THE PROPANE TECHNICAL POCKET GUIDE - Mulhern Gas · 2019. 9. 8. · The Propane Technical Pocket...

24
THE PROPANE TECHNICAL POCKET GUIDE www.nypropane.com

Transcript of THE PROPANE TECHNICAL POCKET GUIDE - Mulhern Gas · 2019. 9. 8. · The Propane Technical Pocket...

  • THE PROPANE TECHNICALPOCKET GUIDE

    www.nypropane.com

  • The Propane Technical Pocket Guide

    The Propane Technical Pocket Guide is intended to be a general reference of information on preparing for the installation of propane systems. It provides key data and answers important questions that are relevant to construction professionals planning to incorporate propane in their construction projects.

    This guide is not intended to conflict with federal, state, or local ordinances or pertinent industry regulations, including National Fire Protection Association (NFPA) 54 and 58. These should be observed at all times.

    The Propane Technical Pocket Guide must not be considered a replacement for proper training on the installation and start-up of propane systems. Propane system installations should always be performed by trained propane professionals. For more information go to propanesafety.com.

  • 1

    Table of Contents

    2 PROFESSIONALLY ACCREDITED TRAINING

    3 PROPERTIES OF GAS

    6 VAPOR PRESSURE OF GAS

    7 DETERMINING TOTAL LOAD

    9 VAPORIZATION RATES

    11 CONTAINER LOCATION AND INSTALLATION

    14 PIPE AND TUBING SIZING

    16 GAS PIPING INLET POSITIONING

    17 CONVERSION FACTORS

  • 2 3

    Professionally Accredited Training

    The Propane Education & Research Council (PERC) provides free AIA-, NAHB-, USGBC-, and NARI-approved continuing education courses. Fulfill your CEU requirements today at buildwithpropane.com/training.

    Energy Efficiency• GoGreenWithPropane:AnOverviewofPropaneGasSystemsfor

    GreenResidentialConstruction

    • Propane-EnhancedRenewableEnergySystems

    • ResidentialEnergyPerformanceUpgrades:AnEnergy,Economic,andEnvironmentalAnalysis

    • Understandingthe2009IECCEnergyCode,AdvancedEfficiencyPrograms,andTheirImplicationsforPropane

    • EnergyandEnvironmentalAnalysisofPropaneEnergyPodHomes

    Generators• SpecifyingPropaneStandbyGenerators:InstallationandValue

    Considerations

    • LivingOff-Grid:PowerGenerationandStorageBasics

    Heating• AComparativeAnalysisofResidentialHeatingSystems

    • HydronicHeatinginRuralResidentialApplications

    • PropaneEnhancedSolarWaterHeating

    • RetrofittingHomesfromHeatingOiltoPropane:Efficiency,Economic,andEnvironmentalBenefits

    • HeatingOilConversion:ExploringPropaneasaViableAlternativeEnergySource

    Outdoor Living• ExpandingOutdoorLiving:UsingPropaneforEfficientand

    SustainableOutdoorLiving

    • InnovationsWithPropaneGasforOutdoorResidentialUse

    Propane Systems• CommunityPropaneTanks:Economical,Environmentally

    ResponsibleEnergyWithoutGeographicLimits

    • PropaneGasUndergroundSystems:ResidentialInfrastructureRequirementsandEnergyBenefits

    Water Heating• AComparativeAnalysisofResidentialWaterHeatingSystems

    • WaterHeaters:RetrofittingfromStandardElectrictoGasTankless

    • CondensingTanklessWaterHeaters:UsingPropanefortheMostEfficientWaterHeatersontheMarket

  • 2 3

    Professionally Accredited Training

    The Propane Education & Research Council (PERC) provides free AIA-, NAHB-, USGBC-, and NARI-approved continuing education courses. Fulfill your CEU requirements today at buildwithpropane.com/training.

    Energy Efficiency• GoGreenWithPropane:AnOverviewofPropaneGasSystemsfor

    GreenResidentialConstruction

    • Propane-EnhancedRenewableEnergySystems

    • ResidentialEnergyPerformanceUpgrades:AnEnergy,Economic,andEnvironmentalAnalysis

    • Understandingthe2009IECCEnergyCode,AdvancedEfficiencyPrograms,andTheirImplicationsforPropane

    • EnergyandEnvironmentalAnalysisofPropaneEnergyPodHomes

    Generators• SpecifyingPropaneStandbyGenerators:InstallationandValue

    Considerations

    • LivingOff-Grid:PowerGenerationandStorageBasics

    Heating• AComparativeAnalysisofResidentialHeatingSystems

    • HydronicHeatinginRuralResidentialApplications

    • PropaneEnhancedSolarWaterHeating

    • RetrofittingHomesfromHeatingOiltoPropane:Efficiency,Economic,andEnvironmentalBenefits

    • HeatingOilConversion:ExploringPropaneasaViableAlternativeEnergySource

    Outdoor Living• ExpandingOutdoorLiving:UsingPropaneforEfficientand

    SustainableOutdoorLiving

    • InnovationsWithPropaneGasforOutdoorResidentialUse

    Propane Systems• CommunityPropaneTanks:Economical,Environmentally

    ResponsibleEnergyWithoutGeographicLimits

    • PropaneGasUndergroundSystems:ResidentialInfrastructureRequirementsandEnergyBenefits

    Water Heating• AComparativeAnalysisofResidentialWaterHeatingSystems

    • WaterHeaters:RetrofittingfromStandardElectrictoGasTankless

    • CondensingTanklessWaterHeaters:UsingPropanefortheMostEfficientWaterHeatersontheMarket

    3

    Table 1A. Approximate Properties of Gases (English)

    PROPERTYPropane NaturalGas

    C3H8 CH4

    InitialBoilingPoint -44 -259

    SpecificGravityofLiquid(Waterat1.0)at60°F

    0.504 n/a

    WeightperGallonofLiquidat60°F,LB

    4.2 n/a

    SpecificHeatofLiquid,Btu/LBat60°F

    0.63 n/a

    CubicFeetofVaporperGallonat60°F

    36.38 n/a

    CubicFeetofVaporperPoundat60°F

    8.66 23.55

    SpecificGravityofVapor(Air=1.0)at60°F

    1.5 0.6

    IgnitionTemperatureinAir,°F 920–1120 1301

    MaximumFlameTemperatureinAir,°F

    3595 2834

    CubicFeetofAirRequiredtoBurnOneCubicFootofGas

    23.68 9.57

    LimitsofFlammabilityinAir,%ofVaporinAir-GasMix:(a)Lower(b)Upper

    2.159.6

    515

    LatentHeatofVaporizationatBoilingPoint:(a)BtuperPound(b)BtuperGallon

    184773

    219n/a

    TotalHeatingValuesAfterVaporization:(a)BtuperCubicFoot(b)BtuperPound(c)BtuperGallon

    2,48821,54891,502

    1,01228,875n/a

    Properties of Propane and Natural Gas (Methane)

  • 4 5

    Table 1B. Approximate Properties of Gases (Metric)

    PROPERTYPropane NaturalGas

    C3H8 CH4

    InitialBoilingPoint,°C -42 -162

    SpecificGravityofLiquid(Waterat1.0)at15.56°C

    0.504 n/a

    WeightperCubicMeterofLiquidat15.56°C,kg

    504 n/a

    SpecificHeatofLiquid,Kilojoule/Kilogramat15.56°C

    1.464 n/a

    CubicMeterofVaporperLiterat15.56°C

    0.271 n/a

    CubicMeterofVaporperKilogramat15.56°C

    0.539 1.470

    SpecificGravityofVapor(Air=1.0)at15.56°C

    1.50 0.56

    IgnitionTemperatureinAir,ºC 493–604 705

    MaximumFlameTemperatureinAir,ºC

    1,980 1,557

    CubicMetersofAirRequiredtoBurnOneCubicMeterofGas

    23.86 9.57

    LimitsofFlammabilityinAir,%ofVaporinAir-GasMix:(a)Lower(b)Upper

    2.159.6

    5.015.0

    LatentHeatofVaporizationatBoilingPoint:(a)KilojouleperKilogram(b)KilojouleperLiter

    428216

    509n/a

    TotalHeatingValuesAfterVaporization:(a)KilojouleperCubicMeter(b)KilojouleperKilogram(c)KilojouleperLiter

    92,43049,92025,140

    37,70655,533n/a

    Properties of Gas (Continued)

  • 4 5

    Table 1B. Approximate Properties of Gases (Metric)

    PROPERTYPropane NaturalGas

    C3H8 CH4

    InitialBoilingPoint,°C -42 -162

    SpecificGravityofLiquid(Waterat1.0)at15.56°C

    0.504 n/a

    WeightperCubicMeterofLiquidat15.56°C,kg

    504 n/a

    SpecificHeatofLiquid,Kilojoule/Kilogramat15.56°C

    1.464 n/a

    CubicMeterofVaporperLiterat15.56°C

    0.271 n/a

    CubicMeterofVaporperKilogramat15.56°C

    0.539 1.470

    SpecificGravityofVapor(Air=1.0)at15.56°C

    1.50 0.56

    IgnitionTemperatureinAir,ºC 493–604 705

    MaximumFlameTemperatureinAir,ºC

    1,980 1,557

    CubicMetersofAirRequiredtoBurnOneCubicMeterofGas

    23.86 9.57

    LimitsofFlammabilityinAir,%ofVaporinAir-GasMix:(a)Lower(b)Upper

    2.159.6

    5.015.0

    LatentHeatofVaporizationatBoilingPoint:(a)KilojouleperKilogram(b)KilojouleperLiter

    428216

    509n/a

    TotalHeatingValuesAfterVaporization:(a)KilojouleperCubicMeter(b)KilojouleperKilogram(c)KilojouleperLiter

    92,43049,92025,140

    37,70655,533n/a

    Properties of Gas (Continued)

    5

    Table 1C. Energy Content and Environmental Impact of Various Energy Sources

    Propane(perft3)

    Methane Propane(pergallon)

    FuelOil Electricity

    EnergyValue2,524Btu/ft3

    1,012Btu/ft3

    91,500Btu/gal

    139,400Btu/gal

    3,413Btu/kWh

    CO2emis-sions(lbs/MMBtu)

    139.2 115.3 139.2 161.4 389.5

    SourceEnergyMultipliers*

    1.151 1.092 1.151 1.158 3.365

    *SourceEnergyMultiplieristhetotalunitsofenergythatgointogeneration,processing,anddeliveryforaparticularenergysourcetoproduceoneunitofenergyatthesite.

  • 6 7

    Table 2. Vapor Pressures

    TEMPERATUREApproximateVaporPressure,PSIG(bar)

    PropanetoButane

    ºF ºC 100% 80/20 60/40 50/50 40/60 20/80 100%

    -40 -40 3.6(0,25) - - - - - -

    -30 -34,4 8(0,55)4.5

    (0,31) - - - - -

    -20 -28,9 13.5(0,93)9.2

    (0,63)4.9

    (0,34)1.9

    (0,13) - - -

    -10 -23,3 20(1,4)16(1,1)

    9(0,62)

    6(0,41)

    3.5(0,24) - -

    0 -17,8 28(1,9)22(1,5)

    15(1,0)

    11(0,76)

    7.3(0,50) - -

    10 -12,2 37(2,6)29(2,0)

    20(1,4)

    17(1,2)

    13(0,90)

    3.4(0,23) -

    20 -6,7 47(3,2)36(2,5)

    28(1,9)

    23(1,6)

    18(1,2)

    7.4(0,51) -

    30 -1,1 58(4,0)45(3,1)

    35(2,4)

    29(2,0)

    24(1,7)

    13(0,9) -

    40 4,4 72(5,0)58(4,0)

    44(3,0)

    37(2,6)

    32(2,2)

    18(1,2)

    3(0,21)

    50 10 86(5,9)69(4,8)

    53(3,7)

    46(3,2)

    40(2,8)

    24(1,7)

    6.9(0,58)

    60 15,6 102(7,0)80(5,5)

    65(4,5)

    56(3,9)

    49(3,4)

    30(2,1)

    12(0,83)

    70 21,1 127(8,8)95(6,6)

    78(5,4)

    68(4,7)

    59(4,1)

    38(2,6)

    17(1,2)

    80 26,7 140(9,7)125(8,6)

    90(6,2)

    80(5,5)

    70(4,8)

    46(3,2)

    23(1,6)

    90 32,2 165(11,4)140(9,7)

    112(7,7)

    95(6,6)

    82(5,7)

    56(3,9)

    29(2,0)

    100 37,8 196(13,5)168(11,6)

    137(9,4)

    123(8,5)

    100(6,9)

    69(4,8)

    36(2,5)

    110 43,3 220(15,2)185(12,8)

    165(11,4)

    148(10,2)

    130(9,0)

    80(5,5)

    45(3,1)

    TableadaptedfromLP-GasServiceman’sHandbook2012

    Vapor Pressure of Gas

    Vaporpressurecanbedefinedastheforceexertedbyagasorliquidattemptingtoescapefromacontainer.Thispressuremovesgasalongthepipeortubingtotheapplianceburner.

    Outsidetemperaturegreatlyaffectscontainerpressure.Lowertemperaturemeanslowercontainerpressure.Toolowacontainerpressuremeansthatnotenoughgasisabletogettotheappliance.

    Thetablebelowshowsvaporpressuresforpropaneandbutaneatvariousoutsidetemperatures.

  • 6 7

    Table 2. Vapor Pressures

    TEMPERATUREApproximateVaporPressure,PSIG(bar)

    PropanetoButane

    ºF ºC 100% 80/20 60/40 50/50 40/60 20/80 100%

    -40 -40 3.6(0,25) - - - - - -

    -30 -34,4 8(0,55)4.5

    (0,31) - - - - -

    -20 -28,9 13.5(0,93)9.2

    (0,63)4.9

    (0,34)1.9

    (0,13) - - -

    -10 -23,3 20(1,4)16(1,1)

    9(0,62)

    6(0,41)

    3.5(0,24) - -

    0 -17,8 28(1,9)22(1,5)

    15(1,0)

    11(0,76)

    7.3(0,50) - -

    10 -12,2 37(2,6)29(2,0)

    20(1,4)

    17(1,2)

    13(0,90)

    3.4(0,23) -

    20 -6,7 47(3,2)36(2,5)

    28(1,9)

    23(1,6)

    18(1,2)

    7.4(0,51) -

    30 -1,1 58(4,0)45(3,1)

    35(2,4)

    29(2,0)

    24(1,7)

    13(0,9) -

    40 4,4 72(5,0)58(4,0)

    44(3,0)

    37(2,6)

    32(2,2)

    18(1,2)

    3(0,21)

    50 10 86(5,9)69(4,8)

    53(3,7)

    46(3,2)

    40(2,8)

    24(1,7)

    6.9(0,58)

    60 15,6 102(7,0)80(5,5)

    65(4,5)

    56(3,9)

    49(3,4)

    30(2,1)

    12(0,83)

    70 21,1 127(8,8)95(6,6)

    78(5,4)

    68(4,7)

    59(4,1)

    38(2,6)

    17(1,2)

    80 26,7 140(9,7)125(8,6)

    90(6,2)

    80(5,5)

    70(4,8)

    46(3,2)

    23(1,6)

    90 32,2 165(11,4)140(9,7)

    112(7,7)

    95(6,6)

    82(5,7)

    56(3,9)

    29(2,0)

    100 37,8 196(13,5)168(11,6)

    137(9,4)

    123(8,5)

    100(6,9)

    69(4,8)

    36(2,5)

    110 43,3 220(15,2)185(12,8)

    165(11,4)

    148(10,2)

    130(9,0)

    80(5,5)

    45(3,1)

    TableadaptedfromLP-GasServiceman’sHandbook2012

    Vapor Pressure of Gas

    Vaporpressurecanbedefinedastheforceexertedbyagasorliquidattemptingtoescapefromacontainer.Thispressuremovesgasalongthepipeortubingtotheapplianceburner.

    Outsidetemperaturegreatlyaffectscontainerpressure.Lowertemperaturemeanslowercontainerpressure.Toolowacontainerpressuremeansthatnotenoughgasisabletogettotheappliance.

    Thetablebelowshowsvaporpressuresforpropaneandbutaneatvariousoutsidetemperatures.

    7

    Table 3A. Gas Required for Common Appliances

    APPLIANCEApproximateInputBtu/hr

    WarmAirFurnaceSingleFamilyMultifamily,perUnit

    60,000–120,00040,000–60,000

    HydronicBoiler,SpaceHeatingSingleFamilyMultifamily,perUnit

    80,000–140,00050,000–80,000

    HydronicBoiler,SpaceandWaterHeatingSingleFamilyMultifamily,perUnit

    100,000–200,00050,000–100,000

    Range,Freestanding,DomesticBuilt-InOvenorBroilerUnit,DomesticBuilt-InTopUnit,Domestic

    50,000–90,00014,000–16,00040,000–85,000

    WaterHeater,Storage,30to40gal.TankWaterHeater,Storage,50gal.TankWaterHeater,Tankless2.5GPM3GPM4GPMWaterHeater,Domestic,CirculatingorSide-Arm

    25,000–50,00030,000–55,00030,000–55,000

    115,000–125,000125,000–150,000155,000–200,000

    RefrigeratorClothesDryer,Type1(Domestic)GasFireplaceDirectVentGasLogBarbecueGasLight

    1,500–2,00018,000–22,00020,000–90,00035,000–90,00040,000–80,0001,400–2,800

    TableadaptedfromNewportPartners,2011.

    Determining Total Load

    ThebestwaytodetermineBtuinputisfromtheappliancenameplateorfromthemanufacturer’scatalog.Addtheinputofalltheappliancesforthetotalload.Ifspecificappliancecapacityinformationisnotavailable,Table3Abelowwillbeuseful.Remembertoallowforappliancesthatmaybeinstalledatalaterdate.

    Ifthepropaneloadinstandardcubicfeetperhour(SCFH)isdesired,dividetheBtu/hrloadby2,488togetSCFH.Conversely,theBtu/hrcapacitycanbeobtainedfromSCFHbymultiplyingtheSCFHfigureby2,488.

    Figuringthetotalloadaccuratelyismostimportantbecauseofthesizeofthepipeandtubing,thetank,andtheregulatorwillbebasedonthecapacityofthesystemtobeserved.

  • 8 9

    Determining Total Load (Continued)

    Avarietyofmechanicalsystemsareavailableforspaceheatingandwaterheatinginhomes.Thesesystemshavevaryingenergysourcesandvaryingefficiencylevels.Table3BbelowprovidessimplecalculationsthatallowcontractorsandhomeownerstoestimatethedollarspermillionBtusdepend-ingontheequipmenttype,efficiency,andenergyprice.The“$/MMBtu”figurecanbecomparedacrossdifferentoptionstoevaluatethem.

    Table 3B. Operating Costs and Equipment Efficiencies of Residential Space and Water Heating Systems

    SPACEHEATINGPricingEstimation

    Formula($/MMBtu)

    TypicalEquipmentEfficiencyRangesfor

    NewerSystems

    Propane(furnaceorboiler)

    (10.9x$/gal)(AFUE/100)

    AFUE:78–98

    NaturalGas(furnaceorboiler)

    (10x$/therm)(AFUE/100)

    AFUE:78–98

    FuelOil(furnaceorboiler)

    (7.2x$/gal)(AFUE/100)

    AFUE:78–95

    ElectricResistance

    293x$/kWh COP:1.0

    ElectricAirSourceHeatPump

    (1000x$/kWh)HSPF

    HSPF:7.7–13.0

    ElectricGroundSourceHeatPump

    (293x$/kWh)COP

    COP:3.0–4.7

    WATERHEATINGPricingEstimation

    Formula($/MMBtu)

    TypicalStorageWaterHeaterEnergyFactors(EF)

    TypicalInstantaneousWaterHeaterEnergyFactor

    (EF)

    Propane (10.9x$/gal)/EF 0.59–0.67* 0.82–0.98

    Methane (10x$/therm)/EF 0.59–0.70* 0.82–0.98

    FuelOil (7.2x$/gal)/EF 0.51–0.68 —

    ElectricResistance

    (293x$/kWh)/EF0.90–0.95 0.93–1.0

    ElectricAirSourceHeatPump

    (293x$/kWh)/EF2.0–2.51 —

    *Residentialandcommercialunitsareavailablewiththermalefficienciesupto96%.

  • 8 9

    Determining Total Load (Continued)

    Avarietyofmechanicalsystemsareavailableforspaceheatingandwaterheatinginhomes.Thesesystemshavevaryingenergysourcesandvaryingefficiencylevels.Table3BbelowprovidessimplecalculationsthatallowcontractorsandhomeownerstoestimatethedollarspermillionBtusdepend-ingontheequipmenttype,efficiency,andenergyprice.The“$/MMBtu”figurecanbecomparedacrossdifferentoptionstoevaluatethem.

    Table 3B. Operating Costs and Equipment Efficiencies of Residential Space and Water Heating Systems

    SPACEHEATINGPricingEstimation

    Formula($/MMBtu)

    TypicalEquipmentEfficiencyRangesfor

    NewerSystems

    Propane(furnaceorboiler)

    (10.9x$/gal)(AFUE/100)

    AFUE:78–98

    NaturalGas(furnaceorboiler)

    (10x$/therm)(AFUE/100)

    AFUE:78–98

    FuelOil(furnaceorboiler)

    (7.2x$/gal)(AFUE/100)

    AFUE:78–95

    ElectricResistance

    293x$/kWh COP:1.0

    ElectricAirSourceHeatPump

    (1000x$/kWh)HSPF

    HSPF:7.7–13.0

    ElectricGroundSourceHeatPump

    (293x$/kWh)COP

    COP:3.0–4.7

    WATERHEATINGPricingEstimation

    Formula($/MMBtu)

    TypicalStorageWaterHeaterEnergyFactors(EF)

    TypicalInstantaneousWaterHeaterEnergyFactor

    (EF)

    Propane (10.9x$/gal)/EF 0.59–0.67* 0.82–0.98

    Methane (10x$/therm)/EF 0.59–0.70* 0.82–0.98

    FuelOil (7.2x$/gal)/EF 0.51–0.68 —

    ElectricResistance

    (293x$/kWh)/EF0.90–0.95 0.93–1.0

    ElectricAirSourceHeatPump

    (293x$/kWh)/EF2.0–2.51 —

    *Residentialandcommercialunitsareavailablewiththermalefficienciesupto96%.

    9

    Vaporization Rates

    Thefactorsaffectingvaporizationincludewettedsurfaceareaofthecontainer,liquidlevelinthecontainer,temperatureandhumiditysurroundingthecontainer,andwhetherthecontainerisabovegroundorunderground.

    Thetemperatureoftheliquidisproportionaltotheoutsideairtemperature,andthewettedsurfaceareaisthetanksurfaceareaincontactwiththeliquid.Therefore,whentheoutsideairtemperatureislowerorthecontainerhaslessliquidinit,thevaporizationrateofthecontainerisalowervalue.

    TodeterminethepropersizeofASMEstoragetanks,itisimportanttoconsiderthelowestwintertemperatureatthelocation.

    Seepage10formoreinformation.

  • 10 11

    Table 4. Maximum Intermittent Withdrawal Rate (Btu/hr) Without Tank Frosting* If Lowest Outdoor Temperature (Average for 24 Hours) Reaches ...

    TEMPERATURETankSize,Gallons(l)

    150(568) 250(946) 500(1893) 1000(3785)

    40ºF 4°C 214,900 288,100 478,800 852,800

    30ºF -1°C 187,000 251,800 418,600 745,600

    20ºF -7°C 161,800 216,800 360,400 641,900

    10ºF -12°C 148,000 198,400 329,700 587,200

    0ºF -18°C 134,700 180,600 300,100 534,500

    -10ºF -23°C 132,400 177,400 294,800 525,400

    -20ºF -29°C 108,800 145,800 242,300 431,600

    -30ºF -34°C 107,100 143,500 238,600 425,000

    *Tankfrostingactsasaninsulator,reducingthevaporizationrate.

    Vaporization Rates for ASME Storage Tanks

    AnumberofassumptionsweremadeincalculatingtheBtufigureslistedinTable4,below:

    1Thetankisone-halffull.

    2Relativehumidityis70percent.

    3Thetankisunderintermittentloading.

    Althoughnoneoftheseconditionsmayapply,Table4canstillserveasagoodruleofthumbinestimatingwhataparticulartanksizewillprovideundervarioustemperatures.ThismethodusesASMEtankdimensions,liquidlevel,andaconstantvalueforeach10percentofliquidtoestimatethevaporizationcapacityofagiventanksizeat0°F.Continuousloadingisnotaverycommonoccurrenceondomesticinstallations,butundercontinuousloadingthewithdrawalratesinTable4shouldbemultipliedby0.25.

  • 10 11

    Table 4. Maximum Intermittent Withdrawal Rate (Btu/hr) Without Tank Frosting* If Lowest Outdoor Temperature (Average for 24 Hours) Reaches ...

    TEMPERATURETankSize,Gallons(l)

    150(568) 250(946) 500(1893) 1000(3785)

    40ºF 4°C 214,900 288,100 478,800 852,800

    30ºF -1°C 187,000 251,800 418,600 745,600

    20ºF -7°C 161,800 216,800 360,400 641,900

    10ºF -12°C 148,000 198,400 329,700 587,200

    0ºF -18°C 134,700 180,600 300,100 534,500

    -10ºF -23°C 132,400 177,400 294,800 525,400

    -20ºF -29°C 108,800 145,800 242,300 431,600

    -30ºF -34°C 107,100 143,500 238,600 425,000

    *Tankfrostingactsasaninsulator,reducingthevaporizationrate.

    Vaporization Rates for ASME Storage Tanks

    AnumberofassumptionsweremadeincalculatingtheBtufigureslistedinTable4,below:

    1Thetankisone-halffull.

    2Relativehumidityis70percent.

    3Thetankisunderintermittentloading.

    Althoughnoneoftheseconditionsmayapply,Table4canstillserveasagoodruleofthumbinestimatingwhataparticulartanksizewillprovideundervarioustemperatures.ThismethodusesASMEtankdimensions,liquidlevel,andaconstantvalueforeach10percentofliquidtoestimatethevaporizationcapacityofagiventanksizeat0°F.Continuousloadingisnotaverycommonoccurrenceondomesticinstallations,butundercontinuousloadingthewithdrawalratesinTable4shouldbemultipliedby0.25.

    11

    Container Location and Installation

    OncethepropersizeoftheASMEstoragetankhasbeendetermined,carefulattentionmustbegiventothemostconvenientyetsafeplaceforitslocationonthecustomer’sproperty.

    ThecontainershouldbeplacedinalocationpleasingtothecustomerbutnotconflictingwithstateandlocalregulationsorNFPA58,StorageandHandlingofLiquefiedPetroleumGases.Refertothisstandardandconsultwithyourpropaneprofessionaltodeterminetheappropriateplacementofpropanecontainers.

    Ingeneral,storagetanksshouldbeplacedinanaccessiblelocationforfilling.Abovegroundtanksshouldbesupportedbyconcreteblocksofappropriatesizeandreinforcement.Allpropanestoragetanksshouldbelocatedawayfromvehiculartraffic.

    ForASMEcontainers,thedistancefromanybuildingopenings,externalsourcesofignition,andintakestodirect-ventedgasappliancesormechanicalventilationsystemsareacriticalconsideration.SeeFigures5and6onpages12and13,respectively.

    RefertoNFPA58fortheminimumdistancesthatthesecontainersmustbeplacedfromabuildingorotherobjects.

  • 12 13

    501–2000 g

    al w

    .c.

    Under

    125

    gal w

    .c.

    10 ft

    (m

    in)

    Win

    dow

    air

    cond

    ition

    er(s

    ourc

    e of

    ig

    nitio

    n)

    10 ft

    (m

    in)

    10 ft

    (m

    in)

    10 ft

    (m

    in)

    10 ft

    (m

    in)

    5 ft

    (min

    )

    Inta

    ke to

    dire

    ct-

    vent

    app

    lianc

    e

    25 ft

    (min

    ) 25

    ft(m

    in)

    125–500

    gal w

    .c.

    Cen

    tral

    AC

    com

    pres

    sor

    (sou

    rce

    of ig

    nitio

    n)

    Under

    125

    gal w

    .c.

    1.R

    egardlessofitssize,any

    ASMEtan

    kfilledonsitem

    ustbe

    loca

    tedsothatthe

    filling

    con

    nectionan

    dfixe

    dm

    axim

    um

    liquidle

    velg

    auge

    areatleas

    t10

    ftfrom

    any

    externa

    lsou

    rce

    ofig

    nitio

    n(e.g.,op

    enflam

    e,w

    indow

    AC,c

    ompressor),intake

    todire

    ct-ven

    tedgas

    applianc

    esorintake

    toamec

    hanica

    lve

    ntilatio

    nsystem

    .

    Container Location (Continued)

    Figure 5. Aboveground ASME containers. Reproduced with permission from NFPA 58-2011, LiquefiedPetroleumGasCode, Copyright © 2010, National Fire Protection Association. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

    2.The

    distanc

    emay

    bereduc

    edtono

    lesstha

    n10

    ftfo

    rasing

    lecon

    tainer

    of120

    0ga

    l(4.5m

    3 )w

    atercap

    acity

    orless,p

    rovided

    su

    chcon

    tainerisatleas

    t25

    ftfrom

    any

    otherLP-G

    ascon

    tainer

    ofm

    orethan

    125

    gal(0

    .5m

    3 )w

    atercap

    acity

    .

  • 12 13

    501–2000 g

    al w

    .c.

    Under

    125

    gal w

    .c.

    10 ft

    (m

    in)

    Win

    dow

    air

    cond

    ition

    er(s

    ourc

    e of

    ig

    nitio

    n)

    10 ft

    (m

    in)

    10 ft

    (m

    in)

    10 ft

    (m

    in)

    10 ft

    (m

    in)

    5 ft

    (min

    )

    Inta

    ke to

    dire

    ct-

    vent

    app

    lianc

    e

    25 ft

    (min

    ) 25

    ft(m

    in)

    125–500

    gal w

    .c.

    Cen

    tral

    AC

    com

    pres

    sor

    (sou

    rce

    of ig

    nitio

    n)

    Under

    125

    gal w

    .c.

    1.R

    egardlessofitssize,any

    ASMEtan

    kfilledonsitem

    ustbe

    loca

    tedsothatthe

    filling

    con

    nectionan

    dfixe

    dm

    axim

    um

    liquidle

    velg

    auge

    areatleas

    t10

    ftfrom

    any

    externa

    lsou

    rce

    ofig

    nitio

    n(e.g.,op

    enflam

    e,w

    indow

    AC,c

    ompressor),intake

    todire

    ct-ven

    tedgas

    applianc

    esorintake

    toamec

    hanica

    lve

    ntilatio

    nsystem

    .

    Container Location (Continued)

    Figure 5. Aboveground ASME containers. Reproduced with permission from NFPA 58-2011, LiquefiedPetroleumGasCode, Copyright © 2010, National Fire Protection Association. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

    2.The

    distanc

    emay

    bereduc

    edtono

    lesstha

    n10

    ftfo

    rasing

    lecon

    tainer

    of120

    0ga

    l(4.5m

    3 )w

    atercap

    acity

    orless,p

    rovided

    su

    chcon

    tainerisatleas

    t25

    ftfrom

    any

    otherLP-G

    ascon

    tainer

    ofm

    orethan

    125

    gal(0

    .5m

    3 )w

    atercap

    acity

    .

    13

    Cen

    tral

    AC

    com

    pre

    ssor

    (sou

    rce

    of ig

    nitio

    n)

    Inta

    ke t

    o d

    irect

    -ve

    nt a

    pp

    lianc

    e

    Win

    dow

    air

    cond

    ition

    er

    (sou

    rce

    of ig

    nitio

    n)

    Nea

    rest

    line

    of a

    djo

    inin

    gp

    rop

    erty

    tha

    t ca

    n b

    eb

    uilt

    upon

    2000

    gal

    w.c

    . or

    less

    10 ft

    (min

    )(N

    ote

    1)

    10 ft

    (min

    )(N

    ote

    2)10

    ft (m

    in)

    (Not

    e 1)

    10 ft

    (min

    )(N

    ote

    1)

    Cra

    wl s

    pac

    e op

    enin

    g,w

    ind

    ow, o

    r ex

    haus

    t fa

    n

    10 ft

    (min

    )(N

    ote

    2)

    2.Nopartofanun

    dergrou

    ndcon

    tainercan

    belesstha

    n10

    ft

    from

    anim

    portantbuildingorline

    ofa

    djoiningpropertytha

    tca

    nbebuiltup

    on.

    Figure 6. Underground ASME containers. Reproduced with permission from NFPA 58-2011, LiquefiedPetroleumGasCode, Copyright © 2010, National Fire Protection Association. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

    1.T

    hereliefv

    alve

    ,filling

    con

    nection,and

    fixe

    dm

    axim

    umliquid

    leve

    lgau

    geven

    tco

    nnec

    tionatthe

    con

    tainerm

    ustbeatle

    ast

    10ftfrom

    any

    exteriorso

    urce

    ofign

    ition

    ,open

    ings

    into

    dire

    ct-ven

    tap

    plianc

    es,o

    rmec

    hanica

    lven

    tilationairintake

    s.

  • 14 15

    Tab

    le 7

    . P

    ipe

    Siz

    ing

    Bet

    wee

    n S

    eco

    nd-S

    tag

    e R

    egul

    ato

    r an

    d A

    pp

    lianc

    eM

    AXI

    MU

    M U

    ND

    ILU

    TED

    PR

    OP

    AN

    E C

    AP

    AC

    ITIE

    S B

    AS

    ED

    ON

    10.

    0 P

    SI I

    NLE

    T P

    RE

    SS

    UR

    E A

    ND

    1.0

    PS

    I PR

    ES

    SU

    RE

    DR

    OP

    . (B

    AS

    ED

    ON

    A 1

    .52

    SP

    EC

    IFIC

    -GR

    AV

    ITY

    GA

    S.)

    Nom

    inal

    Pip

    e S

    ize,

    Sch

    edul

    e 40

    Pip

    ing

    Leng

    th,

    Fee

    t1/

    2 in

    .(0

    .622

    )3/

    4 in

    .(0

    .824

    )1

    in.

    (1.0

    49)

    1-1/

    4 in

    .(1

    .38)

    1-1/

    2 in

    .(1

    .61)

    2 in

    .(2

    .067

    )3

    in.

    (3.0

    68)

    3-1/

    2 in

    .(3

    .548

    )4

    in.

    (4.0

    26)

    1029

    160

    811

    4623

    5335

    2567

    8919

    130

    2800

    839

    018

    2020

    041

    878

    816

    1724

    2346

    6613

    148

    1925

    026

    817

    3016

    133

    663

    212

    9919

    4637

    4710

    558

    1545

    821

    535

    4013

    728

    754

    111

    1116

    6532

    0790

    3613

    230

    1843

    1

    5012

    225

    548

    098

    514

    7628

    4280

    0911

    726

    1633

    5

    6011

    023

    143

    589

    213

    3725

    7572

    5610

    625

    1480

    1

    8094

    198

    372

    764

    1144

    2204

    6211

    9093

    1266

    8

    100

    8417

    533

    067

    710

    1419

    5455

    0480

    5911

    227

    125

    7415

    529

    260

    089

    917

    3148

    7871

    4399

    50

    150

    6714

    126

    554

    481

    515

    6944

    2064

    7290

    16

    200

    5812

    022

    746

    569

    713

    4337

    8355

    3977

    16

    250

    5110

    720

    141

    261

    811

    9033

    5349

    0968

    39

    300

    4697

    182

    374

    560

    1078

    3038

    4448

    6196

    350

    4389

    167

    344

    515

    992

    2795

    4092

    5701

    400

    4083

    156

    320

    479

    923

    2600

    3807

    5303

    Note:C

    apac

    ities

    arein

    100

    0Btu/hr.

    Adap

    tedw

    ithpermission

    from

    NFP

    A58-20

    11,L

    ique

    fied

    Pet

    role

    um G

    as C

    ode,Cop

    yright©

    201

    0,Nationa

    lFire

    ProtectionAssoc

    iatio

    n.Thisreprin

    ted

    materialisno

    ttheco

    mpleteand

    officialpos

    ition

    ofthe

    NFP

    Aonthereferenc

    edsub

    ject,w

    hich

    isrep

    rese

    nted

    onlybythestan

    dardin

    itsen

    tirety.

  • 15

    Tab

    le 8

    . M

    axim

    um C

    apac

    ity

    of

    CS

    ST

    *

    EH

    D**

    FLO

    W

    DE

    SIG

    NA

    TIO

    N

    IN T

    HO

    US

    AN

    DS

    OF

    BTU

    /HR

    OF

    UN

    DIL

    UTE

    D P

    RO

    PA

    NE

    AT

    A P

    RE

    SS

    UR

    E O

    F 11

    -IN

    CH

    ES

    W.C

    . AN

    D A

    PR

    ES

    SU

    RE

    DR

    OP

    OF

    0.5-

    INC

    H W

    .C.

    (BA

    SE

    D O

    N A

    1.5

    2 S

    PE

    CIF

    IC G

    RA

    VIT

    Y G

    AS

    )

    Tubi

    ng L

    engt

    h, F

    eet

    510

    1520

    2530

    4050

    6070

    8090

    100

    150

    200

    250

    300

    1372

    5039

    3430

    2823

    2019

    1715

    1514

    119

    88

    1599

    6955

    4942

    3933

    3026

    2523

    2220

    1514

    1211

    1818

    112

    910

    491

    8274

    6458

    5349

    4544

    4131

    2825

    23

    1921

    115

    012

    110

    694

    8774

    6660

    5752

    5047

    3633

    3026

    2335

    525

    420

    818

    316

    415

    113

    111

    810

    799

    9490

    8566

    6053

    50

    2542

    630

    324

    821

    619

    217

    715

    313

    712

    611

    710

    910

    298

    7569

    6157

    3074

    452

    142

    236

    532

    529

    725

    622

    720

    719

    117

    816

    915

    912

    311

    299

    90

    3186

    360

    549

    042

    537

    934

    429

    726

    524

    122

    220

    819

    718

    614

    312

    911

    710

    7

    *Tab

    lein

    clud

    eslo

    sses

    forfour90°ben

    dsand

    twoen

    dfittin

    gs.T

    ubingruns

    with

    largernum

    bersofb

    endand

    /orfittin

    gssha

    llbeincrea

    sedbyan

    equiva

    lent

    leng

    thoftub

    ingtoth

    efollowingeq

    uatio

    n:L=1.3nwhe

    reListhe

    addition

    alle

    ngth(ft)oftub

    ingan

    dnisthe

    num

    berofa

    ddition

    alfittings

    and

    /orben

    ds.

    **EHD(E

    quivalen

    tHyd

    raulicDiameter)A

    mea

    sureofthe

    relativehy

    drau

    licefficien

    cybetwee

    ndifferen

    ttub

    ingsizes.The

    greaterth

    eva

    lueofEHD,the

    greater

    thega

    sca

    pacityofthe

    tubing

    .

    Adap

    tedw

    ithpermission

    from

    NFP

    A58-20

    11,L

    ique

    fied

    Pet

    role

    um G

    as C

    ode,Cop

    yright©

    201

    0,Nationa

    lFire

    ProtectionAssoc

    iatio

    n.Thisreprin

    ted

    materialisno

    ttheco

    mpleteand

    officialpos

    ition

    ofthe

    NFP

    Aonthe referenc

    edsub

    ject,w

    hich

    isrep

    rese

    nted

    onlybythestan

    dardin

    itsen

    tirety.

  • 16 17

    Gas Piping Inlet Positioning

    Justliketanks,propanepressureregulatorscomewithpipe-sizeandinstallation-distancerequirements.Regulatorsinstalledonthegaspipingsystematthesideofbuildingscannotbeplacedcloserthan3feethorizontallyfromanybuildingopening,suchasawindowwell,that’slowerthantheinstalledregulator.Norcantheybeplacedcloserthan5feetfromanysourceofignition,suchasanACcompressor.Additionalregulations,aswellasregulatormanufacturer’sinstructions,mayapply.Checkwithapropaneprofessionalfirsttoensureyoucomplywithinteriorgaspipinginletpositioningrequirements.

  • 16 17

    Gas Piping Inlet Positioning

    Justliketanks,propanepressureregulatorscomewithpipe-sizeandinstallation-distancerequirements.Regulatorsinstalledonthegaspipingsystematthesideofbuildingscannotbeplacedcloserthan3feethorizontallyfromanybuildingopening,suchasawindowwell,that’slowerthantheinstalledregulator.Norcantheybeplacedcloserthan5feetfromanysourceofignition,suchasanACcompressor.Additionalregulations,aswellasregulatormanufacturer’sinstructions,mayapply.Checkwithapropaneprofessionalfirsttoensureyoucomplywithinteriorgaspipinginletpositioningrequirements.

    17

    Conversion Factors

    Multiply By To Obtain

    LENGTH AND AREA

    MillimetersMetersSq. CentimetersSq. Meters

    0.03943.28080.155010.764

    InchesFeetSq. InchesSq. Feet

    VOLUME AND MASS

    Cubic MetersLitersGallonsCubic cm.LitersLitersKilogramsTonnes

    35.3150.03530.13370.0612.1140.26422.20461.1024

    Cubic FeetCubic FeetCubic FeetCubic InchesPints (US)Gallons (US)PoundsTons (US)

    PRESSURE AND FLOW RATE

    MillibarsOunces/sq. in.Inches w.c.BarsKilopascalsKilograms/sq. cm.Pounds/sq. in.Liters/hr.Cubic Meters/hr.

    0.40181.7330.036114.500.145014.2220.0680.03534.403

    Inches w.c.Inches w.c.Pounds/sq. in.Pounds/sq. in.Pounds/sq. in.Pounds/sq. in.AtmospheresCubic Feet/hr.Gallons/min.

    MISCELLANEOUS

    KilojoulesCalories, kgWattsBtuMegajoules

    0.94783.9683.4140.000010.00948

    BtuBtuBtu/hrThermsTherms

  • 18 19

    Multiply By To Obtain

    LENGTH AND AREA

    InchesFeetSq. InchesSq. Feet

    25.40.3048 6.4516 0.0929

    MillimetersMetersSq. CentimetersSq. Meters

    VOLUME AND MASS

    Cubic FeetCubic FeetCubic FeetCubic InchesPints (US)Gallons (US)PoundsTons (US)

    0.028328.3167.48116.3870.4733.7850.45350.9071

    Cubic MetersLitersGallonsCubic cm.LitersLitersKilogramsTonnes

    PRESSURE AND FLOW RATE

    Inches w.c.Inches w.c.Pounds/sq. in.Pounds/sq. in.Pounds/sq. in.Pounds/sq. in.AtmospheresCubic Feet/hr.Gallons/min.

    2.4880.57727.710.06896.8950.070314.69628.3160.2271

    MillibarsOunces/sq. in.Inches w.c.BarsKilopascalsKilograms/sq. cm.Pounds/sq. in.Liters/hr.Cubic Meters/hr.

    MISCELLANEOUS

    BtuBtuBtu/hrThermsTherms

    1.0550.2520.293100,000105.5

    KilojoulesCalories, kgWattsBtuMegajoules

    Conversion Factors

  • 18 19

    Multiply By To Obtain

    LENGTH AND AREA

    InchesFeetSq. InchesSq. Feet

    25.40.3048 6.4516 0.0929

    MillimetersMetersSq. CentimetersSq. Meters

    VOLUME AND MASS

    Cubic FeetCubic FeetCubic FeetCubic InchesPints (US)Gallons (US)PoundsTons (US)

    0.028328.3167.48116.3870.4733.7850.45350.9071

    Cubic MetersLitersGallonsCubic cm.LitersLitersKilogramsTonnes

    PRESSURE AND FLOW RATE

    Inches w.c.Inches w.c.Pounds/sq. in.Pounds/sq. in.Pounds/sq. in.Pounds/sq. in.AtmospheresCubic Feet/hr.Gallons/min.

    2.4880.57727.710.06896.8950.070314.69628.3160.2271

    MillibarsOunces/sq. in.Inches w.c.BarsKilopascalsKilograms/sq. cm.Pounds/sq. in.Liters/hr.Cubic Meters/hr.

    MISCELLANEOUS

    BtuBtuBtu/hrThermsTherms

    1.0550.2520.293100,000105.5

    KilojoulesCalories, kgWattsBtuMegajoules

    Conversion Factors

    19

    Temperature Conversion

    Table 9. Temperature Conversion

    °F °C °F °C °F °C

    -40 -40 30 -1.1 90 32.2

    -30 -34.4 32 0 100 37.8

    -20 -28.9 40 4.4 110 43.3

    -10 -23.3 50 10.0 120 48.9

    0 -17.8 60 15.6 130 54.4

    10 -12.2 70 21.1 140 60.0

    20 -6.7 80 26.7 150 65.6

    All trademarks shown are the property of their respective owners.

  • 20

    Notes

  • buildwithpropane.com

    propanesafety.com

    202.452.8975

    [email protected]

    Propane Education & Research Council 1140 Connecticut Ave. N.W., Suite 1075 Washington, DC 20036

    © Propane Education & Research Council 01/12

    The Propane Education & Research Council was authorized by the U.S. Congress with the passage of Public Law 104-284, the Propane Education and Research Act (PERA), signed into law on October 11, 1996. The mission of the Propane Education & Research Council is to promote the safe, efficient use of odorized propane gas as a preferred energy source.

    Scan this code to connect to training. Need a code reader? Download one at ScanLife.com.

    PO Box 760Clifton Park, NY 12065www.nypropane.com