The role of multiphase instabilities in Nature’s extremes ... · The role of multiphase...

78
The role of multiphase instabilities in Nature’s extremes Jenny Suckale SIGMA group, Stanford University

Transcript of The role of multiphase instabilities in Nature’s extremes ... · The role of multiphase...

TheroleofmultiphaseinstabilitiesinNature’sextremes

JennySuckale

SIGMAgroup,StanfordUniversity

ICE FIRE

ROCK WATER

Fractureorflow?

FRACTUREbut:

Aseismicdeformationandcreep?

FLOWbut:

Eruptionspeedsof100sm/s?

Fractureorflow?

FRACTUREbut:

Aseismicdeformationandcreep?

FLOWbut:

Eruptionspeedsof100sm/s?

Fractureorflow?

FRACTURESlidingoverahydrologically

flushedfaultzone

FLOWStabilityofasolidmatrix

experiencingsustainedflow

Fractureorflow?

FRACTURESlidingoverahydrologically

flushedfaultzone

ArtisticrepresentationbyZinaDeretsky,NationalScienceFoundation

FigurebyCooperElsworth

FigurebyCooperElsworthFigurebyCooperElsworth

PhotocourtesyofKurtCuffey,Berkeley

Flow:distributeddeformationSliding:localizeddeformation

Bed Elevation(Derived from Radar)

FigurebyCooperElsworth

Bed Elevation(Derived from Radar)

FigurebyCooperElsworth

⌧⇤ = f(�n � p)

p

Effectivenormalstress⌧⇤ = f(�n � p)

⌧⇤ = f(�n � p)

Shearstress ⌧⇤ = f(�n � p)

PhotocourtesyofMikeHambrey,TaylorGlacier,Antarctica,1987

Generalized model by Cooper Elsworth; see Elsworth and Suckale, 2016

CooperElsworth

Mechanical Model

Ice

yz

g

H

yz

ce

Tillα

W

Slip No Slip

Temperate FrozenForce Balance: Glen’s Law:

Ice

yz

g

H

yz

ce

Tillα

W

Slip No Slip

Temperate FrozenForce Balance: Glen’s Law:

Thermal Model

FullyCoupled

0 10 100 1000

Ice Speed [m/yr]FigurebyCooperElsworth

Ice Speed[m/yr]

600

400

200

0

B

C

D

E

F

20 km

A

Data from NSIDC, Scambos et al., 1994

Distance from Margin [km]0510152025

Ice

Spee

d [m

/yr]

0

100

200

300

400

500

600

AB

C

DE

F

Simulations by Cooper Elsworth; see Elsworth and Suckale, 2016

Distance from Margin [km]0510152025

Ice

Spee

d [m

/yr]

0

100

200

300

400

500

600

AB

C

DE

F

Elsworth andSuckale,2016

SimulationsbyIndraneel Kasmalkar;CollaborationwithAndersDamsgaard andLiran Goren

Indraneel Kasmalkar

Grains:

Water:

Flowchannelization occursfirstattheshearmargin

Mechanical Model

Ice

yz

g

H

yz

ce

Tillα

W

Slip No Slip

Temperate FrozenForce Balance: Glen’s Law:

⌧⇤ = f(�n � p)

freeboundaryGeneralized model by Cooper Elsworth; see Elsworth and Suckale, 2016

CooperElsworth

Simulations by Cooper Elsworth; see Elsworth and Suckale, 2016

30

Distance from Stream Center [km]

2030405060700

10

20

Nor

mal

ized

Bas

alSh

ear S

tren

gth

10

duringcontraction,anincreaseintdand/oradecreaseinbasalresistancewouldhavetooccur.Sincechangesintdarelikelytooccuroverlongertimescalesthantheobservedrateofnarrowing,wesuspectthattheresponseofKIStocontractionwasnotfastenoughtocounterinevitableslowdown.

[12]Figure3showsthatwhentheDuckfootstagnated,flowstripesbecamestrandedandshearedastheflowdirec-tionchanged.SimilarfoldsareseenneartheSteersheadIceRiseandinthemouthofMercerIceStreamandarelikelyaresultoflocalizedflowredirection[HulbeandFahnestock,2005].Jacobeletal.[2000]illustratetheformationoftheDuckfootfoldsimilartoourFigure3buthereweusethedatesofmarginshutdownanddeformationlengthtodeter-mineanaveragepaleo-icestreamspeedbetween340and

Figure2.Ice-penetratingradardataacrosstwoKISmargins,clippeddatashowninblack.(a)2MHzradardataacrossbothmarginsalongB-B0.Notethestrongreturnsignalatroughlyhalftheicethicknessisasystemglitch.(bandc)100MHzradaracrossM1andM2alonglineA-A0.Somepickedlayersareshowninblack.

Figure3.SchematicofDuckfootstagnationandflow-stripedeformation.(a)KISpriorto340yearsago.(b)KIS150yearsago.

L14502CATANIAETAL.:KAMBICESTREAMSTAGNATIONL14502

3of4

Migration in <10 years

Shear margin width

Shear margin width

Simulations by Cooper Elsworth; see Elsworth and Suckale, 2016

Surfa

ce V

eloc

ity [m

/yr]

600

400

200

0

30

Distance from Stream Center [km]

2030405060700

10

20

Nor

mal

ized

Bas

alSh

ear S

tren

gth

10

Simulations by Cooper Elsworth; see Elsworth and Suckale, 2016

Water Film

Arterial Channels

Distributed Cavities

Margin Position

Basa

l Stre

ngth

Basa

l Stre

ngth

Basa

l Stre

ngth

Frozen

Temperate

Discontinuous Migration

Stable Margin

Continuous Migration

FigurebyCooperElsworth

Fractureorflow?

FRACTURESlidingoverahydrologically

flushedfaultzone

Flowcreatesapatchyfaultsurface(here:drypatchesactasasperities,lakesarezonesoffreeslip)

Flowintroducesadifferenttimescalethatcanleadtorapidrearrangementoftheslippingzone.

Ellsworthetal.,2015

Salt water disposal

Unknown

Enhanced oil recovery

FiguremodifiedfromWalshandZoback,2016

Injection rate in million of barrels (≈108 liter) per month

Fractureorflow?

FLOWStabilityofasolidmatrix

experiencingsustainedflow

Sleipner gasfield- theworld'sfirstoffshorecarboncaptureandstorageplant

transfers

CONTROL

VOLUME

CONTINUUM

PHASE FIELDS

LOCAL

SYSTEM

SCA

LE

solid grains (transparent)

liquid films

gas bubbles

fluxesgas

liquid

solid

FigurebyTobiasKeller

TobiasKeller

TobiasKeller

TobiasKeller

KellerandSuckale,inreview

Multiphasemechanics

TobiasKeller

KellerandSuckale,inreview

Multiphasemechanics

3DGPU-basedcodebyLudovic Räss,seeRäss etal.,2018,SketchbyLøseth etal,2011

Ludovic Räss

ObservationModel

Simulations byLudovic Räss,seeRäss etal.,2018

Fractureorflow?

FLOWStabilityofcontinuousrockexperiencingsustainedflow

Sustainedflowaltersthestructuralintegrityofarockorgranularmatrix

FigurebyGoogleEarthImages

Top:Figure14.2fromRosi etal.,2013;Left:Figure4fromRipepe etal.,2007

NORMAL STROMBOLIAN EXPLOSIONS:largeinfrasonicpulses (>10Pa)every8-10min

PUFFING:small infrasonicpulses (≈1Pa)every1-2s

PASSIVE DEGASSING: continuousanddistributed

Experimental crystallinity datafromAgostini etal.2013;ComputationsfromSuckaleetal.2016

Crystallinity (%)

Pressure(M

Pa)

Tremor

VLPsignalTiltmeter

Seismic/strain

Subvolcanicmagmastorage

Plagiocla

se

Total

140m

75m

Plug(700-800m)

crystalbubble

TobiasKeller

KellerandSuckale,inreview

Governingequations

KellerandSuckale,inpreparation;Permeability scaling fromBai etal.,2010

Regime1:Darcyflow

Plug

ΔP

Nooverpressure

Seealso:Michault etal.,2013;RisevelocityfromGaudin etal.,2017

Regime2:Degassingwaves

Gasexpansion Magmacreep

vs

Pressurepulsesevery1-2s

⌧⇤ = f(�n � p)

σ1 (vertical)

σ3 ||NW-SE

Suckaleetal.,2016

Regime3:Mushfailure

⌧⇤ = f(�n � p)

σ1 (vertical)

σ3 ||NW-SE

Suckaleetal.,2016

Regime3:Mushfailure

NASAISSImage:StromboliVolcano,Italy;CraterlocationsfromHarrisetal.1996;Suckaleetal.2016

1.9

2.0

2.1

τ[105 Pa]

Suckaleetal.,2016

Mushfailure(normal

explosions)

Degassingwaves

(puffing)

Darcyflow(passivedegassing)

Fractureorflow?

FLOWStabilityofcontinuousrockexperiencingsustainedflow

Sustainedflowaltersthestructuralintegrityofarockorgranularmatrix

Theinterplaybetweenflowandmatrixdeformationresultsinoverpressureandmayentailfailure

ICE FIRE

ROCK WATER

Conclusions:

1) Multiphaseinteractionsatthegranularscalecantriggerashiftinthesystem-scaledynamics.

2) Fractureandflowoftenoccursimultaneouslyandinteractmoredynamicallythanweusuallygivethemcreditfor.

3) Studyingextremeevent’sacrossdifferentnaturalsystemswithasimilarmodelincreasesopportunitiestorefute/validatemodels.

Lookdeepintonatureandyouwillunderstandeverythingbetter.– AlbertEinstein

@

Thankyou.

Minamisanriku, Japan:95%buildings destroyed60%populationmissing40%evacuationsitesflooded

Bottom:Arahama,MiyagiPrefecture;Top:Yamada,IwatePrefacture

100outof300kmofseawallsinTohokudestroyed.

Tohokuindarkgreen,source:Wiki

MITUrbanRiskLab,2012

MITUrbanRiskLab,2012

$6,800,000,000

70000pinetrees inRikuzentakata destroyed,exceptforone“miraclepine”.

Coastalmitigationpark,Constitución, Chile

Hillsizes:A:2.0x15mB:2.6x20mC:3.4x25mD:4.0x30m

Coastalmitigationpark,Constitución, Chile

Hillsizes:A:2.0x15mB:2.6x20mC:3.4x25mD:4.0x30m

?

Marras etal.,inpreparation

Viscousshallowwaterequations(NUMA2D)

Continuity:

Momentum:

Dynamicdissipationcoefficient:

Wetting&drying:0.1mthreshold

Giraldo etal.,2002;Abdi andGiraldo,2016;Marras etal.,inreview

Switchesviscosityon/off

Bathymetry Freesurface Dynamicdissipation

2Dsolitarywaverunup oncircularisland

Synolakis,1987;Marras etal.,inreview

Unstabilized

Stabilized

Initialcondition

Lunghino etal.,inpreparation;Carrieretal.,2003

Lunghino etal.,inpreparation;Carrieretal.,2003

⌧⇤ = f(�n � p)

?

Velocitym/yr

0 1500 3000

−10Gt /yr

+10Gt /yr

AmundsenSea

?

EricRignot,NASAJetPropulsionLaboratory,Paoloetal.,2015;MacGregor etal.,2013

Siple Coast

Fluidsolver

QinandSuckale,2017;Suckaleetal.,2010a,b;Suckaleetal.,2012a

Interfacesolver Solidsolver

MangaandStone,1993;Suckaleetal.,2010a;Cliftetal.,2005;QinandSuckale,2017.

LOG M-14

-13

-12

-11

-10

-9-8

-7

-6-5

-4-3

-1

0

1

23

4 56 7 8

SHPERICAL-CAP

WOBBLING

ELLIPSOIDAL

DIMPLEDELLIPSOIDAL-CAP

SKIRTED-2

SPHERICAL

1. Wake formation 2. Settling speed 3. Three-phase coupling

Suckaleetal.,2012a;QinandSuckale,2017;Taneda 1956;Belien etal.,2010.

Re≈80Bo≈105

ScalingfromVergniolle etal.,1996;PhotobyJaupart andVergniolle, 1988;

Re≈80Bo≈105

PhDthesisbyJennySuckaleandSuckaleetal.,2010a,2010b

Re≈80Bo≈105

Rayleigh-Taylor

instability

exponentialgrowth

breakup

PhDthesisbyJennySuckaleandSuckaleetal.,2010a,2010b

Re≈80Bo≈105

PhDthesisbyJennySuckaleandSuckaleetal.,2010a,2010b

Taneda 1956 and Belien et al., 2010; Suckale et al., 2012a,b; Qin and Suckale, in review

1. Wake formation 2. Settling speed 3. Three-phase coupling

TobiasKeller

KellerandSuckale,inreview

Governingequations

Modifiedfigure11fromRipepe etal.2007