The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics,...

53
The Schur-Positivity Poset Peter McNamara Includes joint work with Stephanie van Willigenburg Algebra etc. Seminar Bucknell University 20 September 2007 Papers available from www.facstaff.bucknell.edu/pm040/ The Schur-Positivity Poset Peter McNamara 1

Transcript of The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics,...

Page 1: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The Schur-Positivity Poset

Peter McNamara

Includes joint work with Stephanie van Willigenburg

Algebra etc. SeminarBucknell University20 September 2007

Papers available fromwww.facstaff.bucknell.edu/pm040/

The Schur-Positivity Poset Peter McNamara 1

Page 2: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Outline

Shape of talk:

I Where to go from the basics: one direction

I Quick review: skew Schur functions, Schur-positivity

I Project 1: Necessary conditions for Schur-positivity

I Project 2: Special subposets

I Project 3 (Focus): Equality of skew Schur functions

I Open problems

The Schur-Positivity Poset Peter McNamara 2

Page 3: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Outline

Shape of talk:

I Where to go from the basics: one direction

I Quick review: skew Schur functions, Schur-positivity

I Project 1: Necessary conditions for Schur-positivity

I Project 2: Special subposets

I Project 3 (Focus): Equality of skew Schur functions

I Open problems

The Schur-Positivity Poset Peter McNamara 2

Page 4: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

One direction: generalizations/variations

I Quasi-symmetric functionsI Hall-Littlewood polynomials (coeffs in Q(t))I Macdonald polynomials (coeffs in Q(q, t))I Toric/Cylindric skew Schur functionsI Grothendieck polynomialsI Non-commutative symmetric functions

Each of these areas has a rich theory and important connections toother fields.

The Schur-Positivity Poset Peter McNamara 3

Page 5: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Review: Skew Schur functions

I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.I Young diagram.

Example:λ/µ = (4, 4, 3, 1)/(3, 1)

I Semistandard Young tableau(SSYT)

The skew Schur function sλ/µ in the variables x = (x1, x2, . . .) is thendefined by

sλ/µ =∑

SSYT T

x#1’s in T1 x#2’s in T

2 · · · .

Examples4431/31 = x3

4 x5x26 x7x9 + · · · .

The Schur-Positivity Poset Peter McNamara 4

Page 6: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Review: Skew Schur functions

I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.I Young diagram.

Example:λ/µ = (4, 4, 3, 1)/(3, 1)

I Semistandard Young tableau(SSYT)

64 9

57

64

4

The skew Schur function sλ/µ in the variables x = (x1, x2, . . .) is thendefined by

sλ/µ =∑

SSYT T

x#1’s in T1 x#2’s in T

2 · · · .

Examples4431/31 = x3

4 x5x26 x7x9 + · · · .

The Schur-Positivity Poset Peter McNamara 4

Page 7: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Review: Schur-positivity

sλ/µ =∑

ν

cλµνsν .

sµsν =∑

λ

cλµνsλ.

cλµν is the number of SSYT of shape λ/µ and content ν whose

reverse reading word is a ballot sequence.

Key: cλµν ≥ 0.

sλ/µ and sµsν are Schur-positive.

The Schur-Positivity Poset Peter McNamara 5

Page 8: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Big Question

sλ/µ =∑

ν

cλµνsν .

sλsµ =∑

ν

cνλµsν .

When is sλ/µ − sσ/τ or sλsν − sσsτ Schur-positive?

(Note: latter is a special case of the former.)

Goal: Characterize the shapes λ, µ, σ, τ that make sλ/µ − sσ/τ

Schur-positive.

Examplen = 4 Schur-positivity partially ordered set (Schur-positivity poset) onboard.

The Schur-Positivity Poset Peter McNamara 6

Page 9: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Big Question

sλ/µ =∑

ν

cλµνsν .

sλsµ =∑

ν

cνλµsν .

When is sλ/µ − sσ/τ or sλsν − sσsτ Schur-positive?

(Note: latter is a special case of the former.)

Goal: Characterize the shapes λ, µ, σ, τ that make sλ/µ − sσ/τ

Schur-positive.

Examplen = 4 Schur-positivity partially ordered set (Schur-positivity poset) onboard.

The Schur-Positivity Poset Peter McNamara 6

Page 10: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Big Question

sλ/µ =∑

ν

cλµνsν .

sλsµ =∑

ν

cνλµsν .

When is sλ/µ − sσ/τ or sλsν − sσsτ Schur-positive?

(Note: latter is a special case of the former.)

Goal: Characterize the shapes λ, µ, σ, τ that make sλ/µ − sσ/τ

Schur-positive.

Examplen = 4 Schur-positivity partially ordered set (Schur-positivity poset) onboard.

The Schur-Positivity Poset Peter McNamara 6

Page 11: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180
Page 12: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Project 1: Necessary conditions

TheoremIf sA − sB ≥ 0 (i.e. Schur-positive), then

the number of m × n rectangles fitting inside A ≤the number of m × n rectangles fitting inside B.

Examplem = 1, n = 2 in example on board.

The Schur-Positivity Poset Peter McNamara 7

Page 13: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

2

0

0

0

1

2

2

3

1

2

1

0

01

2

1

Page 14: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Project 2: Subposet of multiplicity-free ribbons

Joint work with Stephanie van Willigenburg

DefinitionA ribbon is a connected skew shape containing no 2× 2 rectangle.

Example

Indexed as 23121.

Suffices to fix #boxes and #rows.

ExampleRibbons(9, 4) on board.

The Schur-Positivity Poset Peter McNamara 8

Page 15: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Project 2: Subposet of multiplicity-free ribbons

Joint work with Stephanie van Willigenburg

DefinitionA ribbon is a connected skew shape containing no 2× 2 rectangle.

Example

Indexed as 23121.

Suffices to fix #boxes and #rows.

ExampleRibbons(9, 4) on board.

The Schur-Positivity Poset Peter McNamara 8

Page 16: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

2412

6111

4122

1611 5112

5211

25115121

341142121521

4221 1431 3213

3312

31322241

3321

3231

2322

22313222

2151

4113

3141

2421

4131

4311

Page 17: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Project 2: Subposet of multiplicity-free ribbons

DefinitionA skew shape A is said to be multiplicity-free if, when sA is expandedas a linear combination of Schur functions, each coefficient is 0 or 1.

TheoremThe poset of multiplicity-free ribbonsis always of the form

171111

511113

531111

351111

441111

411114

411141

311151

414111

315111

311511

411411

511311

513111

511131

211161

261111

216111

211611

611211

612111

611121

621111

711111

611112

117111

and is a convex subposet of the appropriate Schur-positivity poset.

The Schur-Positivity Poset Peter McNamara 9

Page 18: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Project 3: Equality of Schur functions

Joint work with Stephanie van Willigenburg

ExampleLook at Schur-positivity poset for n = 4 again.There appear to be some skew shapes missing.

QuestionWhen do two skew shapes have the same skew Schur function? Canwe classify this in terms of the shapes of the skew shapes?

An answer to this question could be thought of as a classification ofskew Schur functions.

The Schur-Positivity Poset Peter McNamara 10

Page 19: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Project 3: Equality of Schur functions

Joint work with Stephanie van Willigenburg

ExampleLook at Schur-positivity poset for n = 4 again.There appear to be some skew shapes missing.

QuestionWhen do two skew shapes have the same skew Schur function? Canwe classify this in terms of the shapes of the skew shapes?

An answer to this question could be thought of as a classification ofskew Schur functions.

The Schur-Positivity Poset Peter McNamara 10

Page 20: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The HDL series

Big Question: When is sλ/α = sµ/β ?

I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

The Schur-Positivity Poset Peter McNamara 11

Page 21: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The HDL series

Big Question: When is sλ/α = sµ/β ?I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

The Schur-Positivity Poset Peter McNamara 11

Page 22: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The HDL series

Big Question: When is sλ/α = sµ/β ?I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

The Schur-Positivity Poset Peter McNamara 11

Page 23: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The HDL series

Big Question: When is sλ/α = sµ/β ?I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

The Schur-Positivity Poset Peter McNamara 11

Page 24: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The HDL series

I HDL II: Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):I It’s enough to understand the equalities among connected skew

diagrams.

I 3 operations for generating skew diagrams with equal skew Schurfunctions.

I For #boxes ≤ 18, there are 6 examples that escape explanation.

I Necessary conditions, but of a different flavor. (This was theinspiration for Project 1.)

The Schur-Positivity Poset Peter McNamara 12

Page 25: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The HDL series

I HDL III: McN., Steph van Willigenburg (2006):I An operation that encompasses the operation of HDL I and the

three operations of HDL II.

I Theorem that generalizes all previous results.Explains all equivalences where #boxes ≤ 20.

I Conjecture for necessary and sufficient conditions for sλ/α = sµ/β .Reflects classification of HDL I for ribbons.

The Schur-Positivity Poset Peter McNamara 13

Page 26: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The setting

Skew diagrams (skew shapes) D, E .If sD = sE , we will write D ∼ E .

Example

We want to classify all equivalences classes, thereby classifying allskew Schur functions.

The Schur-Positivity Poset Peter McNamara 14

Page 27: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The basic building block

Stanley’s Enumerative Combinatorics, Volume II,Exercise 7.56(a)

TheoremD ∼ D∗, where D∗ denotes D rotated by 180◦.

Goal: Use this equivalence to build other skew equivalences.

Where we’re headed:

TheoremSuppose we have skew diagrams D, D′ and E satisfying certainassumptions. If D ∼ D′ then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

Main definition: composition of skew diagrams.

The Schur-Positivity Poset Peter McNamara 15

Page 28: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The basic building block

Stanley’s Enumerative Combinatorics, Volume II,Exercise 7.56(a)

TheoremD ∼ D∗, where D∗ denotes D rotated by 180◦.

Goal: Use this equivalence to build other skew equivalences.

Where we’re headed:

TheoremSuppose we have skew diagrams D, D′ and E satisfying certainassumptions. If D ∼ D′ then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

Main definition: composition of skew diagrams.

The Schur-Positivity Poset Peter McNamara 15

Page 29: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The basic building block

Stanley’s Enumerative Combinatorics, Volume II,Exercise 7.56(a)

TheoremD ∼ D∗, where D∗ denotes D rotated by 180◦.

Goal: Use this equivalence to build other skew equivalences.

Where we’re headed:

TheoremSuppose we have skew diagrams D, D′ and E satisfying certainassumptions. If D ∼ D′ then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

Main definition: composition of skew diagrams.

The Schur-Positivity Poset Peter McNamara 15

Page 30: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Composition of skew diagrams

D ◦ E =

Theorem. If D ∼ D′, then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

The Schur-Positivity Poset Peter McNamara 16

Page 31: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Composition of skew diagrams

D ◦ E =

Theorem. If D ∼ D′, then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

The Schur-Positivity Poset Peter McNamara 16

Page 32: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Composition of skew diagrams

D ◦ E =

Theorem. If D ∼ D′, then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

The Schur-Positivity Poset Peter McNamara 16

Page 33: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Composition of skew diagrams

D ◦ E =

Theorem. If D ∼ D′, then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

The Schur-Positivity Poset Peter McNamara 16

Page 34: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Composition of skew diagrams

D ◦ E =

Theorem. If D ∼ D′, then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.

The Schur-Positivity Poset Peter McNamara 16

Page 35: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

A skew diagram W lies in the top of a skew diagram E if W appearsas a connected subdiagram of E that includes the northeasternmostcell of E .

WWW W

W

Similarly, W lies in the bottom of E .

Our interest: W lies in both the top and bottom of E . We writeE = WOW .

The Schur-Positivity Poset Peter McNamara 17

Page 36: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

A skew diagram W lies in the top of a skew diagram E if W appearsas a connected subdiagram of E that includes the northeasternmostcell of E .

WW W

WW W W

W

WW

Similarly, W lies in the bottom of E .

Our interest: W lies in both the top and bottom of E . We writeE = WOW .

The Schur-Positivity Poset Peter McNamara 17

Page 37: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

D ◦W E =

15 boxes: first of the non-RSvW examplesIf W = ∅, we get the regular compositions:

The Schur-Positivity Poset Peter McNamara 18

Page 38: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

D ◦W E =

15 boxes: first of the non-RSvW examplesIf W = ∅, we get the regular compositions:

The Schur-Positivity Poset Peter McNamara 18

Page 39: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

D ◦W E =

15 boxes: first of the non-RSvW examplesIf W = ∅, we get the regular compositions:

The Schur-Positivity Poset Peter McNamara 18

Page 40: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

D ◦W E =

15 boxes: first of the non-RSvW examplesIf W = ∅, we get the regular compositions:

The Schur-Positivity Poset Peter McNamara 18

Page 41: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

D ◦W E =

15 boxes: first of the non-RSvW examples

If W = ∅, we get the regular compositions:

The Schur-Positivity Poset Peter McNamara 18

Page 42: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Amalgamated Compositions

D ◦W E =

15 boxes: first of the non-RSvW examplesIf W = ∅, we get the regular compositions:

The Schur-Positivity Poset Peter McNamara 18

Page 43: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

The hypotheses

In E = WOW , W and O must satsify certain conditions, all of whichare natural expect for:

Unwanted Hypothesis. In E = WOW , at least one copy of W has justone cell adjacent to O.

W

WWW W

W

WW W W

W

WWW

The Schur-Positivity Poset Peter McNamara 19

Page 44: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

What are the results?

Theorem. Suppose we have skew diagrams D, D′ with D ∼ D′ andE = WOW satisfying all the hypotheses. Then

D′ ◦W E ∼ D ◦W E ∼ D ◦W∗ E∗.

( )

)(

is a skew equivalence with 145 boxes.

The Schur-Positivity Poset Peter McNamara 20

Page 45: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

What are the results?

Theorem. Suppose we have skew diagrams D, D′ with D ∼ D′ andE = WOW satisfying all the hypotheses. Then

D′ ◦W E ∼ D ◦W E ∼ D ◦W∗ E∗.

( )

)(

is a skew equivalence with 145 boxes.

The Schur-Positivity Poset Peter McNamara 20

Page 46: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

What are the results?

Theorem. Suppose we have skew diagrams D, D′ with D ∼ D′ andE = WOW satisfying all the hypotheses. Then

D′ ◦W E ∼ D ◦W E ∼ D ◦W∗ E∗.

(

)

)

(

is a skew equivalence with 145 boxes.

The Schur-Positivity Poset Peter McNamara 20

Page 47: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

A word about the proof

The key: An expression for sD◦W E in terms of sD, sE , sW , sO.

Proof of expression uses:I Hamel-Goulden determinants.

I Sylvester’s Determinantal Identity.

The Schur-Positivity Poset Peter McNamara 21

Page 48: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Open problems

I Removing Unwanted Hypothesis (at least one copy of W hasjust one cell adjacent to O).

=D E=

D ◦W E has 23 boxes, and D ◦W E ∼ D∗ ◦W E :

(Maple-based software of Anders Buch, John Stembridge)

The Schur-Positivity Poset Peter McNamara 22

Page 49: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Main open problem

Theorem.Skew diagrams E1, E2, . . . , Er .Ei = WiOiWi satisfies all the hypotheses for all i .E ′

i and W ′i denote either Ei and Wi , or E∗

i and W ∗i .

Then

((· · · (E1◦W2E2)◦W3E3) · · · )◦Wr Er ∼ ((· · · (E ′1◦W ′

2E ′

2)◦W ′3E ′

3) · · · )◦Wr E′r .

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW]Two skew diagrams E and E ′ satisfy E ∼ E ′ if and only if, for some r ,

E = ((· · · (E1 ◦W2 E2) ◦W3 E3) · · · ) ◦Wr Er

E ′ = ((· · · (E ′1 ◦W ′

2E ′

2) ◦W ′3

E ′3) · · · ) ◦Wr E ′

r , where

◦ Ei = WiOiWi satisfies the natural hypotheses for all i ,◦ E ′

i and W ′i denote either Ei and Wi , or E∗

i and W ∗i .

True when #boxes ≤ 20.

The Schur-Positivity Poset Peter McNamara 23

Page 50: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Main open problem

Theorem.Skew diagrams E1, E2, . . . , Er .Ei = WiOiWi satisfies all the hypotheses for all i .E ′

i and W ′i denote either Ei and Wi , or E∗

i and W ∗i .

Then

((· · · (E1◦W2E2)◦W3E3) · · · )◦Wr Er ∼ ((· · · (E ′1◦W ′

2E ′

2)◦W ′3E ′

3) · · · )◦Wr E′r .

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW]Two skew diagrams E and E ′ satisfy E ∼ E ′ if and only if, for some r ,

E = ((· · · (E1 ◦W2 E2) ◦W3 E3) · · · ) ◦Wr Er

E ′ = ((· · · (E ′1 ◦W ′

2E ′

2) ◦W ′3

E ′3) · · · ) ◦Wr E ′

r , where

◦ Ei = WiOiWi satisfies the natural hypotheses for all i ,◦ E ′

i and W ′i denote either Ei and Wi , or E∗

i and W ∗i .

True when #boxes ≤ 20.

The Schur-Positivity Poset Peter McNamara 23

Page 51: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Main open problem

Theorem.Skew diagrams E1, E2, . . . , Er .Ei = WiOiWi satisfies all the hypotheses for all i .E ′

i and W ′i denote either Ei and Wi , or E∗

i and W ∗i .

Then

((· · · (E1◦W2E2)◦W3E3) · · · )◦Wr Er ∼ ((· · · (E ′1◦W ′

2E ′

2)◦W ′3E ′

3) · · · )◦Wr E′r .

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW]Two skew diagrams E and E ′ satisfy E ∼ E ′ if and only if, for some r ,

E = ((· · · (E1 ◦W2 E2) ◦W3 E3) · · · ) ◦Wr Er

E ′ = ((· · · (E ′1 ◦W ′

2E ′

2) ◦W ′3

E ′3) · · · ) ◦Wr E ′

r , where

◦ Ei = WiOiWi satisfies the natural hypotheses for all i ,◦ E ′

i and W ′i denote either Ei and Wi , or E∗

i and W ∗i .

True when #boxes ≤ 20.

The Schur-Positivity Poset Peter McNamara 23

Page 52: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Other open problems

I When does ◦ preserve Schur-positivity, i.e. if

sA − sB ≥ 0,

when issC◦A − sC◦B ≥ 0,

orsA◦C − sB◦C ≥ 0 ?

I Of the connected elements of the Schur-positivity poset, what’sat the top?

I Given a positive linear combination∑

ν aνsν , how do we tell if it’sa skew Schur function?

The Schur-Positivity Poset Peter McNamara 24

Page 53: The Schur-Positivity Posetpm040/MySlides/algebraetc.pdf · Stanley’s Enumerative Combinatorics, Volume II, Exercise 7.56(a) Theorem D ∼ D∗, where D∗ denotes D rotated by 180

Summary

I Project 1: Necessary conditions involving rectangles fitting insideshapes.

I Project 2: Subposet of multiplicity-free ribbons is a grid-likechunk in the Schur-positivity poset.

I Project 3: Theorem about skew Schur equivalence that unifiesand generalizes all previous results, and allows for a conjectureabout the complete answer.

The Schur-Positivity Poset Peter McNamara 25