The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

14
The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal

Transcript of The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Page 1: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

The reciprocal

space• Space of the wave vectors

• Fourier space

• Inverse• Orthogonal

Page 2: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Reciprocal Space:Geometrical definition

• Introduced by Bravais• Then used by Ewald (1917)

• Definition of basis vectors

• with volume of the cell

• Equivalent definition (2D, 3D...)

• is orthogonal to et but NOT in gal to

• Reciprocal space: vector space basis • Reciprocal lattice: set of points

DL

RL

ab

b* a*

integers

𝒂∗=2𝜋𝒃∧𝒄𝑣

;𝒃∗=2𝜋𝒄∧𝒂𝑣

;𝒄∗=2𝜋𝒂∧𝒃𝑣

𝑸h𝑘𝑙=h𝒂∗+𝑘𝒃∗+𝑙𝒄∗

Page 3: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Definition by plane waves

• belongs to RS iff:

• Reciprocal space

• Set of wave vectors of the plane waves with the direct space periodicity

• Si mwlvkuhuvwhkl 2)(2.RQ

• Si on pose

entiers.

muvwuvw 2.RQR *** cbaQ zyxhkl

*** cbaQ lkhhkl

zy,x,zyx, hklhklhkl 2.,2.2. cQbQaQ

𝒒

𝑸h𝑘𝑙=h𝒂∗+𝑘𝒃∗+𝑙𝒄∗

𝒒

∀𝑹𝑢𝑣𝑤𝑒𝑖𝑸 ∙𝑹𝑢𝑣𝑤=1⟺∀𝑹𝑢𝑣𝑤𝑸 ∙𝑹𝑢𝑣𝑤=2𝜋𝑚

Page 4: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Properties of the RS • Symmetry

The reciprocal spacethe same point symmetry

as the direct lattice

Let be a symmetry operator of the RL and a point of the RL.

Thus belongs to the RL

• Duality• The reciprocal lattice of the RL is the direct lattice:

• RL of the RL consists in points such that:

• If the relation is verified• Conversely if , it satisfies ,

thus , and are integers and belongs to the RL

b* a*DL RLab

∀𝑸h𝑘𝑙𝑸h𝑘𝑙 ∙𝑹=2𝜋𝑚

Page 5: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

• The nodes of a lattice are regrouped in equally spaced planes:

The lattice planes• Family of planes

Lattice planes, rows

[100]

[001]

[010]

<100>

• Row : series of nodes in the direction Ruvw • Notation [uvw], u, v, w relatively prime

• Symmetry equivalent directions are noted: <uvw>

Page 6: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Lattice planes

c

1/3

1/4 1/2b

a

h, k, l Miller indices• Family of lattice planes • Famillies of planes equivalent by symmetry

dhkl

• Distance between planes

• If N(hkl) is the planar node density, N(hkl)/dhkl is the volumic node density • The most dense planes are the more distant• Crystals facets are planes with small indices

The lattice plane closest to the origin, intersects the cell axes in:

(0,0,1) (3,2,4)

𝒂h

,𝒃𝑘

,𝒄𝑙

Page 7: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Lattice planes and RS

Q010=d*

Q020

d010=2p/Q0102p/Q020

• The lattice plane closest to the origin satisfies:

• It intersects the axes in: h, k, l Miller indices (mutually prime)

To each family of lattice planes of period corresponds

A reciprocal space row of period • This row is orthogonal to the lattice planes

• The smallest vetor of this row has a magnitude

𝒉𝒖+𝒌𝒗+𝒍𝒘=𝟏𝒂h

,𝒃𝑘

,𝒄𝑙

Page 8: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

𝒅=𝟐𝝅 /𝑸

𝑹𝑢𝑣𝑤

is a RL vector

cannot be shorter, it is the row period

Miller indices:

𝑑

?

𝒏

Page 9: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Distance between lattice planes dhkl

• General case

• Hexagonal system:

• Cubic system :

• dhkl distance between planes (hkl)

Qhkl smallest vextor of the row

𝑑h𝑘𝑙=2𝜋

√h2𝑎∗ 2+𝑘2𝑏∗2+𝑙2𝑐∗ 2+2 h𝑘𝑎∗𝑏∗ cos𝛾∗+2𝑘𝑙𝑏𝑐∗cos𝛼∗+2 h𝑙𝑎∗𝑐∗ cos 𝛽∗

𝑑h𝑘𝑙=2𝜋𝑄h𝑘𝑙

𝑑h𝑘𝑙=𝑎

√ 43

(h¿¿2+𝑘2+h𝑘)+ 𝑙2(𝑎𝑐

)2

¿

𝑑h𝑘𝑙=𝑎

√h2+𝑘2+ 𝑙2

Page 10: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Multiple unit cells

• Body centered cell

• The condition implies

1) integers (Reciprocal space of lattice 2)

• Reflection conditions

cbaR

cbaR

0.5)w0.5)v0.5)u

wvu

uvw

uvw

(((I

F

PIFA

PFIA

Conditions

abA

B

b* a*

A*

B*

a

a*

• Hexagonal lattice• A = a-b; B=a+b; C=c

*)*(2

1

2

)(2

22*

*)*(2

1

2

)(2

22*

abbacAC

B

bacbaCB

A

vv

vv

2nkh

h+𝑘+ 𝑙=2𝑛

∀𝑹𝑢𝑣𝑤𝑸 ∙𝑹𝑢𝑣𝑤=2𝜋𝑛

same parity

Page 11: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

• Definition• Fonction or distribution

• Direct lattice described by a ’’node density’’ function:

Fourier transform of the RS

• The Fourier transform of direct lattice is the reciprocal lattice

‘‘node density’’ of RL

• The reciprocal space is the FT of the Direct space

𝑆 (𝒓 )=∑𝑢𝑣𝑤

𝛿(𝒓−𝑹𝑢𝑣𝑤)

𝑇𝐹 (𝑆 (𝒓 ) )=𝐹 (𝒒 )=∫∑𝑢𝑣𝑤

𝛿(𝒓 −𝑹𝑢𝑣𝑤)𝑒−𝑖𝒒 ∙𝒓 𝑑3𝒓

𝐹 (𝒒 )=𝑣∗∑h𝑘𝑙

𝛿(𝒒−𝑸h𝑘𝑙)

¿ ∑𝑢𝑣𝑤

𝑒−𝑖𝒒 ∙𝑹𝑢𝑣𝑤=∑𝑢

𝑒− 2𝑖 𝜋 𝑞𝑥𝑢∑𝑣

𝑒−2 𝑖 𝜋 𝑞𝑦 𝑣∑𝑤

𝑒− 2𝑖 𝜋 𝑞𝑧𝑤

¿∑h

𝛿 (𝑞𝑥− h )∑ 𝛿 (𝑞𝑦 −𝑘 )∑𝑙

𝛿 (𝑞𝑧− 𝑙)

∑h

𝛿 (𝑞−h𝑇 )= 1𝑇 ∑

𝑛=− ∞

+∞

𝑒− 2𝑖 𝜋 𝑛 𝑞

𝑇

Série de Fourier duPeigne de Dirac

Page 12: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Properties of the FT

uvwuvw

hklhkl vTF )())((1 RrQq

• Duality of RS and DS

• RS and DS have the same point symmetry• Let O be a symmetry operator of the DS

…then O is a symmetry operator of RS

)(')'('))'((

)()())((

3'.3'.

3)(.3).( 1

qFrrrrO

rrrrq

rqrq

rOqrq

∫∫∫∫

deSdeS

deSdeSOF

ii

iiO

• Convolution• Convolution of f and g is f * g

∫ udurur 3)()())(( gfgf

)()()2()(

)()()(3 gTFfTFπfgTF

gTFfTFgfTF

Page 13: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Application to low dimenbsion objects

2p/a

a

a

• 1D : chain )()u()(S

u// rarr

• 2D : planes )()()( // rbarr

uvw

vuS

hk

yx kqhqF )()()(q

h

x hqF )()(q

** baq yx qq

*aq xq

Set of parallel plane

Lattice of lines

a*

b b*

a*

Page 14: The reciprocal space Space of the wave vectors Fourier space Inverse Orthogonal.

Relation with diffraction• Bragg’s law

• Diffraction on lattice planes, spacing

Vecteur de diffusion• q normal to the lattice planes

Diffraction

belongs to RS(to the direction planes)

ki kdqq

d

𝒒=2𝜋𝑑

𝒏 𝒒=22𝜋𝑑𝒏

2𝑑 sin𝜃=𝑚𝜆 𝒒=𝒌𝑑−𝒌𝑖

𝒒=2𝑘 sin𝜃=4𝜋𝜆

sin𝜃=2𝜋𝑑𝑚