The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches...

10
The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop, 8-11 June 2015 MPIA Heidelberg

Transcript of The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches...

Page 1: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

The Quantum Mechanics of Fine Structure Lines:

[OI], [OIII]; [CII], [CI]

Hans ZinneckerDeutsches SOFIA Institut

NASA-Ames and Univ. StuttgartFSL Workshop, 8-11 June 2015

MPIA Heidelberg

Page 2: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Outline

Motivation: [OI] 1s^2 2s^2 2p^4 S=1 Discovery stories of FSL (Martin Harwit) spectro. notation (term symbols) : S, L, J

Spin-orbit-coupling (Russell-Saunders 1925) - Pauli’s exclusion principle - Hund’s rules (ground states)

CASE by CASE: - particularly why for [OI] spin S = 1 (triplet) - [OIII] and [CI] similar e-config, [CII] S=1/2 - energy levels, critical densities, ionis. pot.

Page 3: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Pauli’s exclusion principle

– Pauli (1925), based on empirical spectral data:

“No two electrons in an atom can exist in the same quantum state; each electron must have a different set of quantum numbers n, l, m_l, m_s. “

Pauli noticed that certain missing transitions would correspond to two or more electrons in identical quantum states (e.g. no He triplet lines observed).

Page 4: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Hund’s rules• Hund 1927, based on empirical atomic spectraRule 1: unpaired, parallel spins preferred Rule 2: maximizing orbital A.M. L is preferred Rule 3: ground state: higher J, when shell > half full E_J = A/2 [J(J+1) – L(L+1) – S(S+1)], A < 0 Reason: electrons with same spin need to have a wider spatial distribution (which according to Pauli’s principle correspond to different values m_l). The larger electron separations (less overlap, less repulsion) indeed lead to energetically more stable electronic configurations! (BE)

Page 5: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Oxygen [OI] spin-orbit states

3P states (S=1, L=1) fine structure lines 1D states (S=0, L=2) no spin, no FSL 1S states (S=0, L=0) no spin, no FSL

oxygen p sub-shell is more than half full Hund’s rule then says 3P2 is ground state and 3P1 first excited state, 3P0 2nd excited (the other way round for [OIII] and [CI])

Page 6: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Oxygen [OI] multi-electron system: outer sub-shell (4 electrons): 2p^4

Page 7: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

[OI] fact sheet• Ionisation potential: 13.62 eV (vs. HI 13.60 eV)• FSL lines: 63.185 mu (3P1-->3P2 gs), 145.5 mu• FSL energy levels: E = 228 K (3P1), 327 K (3P0)• Excitation: collisions with electrons, H, H2 • High critical density: few x 10(5), few x 10(4) cm-3 for 3P1 and 3P0, respectively Def n_crit: collisional de-exc equals radiative de-exc assumption: optically thin case

PS. Gas phase abundance: ~5x10(-4) of hydrogen

Page 8: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Fact sheet [CII], [CI], and [OIII]

• [CII] - 157.7 mu, E = 91.2K, IP([CI]) = 11.3 eV low n_crit ~=~ 2x10(3) cm-3

• [CI] - 609.7 mu, 370.4 mu; E = 23.6K, 62.4K n_crit = 620 cm-3, 720 cm-3 • [OIII] - 88.4 mu, 51.8 mu; E = 163K , 441K IP([OIII]) = 54.9 eV > I(He II, 54.4 eV)

Page 9: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Literature (text books)

• B.T. Draine: Physics of ISM and IGM (2011)• Peter Bernath: spectra of atoms & molecules• Jonathan Tennyson: atoms in space

• R. Genzel: Saas-Fee lectures (1991)

Page 10: The Quantum Mechanics of Fine Structure Lines: [OI], [OIII]; [CII], [CI] Hans Zinnecker Deutsches SOFIA Institut NASA-Ames and Univ. Stuttgart FSL Workshop,

Summary The 63 mu / 145 mu FSL lines of [OI] owe their existence to quantum mech. (L = 1, S = 1 triplet, spin-orbit coupling)

Similar for [OIII] and [CI] – also FSL triplets. [CII] S=1/2 FSL singlet (simplest case) [CIII] S=0, closed shell, no FSL emission

Pauli’s exclusion principle and Hund’s rule 1 demonstrated in action for [OI] (L=0, 1, 2). What if the [OI] cooling lines did not exist?