The solar dynamo

49
The solar dynamo The solar dynamo Axel Brandenburg Axel Brandenburg

description

The solar dynamo. Axel Brandenburg. Importance of solar activity. Solar 11 year sunspot cycle. Sunspots between +/- 30 degrees around equator New cycle begins at high latitude Ends at low latitudes equatorward migration. butterfly diagram. Sunspots. Sunspots. Large scale coherence. - PowerPoint PPT Presentation

Transcript of The solar dynamo

Page 1: The solar dynamo

The solar dynamoThe solar dynamo

Axel BrandenburgAxel Brandenburg

Page 2: The solar dynamo

2

Importance of solar activityImportance of solar activity

Page 3: The solar dynamo

3

Solar 11 year sunspot cycleSolar 11 year sunspot cycle

• Sunspots between +/- 30 degrees around equator• New cycle begins at high latitude• Ends at low latitudes

– equatorward migration

butterfly diagram

Page 4: The solar dynamo

4

SunspotsSunspots

Page 5: The solar dynamo

5

SunspotsSunspots

Page 6: The solar dynamo

6

Large scale coherenceLarge scale coherence

Active regions, bi-polaritysystematic east-west orientationopposite in the south

Page 7: The solar dynamo

7

22 year magnetic cycle22 year magnetic cycle• Longitudinally averaged radial field

• Spatio-temporal coherence– 22 yr cycle, equatorward migration

Poleward branch orpoleward drift?

butterfly diagram

Page 8: The solar dynamo

8

-effect dynamos (large scale)-effect dynamos (large scale)

Differential rotation(faster inside) Cyclonic convection;

Buoyant flux tubesEquatorward

migration

New loop

-effect

Page 9: The solar dynamo

9

The Sun today and 9 years agoThe Sun today and 9 years ago

Solar magnetograms:Solar magnetograms:Line of sight B-field fromLine of sight B-field fromcircularly polarized lightcircularly polarized light

Page 10: The solar dynamo

10

Sunspot predictionsSunspot predictions

Page 11: The solar dynamo

11

Grand minima/maxima?Grand minima/maxima?

Page 12: The solar dynamo

12

Cycic Maunder mininum: Cycic Maunder mininum: 1010Be recordBe record

Page 13: The solar dynamo

13

Long time scales: different Long time scales: different oscillators instead of chaos?oscillators instead of chaos?

Saar & Brandenburg (1999, ApJ 524, 295)

Page 14: The solar dynamo

14

News from the 5 min oscillationsNews from the 5 min oscillationsD

isco

vere

d in

196

0 (L

eigh

ton

et a

l. 19

62)

Was thought to be response of upper atmosphere to convection

Page 15: The solar dynamo

15

Solar granulationSolar granulation

Horizontal size L=1 Mm, sound speed 6 km/s

Correlation time 5 min = sound travel time

Page 16: The solar dynamo

16

Degree Degree ll, order , order mm

Page 17: The solar dynamo

17

5 min osc are 5 min osc are globalglobal

Roger Ulrich (1970)

Franz-Ludwig Deubner (1974)

Page 18: The solar dynamo

18

GONGGONGglobal global

oscillation oscillation network network groupgroup

Since late 1980ties

Page 19: The solar dynamo

19

Current Current state of state of the artthe art

SOHOSpace craft1993 – nowlost in 1998

Page 20: The solar dynamo

20

Only p-modes observedOnly p-modes observed

0..;24

Page 21: The solar dynamo

21

g-modes g-modes

• Would probe the center

• Are evanescent in the convection zone

Page 22: The solar dynamo

22

RefractionRefractionReflectionReflection

Top: reflectionwhen wavenlength~ density scale height

Deeper down:Sound speed large

RT

cs 2

Page 23: The solar dynamo

23

Inversion: input/outputInversion: input/output

Duval law Sound speed

uuFu

G

GuuFu

0

0

d )(' 1

)(

d )(' )(

2

rknR

r

r d 0

0

22

2 )1(

r

ll

ck

sr

2

2

2

)1(

llu

c

r

s

Page 24: The solar dynamo

24

Internal angular velocityInternal angular velocity

R

nlnlm rrrm00

0 d d ,

Page 25: The solar dynamo

25

Internal angular velocityInternal angular velocityfrom helioseismologyfrom helioseismology

spoke-like at equ.d/dr>0 at bottom

? d/dr<0 at top

Page 26: The solar dynamo

26

Cycle Cycle dependencedependence

of of (r,(r,))

Page 27: The solar dynamo

27

In the days before In the days before helioseismologyhelioseismology

• Angular velocity (at 4o latitude): – very young spots: 473 nHz

– oldest spots: 462 nHz

– Surface plasma: 452 nHz

• Conclusion back then:– Sun spins faster in deaper convection zone

– Solar dynamo works with d/dr<0: equatorward migr

Page 28: The solar dynamo

28

Activity from the dynamoActivity from the dynamo

Page 29: The solar dynamo

29

Buoyant rise of flux tubesBuoyant rise of flux tubes

Page 30: The solar dynamo

30

A long path toward the A long path toward the overshoot dynamo scenarioovershoot dynamo scenario• Since 1980: dynamo at bottom of CZ

– Flux tube’s buoyancy neutralized– Slow motions, long time scales

• Since 1984: diff rot spoke-like– d/dr strongest at bottom of CZ

• Since 1991: field must be 100 kG– To get the tilt angle right

Spiegel & Weiss (1980)

Golub, Rosner, Vaiana, & Weiss (1981)

Page 31: The solar dynamo

31

The 4 dynamo scenariosThe 4 dynamo scenarios• Distributed dynamo (Roberts & Stix 1972)

– Positive alpha, negative shear• Overshoot dynamo (e.g. Rüdiger & Brandenburg 1995)

– Negative alpha, positive shear• Interface dynamo (Markiel & Thomas 1999)

– Negative alpha in CZ, positive radial shear beneath– Low magnetic diffusivity beneath CZ

• Flux transport dynamo (Dikpati & Charbonneau 1999)

– Positive alpha, positive shear– Migration from meridional circulation

Page 32: The solar dynamo

32

Paradigm shiftsParadigm shiftsi) 1980: magnetic buoyancy (Spiegel & Weiss)

overshoot layer dynamos

ii) 1985: helioseismology: d/dr > 0 dynamo dilema, flux transport dynamos

iii) 1992: catastrophic -quenching Rm-1 (Vainshtein & Cattaneo) Parker’s interface dynamo Backcock-Leighton mechanism

Page 33: The solar dynamo

April 21, 2023

(i) Is magnetic buoyancy a problem?(i) Is magnetic buoyancy a problem?

Stratified dynamo simulation in 1990Expected strong buoyancy losses,but no: downward pumping Tobias et al. (2001)

Page 34: The solar dynamo

April 21, 2023

(ii) Before helioseismology(ii) Before helioseismology• Angular velocity (at 4o latitude):

– very young spots: 473 nHz– oldest spots: 462 nHz– Surface plasma: 452 nHz

• Conclusion back then:– Sun spins faster in deaper convection zone– Solar dynamo works with d/dr<0: equatorward migr

Yoshimura (1975) Thompson et al. (1975)Brandenburg et al. (1992)

Page 35: The solar dynamo

35

Near-surface shear layer:Near-surface shear layer:spots rooted at spots rooted at r/Rr/R=0.95?=0.95?

Benevolenskaya, Hoeksema, Kosovichev, Scherrer (1999) Pulkkinen & Tuominen (1998)

nHz 473/360024360

/7.14

ds

do

o

=AZ=(180/) (1.5x107) (210-8)

=360 x 0.15 = 54 degrees!

Page 36: The solar dynamo

36

(iii) Problems with mean-field theory?(iii) Problems with mean-field theory?

• Catastrophic quenching?– ~ Rm

-1, t ~ Rm-1

– Field strength vanishingly small?

• Something wrong with simulations– so let’s ignore the problem

• Possible reasons:– Suppression of lagrangian chaos?– Suffocation from small scale magnetic helicity?

Page 37: The solar dynamo

37

Revisit paradigm shiftsRevisit paradigm shiftsi) 1980: magnetic buoyancy

counteracted by pumping

ii) 1985: helioseismology: d/dr > 0 negative gradient in near-surface shear layer

iii) 1992: catastrophic -quenching overcome by helicity fluxes in the Sun: by coronal mass ejections

Page 38: The solar dynamo

38

Arguments against and in favor?Arguments against and in favor?

• Flux storage• Distortions weak• Problems solved with

meridional circulation• Size of active regions

• Neg surface shear: equatorward migr.• Max radial shear in low latitudes• Youngest sunspots: 473 nHz• Correct phase relation• Strong pumping (Thomas et al.)

• 100 kG hard to explain

• Tube integrity

• Single circulation cell

• Too many flux belts*

• Max shear at poles*

• Phase relation*

• 1.3 yr instead of 11 yr at bot

• Rapid buoyant loss*

• Strong distortions* (Hale’s polarity)

• Long term stability of active regions*

• No anisotropy of supergranulation

in favor

against

Tachocline dynamos Distributed/near-surface dynamo

Brandenburg (2005, ApJ 625, 539)

Page 39: The solar dynamo

39

Application to the sun:Application to the sun:spots rooted at spots rooted at r/Rr/R=0.95=0.95

Ben

evol

ensk

a ya,

Hoe

kse m

a,K

o sov

iche

v, S

c her

rer

(199

9)

nHz 473/360024360

/7.14

ds

do

o

–Overshoot dynamo cannot catch up

=AZ=(180/) (1.5x107) (210-8)

=360 x 0.15 = 54 degrees!

Page 40: The solar dynamo

40

Simulating solar-like differential rotation Simulating solar-like differential rotation

• Still helically forced turbulence

• Shear driven by a friction term

• Normal field boundary condition

Page 41: The solar dynamo

41

Simulating solar-like differential rotation Simulating solar-like differential rotation

• Still helically forced turbulence

• Shear driven by a friction term

• Normal field boundary condition

Page 42: The solar dynamo

42

Cartesian box MHD equationsCartesian box MHD equations

JBuA

t

visc2 ln

D

DFf

BJu

sc

t

utD

lnD

AB

BJ

Induction

Equation:

Magn.Vectorpotential

Momentum andContinuity eqns

ln2312

visc SuuF

Viscous force

forcing function kk hf 0f (eigenfunction of curl)

Page 43: The solar dynamo

43

Tendency away from filamentary fieldTendency away from filamentary field

Cross-sections at different times

Mean field

Page 44: The solar dynamo

44

Current helicity and Current helicity and magn. hel. fluxmagn. hel. flux

Bao & Zhang (1998),neg. in north, plus in south

(also Seehafer 1990)

Berger & Ruzmaikin (2000)

cycle/Mx104 246S

NDeVore (2000)

cycle/Mx10 246

(for BR & CME)

Page 45: The solar dynamo

45

Magnetic HelicityMagnetic Helicity V

- VH d curl 1 BB

1

2

212 H

J. Chae (2000, ApJ)

+

+

- -

11

d d1

SL

H SBA

2 d2

S

SA 1

AB

Page 46: The solar dynamo

46

Helicity fluxes at large and small scalesHelicity fluxes at large and small scales

Negative current helicity:net production in northern hemisphere

SJE d2 Sje d21046 Mx2/cycle

Brandenburg & Sandin (2004, A&A 427, 13)

Helicity fluxes from shear: Vishniac & Cho (2001, ApJ 550, 752)Subramanian & Brandenburg (2004, PRL 93, 20500)

Page 47: The solar dynamo

47

Simulations showing large-scale fieldsSimulations showing large-scale fieldsHelical turbulence (By) Helical shear flow turb.

Convection with shear Magneto-rotational Inst.

1t

21t

kc

k

Käp

yla

et a

l (20

08)

Page 48: The solar dynamo

48

Origin of sunspotOrigin of sunspot

Theories for shallow spots:Theories for shallow spots:(i) Collapse by suppression(i) Collapse by suppression

of turbulent heat fluxof turbulent heat flux(ii) Negative pressure effects(ii) Negative pressure effects

from <from <bbiibbjj>-<>-<uuiiuujj> vs > vs BBiiBBjj

Page 49: The solar dynamo

49

clockwise tilt(right handed)

left handedinternal twist

Build-up & release of magnetic twistBuild-up & release of magnetic twist

New hirings:New hirings:• 4 PhD students4 PhD students• 4 post-docs (2yr)4 post-docs (2yr)• 1 assistant professor1 assistant professor• 2 Long-term visitors2 Long-term visitors

Upcoming work:Upcoming work:• Global modelsGlobal models• Helicity transportHelicity transport• coronal mass ejectionscoronal mass ejections• Cycle forecastsCycle forecasts

Coronal mass ejectionsCoronal mass ejections