C O

c o +J

m 0

a o

CO

u

CM

NI -=r c

CO CNJ

-

2

C v l

C

C/J

i n c\j

< no X

> ^r 5 i n X

> HI

< T "r 3 x 3

i - £ . ' cu

Mi

TO rS

•C N — < g c j

< m

> > > > > > > > rf ^r *T ** ^ ^ *cr <3-

"T < < < < < < < < f — CD CD IC ID ID CO *J3 CD —

2 X X X X X X X X CD

O Q U J U . O I -l - ~ r— i— i— (— i— i—

< •s-j-

x

c s, t* CO o O CVJ ^ CD

> C O

'»> 03 O O

-O 3

(0 CD C

I D

> OO

<r CO

< 7. < o"? rt o > rt rt > x S

< CV)

O r-H

> ro r — J

< CD O

CNJ CNJ CNJ CNJ CNJ CNJ CNJ

c o i — I I — W N O M H H H r v i O r o i ^ H i n o ^ H O i L n i ^ N O ^ c o c ^ N N c o f o i ^ c j i r—t CO LO *r-1

03

f O n T ^ H i X > C T i f O C O « d - C N i r Y )

i C O C O O T i i i i o u i i ^ c o i ^ i n c ^ ^ o ^ O H r ^ c m M ^ i x i c s j i J D r ^ N

o C M L D H c o C J c o r o ^ c o r o f f i r o o r O v t ^

o cr

o ^ i > - < ^ c n c M N O c n c n ^ H r ^ . c o o o c o v O r o L O C D ' C N i ^ t O - d - r ^ c o ^ r o c N i H i D i n c O f o ON CD CO CNJ O O f O C O C ^ - C N J C O C N J C O L O C O C D

3 5 3 3 3 c r 3 c r 3 c r 3 Q - ; 3 D - ; 3 < 3 3 3 Q : 3 < 3 < 3 < 3 3 3 Q : 3 3 i r r Q : 3 Q r : S n - S a : < c / 3 < a ) < c o < c / ) < c o < > < < < c o < > < > < > < < < c o < < c o c o < c o < co < co

3 3 3 Q : 3 < 3 Q - : 3 Q - : 3 O ; < < C O < > < C O < C O < < 0

— o ca T3 H IA

CD

T J

CD

1 po

X ) CO

<

>*

<

o o

2>a> 'Z. - Q

1 =

CD

>. 3 >

i " ,

•2 o CD

g r t £

CO

>-o

CrJ

CO

> o UD

CO

CO

> I D I D

*3-

co >-CD J—

I D

a. o X

CD

D. Q. a. O O O x x x

r-- co o i

D. O X

o "

CL

o X

r—l

"

a. o X

CXI

"

zzz CD CD T-H

X X X

ro ^r io

T3 CL -9-< ro ro

!s >< ro cu c "a c ro < S -c .a. 5

ra ra 1 - H

X I - Q

O O C M CNJ

< < CD CD X X

ro r -

. Q

o CNJ

< CD X

ra 1-

o CNJ

< CD X

ra r-

- Q O e g

< CD X

ra 1—

JQ

o CNI

< CD X

< CQ o o CNJ CNJ

64-s I F E B R U A R Y 1 9 7 1

Page 8: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

LO to >=r CD to cn ^3-

co LO 00 cn 00 r-- ro

T-H LO 1—I CNJ i—l o CO

5 cc 5 £ cr l£ cr < co < < co < co

cu

> LO

<°? 3<

< CQ UD CO ro co

o o o c o c N j i — i c n i o c o

C N J o r - ~ o o c N J c o c o c o

v t l O O i C O H H s t r O

i ? c r . 5 c r £ c r 5 c r < c o < c o < c o < c o

o

t o —: —

O < 00 CD r H T—1

"O (0

TO rc

C D N

IS

•? «r < > 0 <

rJJ If)

J3

| 2 UJ

E*

Si JE 0)

I * ce cu

cu s s ^ »E I •

ro + J

v S TJ

O

3 < I

_CU

- Q

. E x 9-

d * 0 0 t o O CD

C O C D C X l C O C O C O L O ^ - C O C O ^ H * r - l L O C 7 i c o r ^ c O C » O O O O t O r O C N j c o a > c i > o i o c o c ^ ^ i D c o o c o ^ a i c r i r v r ^ o o c M c o r o i r ) O O O O H O O O O O H O O O O H H H H H H H H

3 Q ^J" * x > ^ C N j m c o t o t o c o o ^ c o i o c M C T i i ^ t O L O r o i ^ t o o o c N j i " ^

" ° ° o i 1 1 ^ c N j ( v j c o o o o o > - H c o i X ) r ^ r o r ^ c n o o o c » c n t o c N j r ^ i o L ^ (l> J_ I w *T * D ^ r V ) C N l H m r O N C S i r O C M H C s J H H H H H f \ I C M C \ I C N i r O r \ I H H H H H

cc ro

c o *—i _ o o i n r o r o o r o o o i n i n w o i i D n o i j O c o i D i n o i r i o m L n c o o i n O O '^z f- c J-£ o ( T » c \ J H H ^ r o H r H C N j o i X ! c n c T ) i T ) o r ^ r ^ < ^ m c N J H ^ ( N j c r i r ^ 7 J C 0 - — — t N J H H H H H H H H r - I r-1 T-H T—I t-H t-H T-H T—I ,-H r - l r - 1

DO

<.n r--.

i n

CD

1—1

m 1 0

t~i CNJ

i n 00

r . c_j>

t o

rn 10

fTi i-H

t—I r—l

O

0 0

LO LO

O

1—1

<u

OH

CU

s

"TJ 3 •5 S? O O

$£-+ J O LD

5-2 °T5

O LO L O L O L O L O L O I O L O L O L O O L O C D

H H H N H i ^ ^ o i N C M O r o ^ N N j i x ) W c v j v j r \ i r v . c o c O L n r v . H i i > c ^ O i C T i H H M < \ J C \ i r \ i r o o i M r o m f O r O ( Y ) ^ ^ C N J ^ i r o r ^

t—t T-H i — - I T — I T — I H H I " I T — I I — I t-H I—I i—I r-H t—I i—I t—I r—I r—| ,—| ,-H ,_ t .—I ,-H T—I t—I T—I

3 <r *

3 c e 3 3 3 3 3 o - : 3 < 3 Q r ; 3 c r : 3 Q ; 3 c i : 3 c L 3 Q : 3 o ; 3 o ; 3 o - : 3 < c o < < < < < c o < > < c o < c o < c o < c o < c o < c o < c o < c o < c o <

rn cn

5

rn 0 1

0= < CO

, CD

3 < <r >

• ^ • • 7 — O

*»* M" fc O

V)

ro JD

C) CNJ

< X

fc.fc.fc; 2 3 o o o * * < V CNJ CNJ ^ j - ^ j -

i n S R x X

X! C) CNJ

< X

JD

O CNI

< X

- Q

O CNJ

<r X

X! O CNJ

< X

.a a CNJ

< X

CO

6

N -3

_ L _ L CO

< X

< CD

X

5 CNJ

ro r ^ ro CVJ

o c

— m

< 2 >• E

3 J2 < m o < r j l

CT, £ £ £ 3 3 r-H CC CC CC CNJ CNJ

o o CD

-E 1 a

o"$£

N I ^ O O K l N O C T l r H I N C O a i r O C N l H r ~ - C O O O < J - , i n L O N j ^ - t J ^ ^ s t r O f O l D H C M H H i n C O *

CNJ CNJ r - i

W U 3 N N L D H H O C M C O O H s t W U 3 N i J 3 ^ C O i r i i ^ O H C O v t i J 3 H O O i r ) O D r ^ r ^ L O ^ t O L O C T i O C M C O c n C » C O C O ^ « ^ ^ C O ^ - C D C N j C O t O T — I UD tO LO LO CO CM O O H H H H H C V I M M O O O O H H W r c J r O N t l O i n H H O O O O H H

ro to r-. r-CD CD

TJ cu cc

c 0

0

C O

O

c

cu

c

Ifc

s?

C N j r o c x ) r ^ C N j c n c N j ^ r x 3 c » c N j o ^ t O L O C N j L O L O L O ^ < ^ i o c » C M

c o o r o o w o i ^ i n w i J i o o f O L D i n f O O M i Y i L n o w w o L n L n M M

j£3> op._

CD > i 1 -

C ,— C v ;

L O C D O C D L O O L O C D O C D C D O C D L O C D L O LO CD CD O LO CD

L O l O L O O L O O O L O L O O C D O L O O O L O L O L O L O L O C D C D O L O L O

<D

C/)

il 8*

3 5 3 3 ^ ^ 3 Q : 3 Q - : 3 Q - : 3 Q - : 3 Q - : 3 < 3 3 3 C £ : 3 .< 3 < 3 < 3 3 3 o - ; 3 r r 3 c r < c o < c o < c o < c o < c o < > < < < c o < > < > < > < < < c o < c o < c o

3cr < co

0 «1 «1 — O CD

O CJ

Ol

3 . a . CO

i>> *2S

CO

> <-D

co > O I D

CO - V

LD LD

CO

> CL O X

CL CL 0. O O O X X X

Q_

0 X

CL 0 X

a. 0 X

-z.-z.-z. CNJ LD O

O O rt X X X

T CNJ

X 0

£E fe E r t O "

O

ra CJ)

c: n £ ID

(TJ • C

< ro X

O , 0 0

" ,H

WELDING R E S E A R C H S U P P L E M E N T | 65-S

Page 9: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

- E L O **4- C O C O C O C O m i O H I — L O I — C O C r i r N C O H r N C T H C O " £ Q _ L D C T l L D ^ - r ^ - C O r O O O C O C N j r - ~ r — C O r - ~ r - ~ C O O O l D r — I L O L D

Q . - 1 - 1

I — O O C D C N J O O r — J C O C M N f ^ C \ J C J r - i l D C \ J H O r T i D i D r + - , - C O r j O C M H H M L T l O O O H O O C O L D H O J l O O O O l

O ^ ? r - J r - H CNJ CNJ r—I r - H C 3 C 3 r - H r - H r - H r - H r - H r - H r - H r - H ^ J - r O ^ J - r ^ r - H

- 3 . - nf c D C N j o o r o c N j c N j co CNJ r-. CTI CNJ CM i n i— 01 co CT,

D O Q ^ 1 * 3 oo oo r-- co co co C O m O D O l O l C O C O O M D O O O O m O J - T ^ ^ O N r t ^ r-i CNJ - ^ - r t C - O r t r-i — W

CC ro

c o *-H - o D r o o o co o w c n r o c o i D c o r j O f o o

O ' + - . r - C feP L N C J L D D C O D O l f l l O r N H O l W c t l O C f l O O O O r ' J ' r-j ra . - • - < " rt rt CNJ • »

ao

sz -(-J D O O O I D O D D O O O O O O L O L f l tp-DOO

O N - — * - T H C O C M C O O M C O L O L n O L D N O l ' 3 ' O l CT, C M CU T. CO C O c f I D L D ^ I D O r t O L D r H H H H M W r O

to CD rt _CU 7J3 L O O O O O L C ! D O O O O O O l O O i D O O D L O O

E io 9P '7^ tN * N D ID H ^ t c o c M c o r j - L O f M c j ^ c o r N i o r o r o r N c o ( - C C O L D 1 D C O C D C D C D rtlD.—'lOrtCNJCNJCNjOoOCNJOLD^-J-W

' ^ Jr . CD ^ " — J r—J r -H r - H r - J r—L r — J r — i r H r - l r - H r - l r - H r - H T - H r - H r - H r - i r - H r - H r t — JTC *-3 ^ *K C/)

o .t;

CO (D

O CO Q- —

•r3 3 cc 3 tr 3 i < co < co < co

3 Q - : 3 Q - 3 3 Z Q - : 3 Q - : 3 3 Q : 3 Q - : < c o < c o < < < c o < c o < < c o < c o

M

co CNJ

ro O

£1 > •- °? ro — cu < c m "o c

J o - E

o*v S o > S

x 2

< CQ

m co

c o < ; D Q )

i l I D ' L L

O C N J S o " ?

< CD

- fc C n * J * ^ - [ M r O f O ^ J C O C n X ^ r L D H C O C O C O C M C O * c J H l D C N C O

T Q . • ^ D D L D r ^ ^ r - J L D D c f l D r O ' O r t f O f O C O l O D r O ' O q t c O

Q.

L N C T H t — C D r - H * — I — C O L n * D C O O i r O D r O C O H * * « * ; O O I — - ^ O C O C O O l C O O C M H r J ^ r C O O r O r J L O L O L D C O r N C O C O O l ^ r C J

O C^C C 3 * O * O C Z 3 r - H r - H r - H r - H r - H C 0 r - H T - l r - H r - H r — I C 3 C 3 r - l r - H r - H T - H r - L r - H

6 ^ C CD~ C O O N C O I — L O a i l O O l O I N H i N O C O H r J D q - C J I l D L n c O ^

ni - — " n ^ C ) N r t D H C O * * C f O L D r J C O f O r H C O c O f O r J D L 0 0 1 L O l D C n o i C O / • £ • rt l j L D L D C O C O C S J C M C J r N J * N J < r c O C O C M C O C J * N J C J N C O r H H r H C V J

C o ^ - C O C O O D O M M O O C O O O O C O C O O L D L D X C O O L D C O

— -•-; r- C Jj-N r N C O c M c j o o i o o o o j c j c j o i M O i o o c o c M c o o r N r a U J I D . ^ " , - J , _ | , _ ( , _ ( , — | r - l r — J r — I r - H r - H r - l r - H r - J r — I T — 1 , - H r-i

OD

. o rt O l D D L O O O D O O L O L O D O I D L D L D L D I D L D

}5<-o M _ • • • • • • r . — r - , „ C D C D C n o O C T O l D r O C N J C N J i — I D r H l M ^ T N N O C O f A j O l L D C T l N ^ i CU i r . r i C O a i O r H C J r H C M C * J f O H * H C J l M C M C J C y m c * J C O C M C O O r H O 'TC J U - t rtr—IT—Irtrtr-Hr—Ir-Hr—Ir—IT—lrtr—tr—IT—IT—IT—IT—IT—lr—lr—I

CO

CP rtjU-ST- L O L D O O O O L D O O O L D O L D D O O O L n O D L D O l D

C ' T T ; W Z . C V ] ' ^ . O H 9 > r t C V J H l 0 0 3 0 i p < t l D N r N C O C O O C V J l M m O G , ~ i l C S O O C O r O r O r J r J ^ r r j - r O * T ^ r J r J r J r J - * T r J - l D D D r O C \ J

-r-* l— CU * — ' ' — I I — 1 * — I 1 — L i — I 1 — l * - H r — I r t r — I r - H r—I r—I i—I r — I * — I r — I T — I I—1 r - H . — I i—I

5 +- rt

5*S 3 o : 3 t r 3 3 Q : 3 c r 3 3 3 3 3 3 3 Q : 3 Q - 3 Q : 3 a : O • - < t / ) < ( / ) < < c / ) < c O < < < < < < < c O < C O < C 0 < C O

— o ro > Q . -

E < CO

X

TJ rt H -°

• <

x 3

< CD r -~ i — CNJ CNJ

> > > > > > >

"t < < < < < < < — C D c D I D C O C O C O I D

co x x x x x x x < C D

X

> " d -

< d -

X

Q L U I L O I _ - I m r— I— r— J— r-~ J— r— c~ C N J C N J C N J C N J C N J C N J C N J CNI

- Q 3

> o o £

.EQ -*C/)

CO £

O . QJ

CO * J ( 0

c ^ . e c £ "i ro ca c

fc n . r cu = OJ CJ C 3 C 03

^ J £ W CO

5 OJ rc x < i/) — * -

5 " = S , . < D CO

O rt T i

<TJ ° C I t p OJ CO

CO o w rc

c a f ;

E ^ J E rt c S o CO CO i o * -

: M.E

, X3 CD

CD

S ? E O

CD O ( 0 <

U j O 10

D " F J oiS 1*2 5 <u i - to

| 0) <D to

3 - = r t " £

no attempt was made to examine the specific effects of each alloying ele­ment on the mechanical properties of the welded materials except in the case of the commercially-pure grades and the Ti-Al-Al-V alloys.

Relationships between strength and chemical composition were examined for the commercially-pure grades. Hy­drogen appeared to have no strength­ening effect as shown in alloys No. 6, 10, 11, and 12 where each alloy had two levels of hydrogen with no signifi­cant change in strength. Oxygen is a very potent strengthener. Figure 4 shows the relationship for the ultimate tensile strength and chemical equiva­lence for all the commercially-pure welds in the investigation. The rela­tionship within the composition range investigated is:

UTS (ksi) = 150(%O + .13% Fe + .05% Ni)-875

Relationships between impact toughness and chemical composition of the commercially-pure alloys showed that hydrogen is the most potent embrittler followed in order by oxygen and nickel. The effects of iron and palladium were uncertain but may have been slightly beneficial for in­creasing toughness. Iron is a strong beta stabilizer and this phase has a high solubility for hydrogen. The welds generally showed better tough­ness after stress relieving. This may have been due to a redistribution of the hydrogen into the small amount of beta phase formed by iron. Figure 5 shows the relationship for room tem­perature impact toughness and chemi­cal equivalence. The relationship is:

C(ft-lb) = 1.5(%0 + 11% Ni. +24%H)-2-2 5

Strength and chemical composition for the Ti-AI-V alloys appeared to be satisfied by the relationship:

UTS (ksi) = 42 + 5(% V) + 9(% Al) + 15(% Fe)

+ 100(% C) + 125(% O) + 140(%N) +400(%H)

as shown in Fig. 6. The strengthening effects of vanadium, aluminum and iron in this relationship were based on the composition of welded test alloys but the effects of interstitials were estimated from previous data, using the literature1 for oxygen and hydrogen, and unwelded alloy data for carbon and nitrogen.

Chemical composition of the Ti-Al-V alloys appeared to have similar effects on strength and toughness as shown in Fig. 7 by the inter­relationship:

UTS (ksi) = 172 - 1.7 Cv (ft-lb)

66-s | F E B R U A R Y 1 9 7 1

Page 10: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

Fig. 8—Weld metal strength-toughness properties for titanium alloys

for room temperature Charpy V-notch impact tests.

Considerable data on the stength and toughness of the Ti-Al-Cb-Ta al­loys were developed as previously re­ported.1* 2 Although those welding procedures did not match that of this investigation, several tensile and im­pact data points from Wolfe et al2

were included with the present tabula­tions to show the effect of intermedi­ate compositions for the Ti-Al-Cb-Ta alloy system. Also, tensile and impact data were included from the literature3

for the alloy Ti-8Al-Mo-IV welded and tested under matching conditions.

The weld metal strength-toughness relationships for all the alloys, are shown in Fig. 8 where it is shown that a distinctive separation can be made according to microstructure types. From Fig. 8 it can be seen that only high purity, very low strength, very low hydrogen titanium metal has ex­tremely high toughness. The best toughness in the intermediate strength range from about 85 to 150 ksi ulti­mate tensile strength is shown by the alpha and near-alpha alloys followed closely by the alpha-beta alloys. The lowest toughness is shown by the com­mercially-pure and the beta alloys. Only the alpha-beta alloys show a fair degree of toughness at strength levels above about 150 ksi. Alpha or near alpha alloys with strength levels above about 150 ksi are not in use since aluminum, the common alpha strengthener, may develop an embrit­tling intermetallic compound phase when aluminum contents are in excess of about 7 or 8%.4

Preweld vacuum annealing of mate­rials to very low hydrogen levels did not produce a significant change in the alpha-beta alloy 25A as it had for the commercially-pure alloys 6, 10, 11, and 12. Hydrogen, within normal lim­its, did not show an embrittling effect on the aluminum containing alloys or the beta alloys such as it did on the commercially-pure alloys. This was at­tributed to true interstitial solution of hydrogen in the alloys having crystal lattices expanded by substitutional al­loying, whereas, hydrogen formed an insoluble hydride phase in the com­mercially-pure alloys. The presence of small amounts of iron or palladium in the commercially-pure grades may have increased the solubility of hydro­gen in the weld metal because of the

Fig. 9—Hardness and ultimate strength relationships for titanium alloys

80

70

6 3 H s o « 50

40

150/190 ft. -lbs. <20 ppm H 6, 7, 8

O o g

All data are as-welded except beta alloys where s t ress relieved data (S) are included. Number 27 was omitted from data points shown as A through L. R2 and R3 points are from References 2 and 3.

Vfc fl4,34%eta 3 5 S ^ 7 S ' 32~s -—-—,.

80 100 120 Ultimate Strength, ksi

180

160

140

|

£j 120 s J 3

100

60 -

RA or RC for Hardened

Steel

RAfor Soft Steel

RA or RC for

Titanium Alloys

30 Rockwell C

J 55 60

Rockwell A Weld Metal Hardness

65

WELDING RESEARCH S U P P L E M E N T 1 67-s

Page 11: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

Table 5-

Alloy identity number

-Weld IVletal Charpy V*

Alloy composition

class

Commercially-pure grades 1

2

3

4

5

6

7 8 9

10

11

12

13 14 15

16

17

Alpha an 18

19

R2A' R2B' R2C 20A 20B

20C

20D

20E

20F

20G

21A

21B

22

23

30-Y.S.

40 Y.S.

50 Y.S.

55 Y.S.

70 Y.S.

X-C.P.

X-C.P. X-C.P. X-C.P.

X-C.P.

X-C.P.

X-C.P.

X-0.2Ni X-0.5N. X-l.ONi

X-1.5Ni

0.2Pd

d near alpha alloys X-3AI

X-3AI-2Cb-lTa

5AI-2Cb-lTa 6AI-2Cb-lTa 7AI-2Cb-lTa X-5AI-2Cb-lTa-lMo X-6AI-2Cb-lTa-lMo

X-6AI-2Cb-lTa-lMo

X-6AI-2Cb-lTa-lMo

X-6AI-2Cb-lTa-lMo

X-6AI-2Cb-lTa-lMo

X-6AI-2Cb-lTa-lMo

5AI-2.5Sn-ELI

5AI-2.5Sn

X-7AI-12Zr

X-6AI-2Sn-4Zr-2Mo

•Notch lrr

Con­dition"

AW SR AW SR AW SR AW SR AW SR AW VAAW AW AW AW SR AW VAAW AW VAAW AW VAAW AW AW AW SR AW SR AW SR AW SR

AW SR AW SR AW AW AW AW AW AW SR AW VAAW AW SR AW SR AW SR AW SR AW SR AW SR AW SR AW SR

ipact Tests

' R.T.

40.0/45.6 39.5/42.8 15.5/13.9 37.0/33.7 14.0/13.7 18.5/19.5 27.0/23.2 38.5/31.7 24.5/17.8 24.5/20.7 33.5/30.1

191.5/65.6 162.0/68.4 150.0/61.6

6.0/ 5.0 12.5/10.1 12.0/ 9.0 45.0/34.9 4.0/ 2.6

14.0/ 9.6 2.0/ 0.4 5.0/ 0.5

16.0/16.0 13.0/11.8 15.0/17.0 17.0/19.5 11.0/11.2 15.0/16.3 10.5/ 9.4 16.0/17.3 41.0/37.9 67.0/59.4

57.0/46.0 57.0/48.0 55.5/48.6 57.5/42.0

50 44 32 —

44.0/30.0 46.5/31.3

— 38.5/18.9 39.0/20.5 40.0/26.0 28.0/15.6 36.0/22.1 22.0/13.7 28.0/15.8 27.0/11.9 22.0/ 9.1 15.0/ 7.7 42.0/30.0 32.0/24.8 25.0/15.2 16.5/ 8.1 11.0/ 1.6 7.0/ 1.0

21.0/10.3 12.5/ 4.9

P+ lh r l - I D

32° F

42.0/44.3 34.5/36.0 14.0/11.9 41.5/34.8 14.0/13.5 26.0/25.3 22.0/18.5 40.0/29.9 18.5/15.4 19.0/14.9 31.5/35.0

195.5/71.0 159.0/76.4 165.0/68.9

6.5/ 5.5 10.0/ 7.8 10.0/ 7.0 40.0/33.7 4.0/ 1.8

15.0/ 9.1 2.5/ 0.8 4.0/ 1.5

14.5/13.5 15.0/14.8 14.0/12.2 19.0/22.2 11.0/10.4 16.5/14.6 10.0/10.4 15.5/15.7 38.0/33.8 74.0/58.4

55.0/38.0 53.0/39.1 47.0/37.5 56.0/38.2

47 45 33

48.0/25.7 44.5/26.5 42.5/22.3 37.0/20.0 38.0/21.0 37.0/20.9 35.5/22.2 30.5/15.6 25.5/14.7 23.5/13.0 30.0/16.3 25.5/15.3 20.0/ 8.0 15.0/ 5.0 41.0/24.9 27.0/20.4 21.0/ 8.4 13.5/ 8.5 11.0/ 1.9 7.0/ 0.2

22.0/ 8.2 17.0/ 5.6

/mils expans - 4 0 : F

32.0/32.2 28.0/28.0 15.0/10.5 34.0/26.9 15.5/13.4 25.5/23.5 24.5/18.3 31.5/23.4 14.0/ 5.0 16.0/ 8.7 31.5/31.3

174.5/75.5 158.5/76.3 173.5/76.8

4.5/ 3.6 7.5/ 6.2 9.0/ 5.9

40.0/34.4 3.0/ 1.0

12.5/ 7.5 2.0/ 0 3.0/ 0.1

12.5/ 9.8 13.0/10.9 14.0/13.4 18.5/21.3 10.5/ 9.4 18.0/16.5

— —

25.0/20.2 77.0/59.8

46.0/33.9 50.0/40.9 46.5/35.9 46.0/33.5

— — —

40.0/24.6 41.0/24.5 40.5/24.0 35.0/16.9 30.0/14.9 39.0/18.4 37.5/24.5 26.0/11.0 22.5/ 7.7 23.0/10.6 27.0/12.4 23.0/11.8

— —

32.0/20.2 23.5/13.6 18.0/ 8.7 12.0/ 5.2 9.0/ 0.8 6.0/ 0

18.5/ 6.3 14.0/ 4.5

i on - 8 0 c F

35.0/37.5 25.5/27.0 12.5/ 9.6 35.5/26.6 13.5/11.2' 31.5/27.6' 24.5/15.8' 29.5/19.6 13.5/ 7.1 11.5/ 7.7 33.0/30.1'

187.2/70.1" 164.8/76.4° 168.8/82.2'

4.8/ 3 .1 ' 7.0/ 5.4' 7.3/ 4.2 '

36.3/28.1' 3.3/ 0.9' 9.0/ 3.8' 2.0/ 0.3' 2.0/ 0 .1 '

13.0/ 9.4' 12.3/10.4' 13.0/13.0 17.5/18.7 10.0/ 8.5 13.0/14.1 10.0/ 8.9 12.5/11.6 33.0/27.5 69.5/49.7

45.5/31.7 51.5/38.7 51.0/38.1 40.5/33.0

39 37 25

36.8/17.4' 37.5/22.1 41.0/26.5 34.5/19.0 27.5/13.6' 28.8/12.9' 32.0/14.4 26.0/12.4 27.3/11.6' 22.8/ 9.4' 23.0/10.0 19.0/ 8.1 18.5/ 5.4 10.0/ 0.8 31.0/15.0 20.5/ 9.6 14.5/ 4.1 9.0/ 5.4 8.0/ 0.4' 6.0/ 0.2'

14.0/ 3.3 11.5/ 2.2

" -100° F

33.5/36.5 21.5/21.8 14.5/10.6 39.0/30.0 16.0/13.0 27.5/23.9 26.0/14.9 31.0/23.1

— —

31.0/27.0 169.5/78.8 156.0/81.1 165.0/81.1

5.0/ 5.4 7.0/ 4.1 7.0/ 2.9

33.0/25.8 3.0/ 0.3

10.0/ 3.7 1.5/ 0 2.0/ 0.3

11.5/ 9.0 12.0/ 8.8

— — — — — — — —

51.0/35.8 44.0/31.7 44.0/26.0 38.0/23.3

— — —

35.5/19.4 32.5/17.6 37.5/19.4 31.5/16.9 27.5/13.3 32.5/13.0 28.5/13.7 24.0/10.0 27.0/11.8 21.0/ 7.4 21.5/ 8.9 20.5/ 8.2

— — — — — —

7.0/ 0.4 5.0/ 0

15.5/ 1.7 9.0/ 0.8

(Continued

0, %

.060

.068

.167

.144

.126

.133

.211

.191

.294

.304

.092

.090

.104

.110

.125

.125

.215

.191

.348d

.353

.523d

.565

.190

.117

.083

.087

.070

.078

.066

.065

.128

.132

.068

.072

.069

.057 — — — .080d

.075 —

.069d

.095

.125

.070

.093

.076

.064

.094

.092

.105

.093

.112

.103

.187

.163

.112

.103

.105

.108

H, ppm

63 59 50 86 53 50 40 38 38 35 62 11 19 14

310 157 85 9

70d

9 62d

7 55

115 59 53 54 58 61 57 44 46

35 41 34 36 — — — 47d

43 — 47d

42 12 57 55 38 34 27 27 66 89 25 21 53 49 45 41 87 49

on Next Page)

stabilized beta phase. In the litera­ture,1 additions of hydrogen up to about 150 ppm were shown to affect the strength-toughness properties of weld metal of the Ti-7Al-2Cb-lTa alloy in the same manner as additions of the subslitutional elements—that is,

toughness loss was directly related to strength increase.

Relationships between hardness and ultimate tensile strength of the weld metal are shown in Fig. 9. The strength-hardness properties followed a predictable relationship for all the

alloys except the beta alloys. Ti-16V-2.5A1 and Ti-8Mn, as-welded, and Ti-1 Al-8V-5Fe, as-welded and stress re­lieved, which were not included in Fig.9. These beta alloys generally are not used in welded applications. Fig­ure 9 shows that Rockwell hardness

68-S | F E B R U A R Y 1971

Page 12: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

Table 5-

Alloy identity number

24

R3'

-Continued

Alloy composition

class

X-5AI-6Sn-2Zr-l Mo-Si

8AI-1M0-1V

Alpha-beta alloys 25A

25B

26

27A 27B

27C

27D 27E 27F 27G 27H 271 27J

27K

27L

28

29

30

31

Beta and 32

33

34A 34B

34C 35

36A 36 B

37

3AI-2.5V

X-3AI-2.5V

X-5AI-4V

X-6A1-4V-ELI 6AI-4V-ELI

6AI-4V

X-6AI-4V X-6AI-4V X-6AI-4V X-6AI-4V X-6AI-4V X-6AI-4V X-6AI-4V

X-6AI-4V

6AI-4V

X-4AI-3MO-1V

7AI-4Mo

4AI-4Mn

6AI-6V-2Sn

near beta alloys 3AI-8V-6Cr-4Mo-4Zr

3AI-8V-4Mo-4Mn

X-13V-llCr-3AI 13V-llCr-3AI

13V-llCr-3AI X-16V-2.5AI

X-lAI-8V-5Fe lAI-8V-5Fe

8Mn

Con­dition"

AW SR AW

AW SR VAAW AW SR AW SR AW AW SR AW SR AW AW AW AW AW AW AW SR AW SR AW SR AW SR AW SR AW SR AW SR

AW SR AW SR AW AW ANN SR AW SR AW AW SR AW SR

R.T.

21.0/ 5.8 12.0/ 4.2 26.5/12.0

46.0/34.8 43.0/34.1 42.5/30.3 41.0/29.6 38.0/31.5 25.0/12.5 23.5/10.7 18.0/ 6.8 16.0/ 4.6 12.0/ 5.5 25.0/12.4 22.0/ 9.0 17.0/ 8.9 14.0/ 5.6 17.0/ 7.0 16.5/ 7.3 12.0/ 3.5 14.0/ 4.5 19.0/ 8.2 14.0/ 5.9

9.5/ 1.0 9.5/ 2.3

12.0/ 2.9 11.0/ 3.5 14.5/ 7.5 13.0/ 6.6 13.5/ 2.9 7.0/ 0.1 9.0/ 1.8 9.5/ 0.6 6.0/ 2.0

10.0/ 1.3

5.0/ 0.1 5.5/ 0 5.0/ 0.4 4.0/ 0 4.0/ 0.1 3.0/ 0 2.0/ 0.5 4.0/ 1.3 8.0/ 2.2 5.5/ 1.6 2.0/ 0 3.0/ 0 2.0/ 0.2 2.0/ 0.9 5.0/ 0.3

Ft 1 32° F

20.0/ 2.8 14.0/ 4.9 22.3/10.4

42.0/32.7 43.5/31.9 43.5/32.3 46.0/29.6 49.0/39.7 19.0/ 8.2 16.0/ 5.7 15.5/ 6.9 14.5/ 5.0 14.0/ 5.0 26.0/13.2 21.0/ 8.9 15.5/ 6.9 14.5/ 5.1 18.0/ 6.3 14.0/ 4.4 16.0/ 5.1 12.0/ 5.5 16.5/ 6.3 15.0/ 3.9 17.5/ 4.8 12.0/ 2.7

— 11.5/ 1.7 18.0/ 8.0 12.5/ 6.0 15.0/ 3.4

9.0/ 0.5 11.5/ 0.7 11.0/ 0.4

9.0/ 0.5 9.0/ 0.8

6.0/ 0.1 4.5/ 0.9 5.5/ 2.0 6.0/ 0.2 3.5/ 0.3 4.0/ 1.6 4.0/ 0.1 2.0/ 0.1 5.5/ 1.3 6.0/ 0.8 2.0/ 0 2.0/ 0.8 2.0/ 0.4 3.0/ 0 4.5/ 0.2

b/mils expansion1, — -40° F

18.5/ 6.1 12.5/ 1.0 20.5/ 7.5

39.5/31.5 39.0/28.7 33.0/24.3 34.5/22.8 32.0/19.9 17.5/10.1 17.5/ 6.1 14.0/ 3.9 13.0/ 3.3 12.5/ 3.4 22.0/ 9.6 17.0/ 4.9 14.5/ 6.1 11.5/ 3.6 15.0/ 4.0 11.0/ 2.5 11.5/ 5.0

9.0/ 1.0 15.0/ 4.0 14.0/ 2.6 10.0/ 1.9 9.0/ 0.6 9.0/ 1.2

10.0/ 1.3 10.0/ 3.8 11.5/ 3.1 11.5/ 0.7 7.0/ 0.1 6.0/ 0 9.0/ 0.7 7.0/ 0 7.5/ 0.1

4.0/ 1.5 4.0/ 0.1 6.0/ 0 9.0/ 1.5 4.0/ 0.1 3.0/ 0.2 1.0/ 0 2.0/ 1.9 4.5/ 0.1 4.0/ 0.2 2.0/ 0 2.0/ 0 1.5/ 0 2.0/ 0 4.0/ 1.0

- 8 0 s F

14.0/ 3.6 11.5/ 0.5 16.5/ 6.0

35.0/20.4 37.8/25.4' 36.5/22.3 34.0/22.0 32.0/23.2 15.5/ 5.7 13.0/ 3.2 13.3/ 3.4' 11.8/ 1.8' 13.3/ 2.0' 19.0/ 5.3 14.0/ 4.0 14.8/ 4.9° 12.3/ 3.7' 11.3/ 2.4' 13.3/ 3.5' 13.8/ 3.0' 12.0/ 1.7' 12.0/ 1.6

9.0/ 1.0 10.0/ 0.1 9.0/ 0.6

10.0/ 1.6 11.0/ 2.0 17.0/ 6.1 11.5/ 2.6 8.5/ 0.3 7.0/ 0.9' 7.5/ 0 7.0/ 0 8.5/ 0 7.5/ 0

3.5/ 0.5 2.0/ 2.0 4.0/ 1.4 4.0/ 0.5 3.5/ 0 .1 ' 3.5/ 0 2.0/ 0 3.0/ 0.2 2.0/ 0.5' 5.5/ 0 .1 ' 2.3/ 0 .1 ' 2.0/ 0.3 2.0/ 0 2.5/ 0 3.0/ 0.2

s

-100° F

14.0/ 3.8 11.0/ 1.2 18.5/ 5.8

34.0/22.1 36.5/25.7 39.5/25.7 28.0/15.5

— 14.0/ 3.7 15.0/ 4.4 12.5/ 3.1 12.5/ 1.2 12.5/ 0.9 17.5/ 4.8 14.0/ 4.4 15.0/ 2.7 12.0/ 1.1 10.0/ 1.4 11.0/ 2.1 15.0/ 2.6 11.0/ 1.2

9.5/ 1.2 12.0/ 4.2 9.0/ 1.5

11.0/ 1.8 — —

13.5/ 2.5 10.0/ 3.4 10.0/ 0.1 6.0/ 0 8.0/ 0.1 8.5/ 0

10.0/ 0.7 —

4.0/ 0 4.0/ 0.4 4.5/ 1.6 4.0/ 0.8 2.0/ 0 4.0/ 0 2.5/ 0 2.0/ 0.5 2.0/ 0 6.0/ 0 2.0/ 0.4 1.5/ 0.4 1.5/ 0.2 3.5/ 0.9 2.0/ 0

0 , %

.138d

.122d

.084

.075

.072

.082

.087

.110

.109

.103

.110

.123

.123

.121

.086

.109 .119 .150 .175 .186 .075 .078 .203 .224 .169 .184 .118 .126 .137 .144 .205 .215 .138 .133

.095

.101

.107

.099

.098

.100

.110

.108

.188

.156

.360

.482

.442

.116

.115

H, ppm

74d

79d

76 73 17 46 46 53 51 44 38 43 66 60 56 63 38 32 38 34 32 26 44 55 33 35 59 43 47 90 58 49 34 40

33 38 27 35

145 81 80 97 33 47 94

129 160 43 43

a AW—as-welded; SR—heat treatment 1100° F-2hr-AC; VAAW—vacuum annealed plates and fi l ler metals before welding and tested as-welded.

b Two test results are listed for each impact specimen at each test temperature : ft-ib energy absorbed is at left of column and mils expan­sion is at right of co lumn; R.T. is room temperature, approximately 70° F.

' Average ft-lb and mils expansion are from two impact specimens. d Chemical analyses are from 32° F impact test. e Data for alloys R2A, B & C are from the l i terature2 and are from gas metal arc spray welds in single vee joints in 1 in. thick Ti-7AI-2Cb-

lTa plate. f Data for alloy R3 are from the literature3 and are for a gas tungsten-arc weld in 1.5 in. thick plate.

tests may provide useful information on the strength of titanium alloys.

The strength-hardness relationship for steel, as obtained from the Wilson Conversion Chart No. 60, is also shown in Fig. 9. It shows a small deviation from the relationship for titanium weld metals. The overlap region in the Rockwell C and A scale

curves of Fig. 9 was based on the Wilson Conversion Chart, but was found to be reasonably accurate with dual hardness test results on several alloys having hardnesses in the overlap region.

The betatized heat-affected zone, immediately adjacent to weld metal, in commercially pure, alpha, and al­

pha-beta alloys had hardness equal to the weld metal, indicating that oth­er mechanical properties of the beta­tized heat-affected zone might be ex­pected to match its weld metal prop­erties. The heat-affected zones of the beta or beta-rich alloys showed con­siderable variation in hardness as a result of reheating from subsequent

W E L D I N G R E S E A R C H S U P P L E M E N T | 69-s

Page 13: The Strength-Toughness Properties of Welds in Plates of ...files.aws.org/wj/supplement/WJ_1971_02_s58.pdf · strength had corresponding toughness of 55 to 10 ft lb. 4. The alpha-beta

passes. This variation was also related to the original base metal condition which could have had a wide range of properties depending on pre-weld heat treatment.

The alpha or alpha-rich alloys do not develop significant property varia­tions by heat treatment and therefore properties are relatively unaffected by pre-weld or post-weld heat treat­ments. Preweld and postweld heat treatments must be taken into consid­eration for welding the beta and beta-rich alloys to assure that the intended properties are developed in the weld, heat-affected zone, and base metal of these alloys.

Summary and Conclusions The strength, toughness, and hard­

ness properties were determined and tabulated for multipass welds de­posited by gas tungsten-arc welding in plates of commercial and semicom-mercial titanium alloys. A summary of the strength-toughness relationships for weld metal of all the alloys was shown in Fig. 8. This summary shows several categories of weld metal strength-toughness properties which could be classified by microstructural alloy types. A rating in order of de­creasing toughness of weld metal for these alloys types is as follows:

1. A special case of very great toughness, 150 to 190 ft lb Charpy-V, obtained with high-purity titanum having a low ultimate strength of

about 60 ksi and very low hydrogen such as would be obtained only by prior careful processing or vacuum annealing of filler and base materials.

2. The Ti-6Al-2Cb-lTa-lMo, near-alpha alloy type, having intermediate ultimate strengths from 125 to 150 ksi strengthened principally by aluminum and small amounts of carefully formu­lated beta phase and having corre­sponding Charpy-V toughness of 45 to 20 ft-lb.

3. The alpha and near-alpha alloys strengthened principally by aluminum in the intermediate ultimate strength range of 85 to 150 ksi with corre­sponding Charpy-V toughness of 55 to 10 ft-lb.

4. The alpha-beta alloys strength­ened principally by aluminum in the alpha phase and by vanadium, molyb­denum or manganese in the beta phase and developing ultimate strengths in the range of 100 to 165 ksi and corresponding Charpy-V toughness of 45 to 5 ft-lb.

5. The commercially-pure grades strengthened by oxygen in the low ultimate strength range of 60 to 120 ksi with corresponding Charpy-V toughness ranging from very great toughness to less than 5 ft-lb and each showing progressively decreased toughness with increased hydrogen content.

6. The beta and near-beta alloys having ultimate strengths above 110 ksi and capable of heat treatment to very high strength levels but with low

tousjhness of less than 10 ft-lb Char­py-V.

A summary of the strength-hardness relationships for weld metal of all the alloys is shown in Fig. 9. This summary showed the strength-hardness properties followed a predict­able relationship similar to that de­veloped by steel for all except several beta alloys.

Hardness tests also indicated the effect of welding on the heat-affected zone properties. The betatized zone immediately adjacent to weld metal was expected to match weld metal properties for the commercially-pure, alpha and alpha-beta alloys. All zones for welds in alpha and alpha-rich al­loys were expected to be relatively unaffected by pre-weld or post-weld heat-treatments. The properties of weld zones in beta and beta-rich alloys were expected to show considerable variation depending on preweld, mul­tipass, and postweld heat treatments.

References

1. Stark. L. E.. "Weldabi l i ty of Ti-7A1-2Cb-lTa P l a t e . " WELDING JOURNAL, 45 (2), Research Suppl. 70-s to 81-s, (1966).

2. Wolfe, R. J.. Nagler , H., Crisci. J . R.. and Frank . A. L. "Out of Chamber Weld­ing of Ti-7Al-2Cb-lTa Alloy Ti tan ium P la t e . " Ibid., 44 (10), Research Suppl. 443-s to 457-s. (1965).

3. Stark, L, E., "Proper t i e s and Cracking Resistance of Welded Ti-8Al-lMo-lV P l a t e , " Ibid., 47 (5), Research Suppl. 203-s to 209-s, (1968).

4. Crossley. F . A., "Ti tan ium-Aluminum Equi l ibr ium D i a g r a m , " I ITRI Final Re­port , Contract No. N161-25952, October 6, 1965.

Order now-slip cases for your Welding Journals

• Each case holds 12 issues (yearly volume of the Journal).

Stands upright. Journal issues slip in and out easily.

• Black sides, with back in Decorator's red. Title and AWS symbol

imprinted in 23K gold. Gold foil provided to enable user to in­

sert year and volume number within seconds.

• Made from finest quality binders board—covered with washable

simulated leather.

• Available from Welding Journal at $3.50 each. (Price outside

USA or its possessions—$4.50 each. Add 6% sales tax on

New York City orders. Allow 3 to 4 weeks for delivery.)

70-s I F E B R U A R Y 1 9 7 1